Skip to main content

Advertisement

Log in

EWI2 prevents EGFR from clustering and endocytosis to reduce tumor cell movement and proliferation

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

EWI2 is a transmembrane immunoglobulin superfamily (IgSF) protein that physically associates with tetraspanins and integrins. It inhibits cancer cells by influencing the interactions among membrane molecules including the tetraspanins and integrins. The present study revealed that, upon EWI2 silencing or ablation, the elevated movement and proliferation of cancer cells in vitro and increased cancer metastatic potential and malignancy in vivo are associated with (i) increases in clustering, endocytosis, and then activation of EGFR and (ii) enhancement of Erk MAP kinase signaling. These changes in signaling make cancer cells (i) undergo partial epithelial-to-mesenchymal (EMT) for more tumor progression and (ii) proliferate faster for better tumor formation. Inhibition of EGFR or Erk kinase can abrogate the cancer cell phenotypes resulting from EWI2 removal. Thus, to inhibit cancer cells, EWI2 prevents EGFR from clustering and endocytosis to restrain its activation and signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

Ab:

Antibody

BSA:

Bovine serum albumin

CAMs:

Cell adhesion molecules

CHC:

Clathrin heavy chain

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-to-mesenchymal transition

FBS:

Fetal bovine serum

FN:

Fibronectin

HB-EGF:

Heparin-binding EGF-like growth factor

IgSF:

Immunoglobulin superfamily

KO:

Knockout

KD:

Knockdown

LN:

Laminin

mAb:

Monoclonal antibody

MAPK:

Mitogen-activated protein kinase

pAb:

Polyclonal antibody

PBS:

Phosphate buffered saline

PFA:

Paraformaldehyde

PRAD:

Prostate adenocarcinoma

ROI:

Region of interest

STORM:

Stochastic optical reconstruction microscopy

SR:

Super-resolution

TEMD:

Tetraspanin-enriched membrane domain

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  1. Charrin S, Le Naour F, Labas V et al (2003) EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 373(Pt 2):409–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stipp CS, Kolesnikova TV, Hemler ME (2001) EWI-2 is a major CD9 and CD81 partner and member of a novel Ig protein subfamily. J Biol Chem 276(44):40545–40554

    Article  CAS  PubMed  Google Scholar 

  3. Zhang XA, Lane WS, Charrin S et al (2003) EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells. Cancer Res 63(10):2665–2674

    CAS  PubMed  Google Scholar 

  4. Charrin S, Jouannet S, Boucheix C et al (2014) Tetraspanins at a glance. J Cell Sci 127(Pt 17):3641–3648

    CAS  PubMed  Google Scholar 

  5. Wang H-X, Li Q, Sharma C et al (2011) Tetraspanin protein contributions to cancer. Biochem Soc Trans 39(2):547–552

    Article  CAS  PubMed  Google Scholar 

  6. Yáñez-Mó M, Barreiro O, Gordon-Alonso M et al (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19(9):434–446

    Article  PubMed  Google Scholar 

  7. Yang Y-G, Sari IN, Zia MF et al (2016) Tetraspanins: spanning from solid tumors to hematologic malignancies. Exp Hematol 44(5):322–328

    Article  CAS  PubMed  Google Scholar 

  8. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12(2):104–117

    Article  CAS  PubMed  Google Scholar 

  9. Berditchevski F, Odintsova E (2016) ErbB receptors and tetraspanins: casting the net wider. Int J Biochem Cell Biol 77(Pt A):68–71

    Article  CAS  PubMed  Google Scholar 

  10. Mitamura T, Iwamoto R, Umata T et al (1992) The 27-kD diphtheria toxin receptor-associated protein (DRAP27) from vero cells is the monkey homologue of human CD9 antigen: expression of DRAP27 elevates the number of diphtheria toxin receptors on toxin-sensitive cells. J Cell Biol 118(6):1389–1399

    Article  CAS  PubMed  Google Scholar 

  11. Tang M, Yin G, Wang F et al (2015) Downregulation of CD9 promotes pancreatic cancer growth and metastasis through upregulation of epidermal growth factor on the cell surface. Oncol Rep 34(1):350–358

    Article  CAS  PubMed  Google Scholar 

  12. Wang G-P, Han X-F (2015) CD9 modulates proliferation of human glioblastoma cells via epidermal growth factor receptor signaling. Mol Med Rep 12(1):1381–1386

    Article  CAS  PubMed  Google Scholar 

  13. Murayama Y, Shinomura Y, Oritani K et al (2008) The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol 216(1):135–143

    Article  CAS  PubMed  Google Scholar 

  14. Haeger A, Krause M, Wolf K et al (2014) Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim Biophys Acta 1840(8):2386–2395

    Article  CAS  PubMed  Google Scholar 

  15. Wolf K, Friedl P (2011) Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 21(12):736–744

    Article  CAS  PubMed  Google Scholar 

  16. Taddei ML, Giannoni E, Comito G et al (2013) Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett 341(1):80–96

    Article  CAS  PubMed  Google Scholar 

  17. Tester AM, Ruangpanit N, Anderson RL et al (2000) MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clin Exp Metastasis 18(7):553–560

    Article  CAS  PubMed  Google Scholar 

  18. Kong D, Wang Z, Sarkar SH et al (2008) Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells 26(6):1425–1435

    Article  CAS  PubMed  Google Scholar 

  19. Sun Y, Schaar A, Sukumaran P et al (2018) TGFβ-induced epithelial-to-mesenchymal transition in prostate cancer cells is mediated via TRPM7 expression. Mol Carcinog 57(6):752–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Javadi S, Zhiani M, Mousavi MA et al (2020) Crosstalk between epidermal growth factor receptors (EGFR) and integrins in resistance to EGFR tyrosine kinase inhibitors (TKIs) in solid tumors. Eur J Cell Biol 99(4):151083

    Article  CAS  PubMed  Google Scholar 

  21. Montanari M, Rossetti S, Cavaliere C et al (2017) Epithelial-mesenchymal transition in prostate cancer: an overview. Oncotarget 8(21):35376–35389

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sala-Valdés M, Ursa A, Charrin S et al (2006) EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281(28):19665–19675

    Article  PubMed  Google Scholar 

  23. Smith CS, Joseph N, Rieger B et al (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang F, Schwartz SL, Byars JM et al (2011) Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed Opt Express 2(5):1377–1393

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ester M, Kriegel H-P, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland, OR, USA, pp 226–31

  26. Daszykowski M, Walczak B, Massart DL et al (2002) Looking for natural patterns in analytical data. 2. Tracing local density with OPTICS. J Chem Inf Comput Sci 42(3):500–507

    Article  CAS  PubMed  Google Scholar 

  27. Johnson S, Chen H, Lo P-K (2013) In vitro tumorsphere formation assays. Bio Protoc 3(3):e325

    Article  PubMed  Google Scholar 

  28. Portillo-Lara R, Alvarez MM (2015) Enrichment of the cancer stem phenotype in sphere cultures of prostate cancer cell lines occurs through activation of developmental pathways mediated by the transcriptional regulator ΔNp63α. PLoS ONE 10(6):e0130118

    Article  PubMed  PubMed Central  Google Scholar 

  29. He B, Zhang YH, Richardson MM et al (2011) Differential functions of phospholipid binding and palmitoylation of tumour suppressor EWI2/PGRL. Biochem J 437(3):399–411

    Article  CAS  PubMed  Google Scholar 

  30. Li S, Goncalves KA, Lyu B et al (2020) Chemosensitization of prostate cancer stem cells in mice by angiogenin and plexin-B2 inhibitors. Commun Biol. 3(1):26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collins AT, Berry PA, Hyde C et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951

    Article  CAS  PubMed  Google Scholar 

  32. Huang C, Fu C, Wren JD et al (2018) Tetraspanin-enriched microdomains regulate digitation junctions. Cell Mol Life Sci 75(18):3423–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noguchi S, Saito A, Nagase T (2018) YAP/TAZ signaling as a molecular link between fibrosis and cancer. Int J Mol Sci 19(11):3674

    Article  PubMed Central  Google Scholar 

  34. Zhengming Wu, Guan K-L (2021) Hippo signaling in embryogenesis and development. Trends Biochem Sci 46(1):51–63

    Article  Google Scholar 

  35. Yarden Y, Shilo B-Z (2007) SnapShot: EGFR signaling pathway. Cell 131(5):1018

    Article  PubMed  Google Scholar 

  36. Sigismund S, Argenzio E, Tosoni D et al (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15(2):209–219

    Article  CAS  PubMed  Google Scholar 

  37. Bakker J, Spits M, Neefjes J et al (2017) The EGFR odyssey—from activation to destruction in space and time. J Cell Sci 130(24):4087–4096

    CAS  PubMed  Google Scholar 

  38. Wang H-X, Sharma C, Knoblich K et al (2015) EWI-2 negatively regulates TGF-β signaling leading to altered melanoma growth and metastasis. Cell Res 25(3):370–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang XH, Kovalenko OV, Kolesnikova TV et al (2006) Contrasting effects of EWI proteins, integrins, and protein palmitoylation on cell surface CD9 organization. J Biol Chem 281(18):12976–12985

    Article  CAS  PubMed  Google Scholar 

  40. Stipp CS (2010) Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 12:e3

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gustafson-Wagner E, Stipp CS (2013) The CD9/CD81 tetraspanin complex and tetraspanin CD151 regulate α3β1 integrin-dependent tumor cell behaviors by overlapping but distinct mechanisms. PLoS ONE 8(4):e61834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hong I-K, Byun H-J, Lee J et al (2014) The tetraspanin CD81 protein increases melanoma cell motility by up-regulating metalloproteinase MT1-MMP expression through the pro-oncogenic Akt-dependent Sp1 activation signaling pathways. J Biol Chem 289(22):15691–15704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kotha J, Longhurst C, Appling W et al (2008) Tetraspanin CD9 regulates beta 1 integrin activation and enhances cell motility to fibronectin via a PI-3 kinase-dependent pathway. Exp Cell Res 314(8):1811–1822

    Article  CAS  PubMed  Google Scholar 

  44. Posor Y, Eichhorn-Grünig M, Haucke V (2015) Phosphoinositides in endocytosis. Biochim Biophys Acta 1851(6):794–804

    Article  CAS  PubMed  Google Scholar 

  45. Charrin S, Manié S, Thiele C et al (2003) A physical and functional link between cholesterol and tetraspanins. Eur J Immunol 33(9):2479–2489

    Article  CAS  PubMed  Google Scholar 

  46. Zimmerman B, Kelly B, McMillan BJ et al (2016) Cell 167(4):1041-1051.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weber GF, Bjerke MA, DeSimone DW (2011) Integrins and cadherins join forces to form adhesive networks. J Cell Sci 124(Pt 8):1183–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mui KL, Chen CS, Assoian RK (2016) The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J Cell Sci 129(6):1093–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rausch S, Das T, Soiné JRD et al (2013) Polarizing cytoskeletal tension to induce leader cell formation during collective cell migration. Biointerphases 8(1):32

    Article  PubMed  Google Scholar 

  50. Chenying Fu, Zhang Q, Wang A et al (2021) EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol Oncol 15(5):1543–1565

    Article  Google Scholar 

  51. Hill MM, Bastiani M, Luetterforst R et al (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132(1):113–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Peng Wu, Wee P, Jiang J et al (2012) Differential regulation of transcription factors by location-specific EGF receptor signaling via a spatio-temporal interplay of ERK activation. PLoS ONE 7(9):e41354

    Article  Google Scholar 

  53. Gayer CP, Craig DH, Flanigan TL et al (2010) ERK regulates strain-induced migration and proliferation from different subcellular locations. J Cell Biochem 109(4):711–725

    CAS  PubMed  Google Scholar 

  54. Carraway KL 3rd, Sweeney C (2006) Co-opted integrin signaling in ErbB2-induced mammary tumor progression. Cancer Cell 10(2):93–95

    Article  CAS  PubMed  Google Scholar 

  55. Alexi X, Berditchevski F, Odintsova E (2011) The effect of cell-ECM adhesion on signalling via the ErbB family of growth factor receptors. Biochem Soc Trans 39(2):568–573

    Article  CAS  PubMed  Google Scholar 

  56. Erfani S, Hua H, Pan Y et al (2021) The context-dependent impact of integrin-associated CD151 and other tetraspanins on cancer development and progression: a class of versatile mediators of cellular function and signaling, tumorigenesis and metastasis. Cancers (Basel) 13(9):2005

    Article  CAS  Google Scholar 

  57. Ramovs V, Te Molder L, Sonnenberg A (2017) The opposing roles of laminin-binding integrins in cancer. Matrix Biol 57–58:213–243

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Felipe V. Catalan and Shoshana Levy of Stanford University for providing EWI2 CRISPR/Cas9 KO system and comments, Ms. Kathy Kyler for English editing, the OMRF imaging facility for image acquisition and analysis, and OUHSC Stephenson Cancer Center tissue pathology core and functional genomics core facility.

Funding

This work was supported by OCAST grants HR13-207 and HR20-055, the research grants from OCASCR (a program of TSET), and the University of Oklahoma Health Science Center to XAZ. XAZ is an Oklahoma TSET Cancer Research Scholar.

Author information

Authors and Affiliations

Authors

Contributions

CF, JW, and SP performed experiments, analyzed data, and wrote manuscript. JDW and K-KW analyzed data. YD, JC, and YY performed experiments. HK and MJ provided technical advice. AM and TT provided special reagent and/or technical advice. KAL designed experiments and analyzed data. XAZ designed experiments, analyzed data, and wrote manuscript.

Corresponding author

Correspondence to Xin A. Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethics statement

All procedures involving animals were performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC).

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2022_4417_MOESM1_ESM.tif

Figure S1 EWI2 KD and KO in PC3 cells. A. EWI2 expression levels at the cell surface of PC3 cells upon EWI2 KD, as analyzed with flow cytometry and presented as MFI (mean±SD, n=3 individual measurements). ** p<0.01. Isotype matched IgG staining serves as a negative control. B. Western blot analysis of EWI2 protein levels in PC3 cells upon EWI2 KD. Actin serves as a protein loading control. C. EWI2 expression levels at the surfaces of PC3 cells upon EWI2 KO were measured by flow cytometry and expressed as MFI (mean±SD, n=3 individual measurements). ** p<0.01. D. Western blot analysis on EWI2 protein levels in PC3 cells upon EWI2 KO. Actin serves as a protein loading control (TIF 802 KB)

18_2022_4417_MOESM2_ESM.tif

Figure S2 Effects of EWI2 removals on the movement of PC3 cells. A. PC3 cells transfected with control siRNA (NEG) or EWI-2 siRNA (KD) were analyzed in Transwell migration and invasion assays. The cells that moved through the insert pores and adhered onto the bottom of the inserts were photographed. Scale bars: 500 µm for Transwell migration on FN, 250 µm for Transwell migration on LN111, and 100 µm for invasion. B. PC3-control (NEG) and -EWI2-null (KO) cells were examined for the migration through Transwell inserts, which were coated with either FN (10 μg/ml) or LN111 (10 μg/ml). The cells that migrated through the insert pores and adhered onto the bottom of the inserts were photographed. Scale bars: 300 µm for Transwell migration on FN and LN111. Scale bars: 200 µm for Transwell migration on LN411. C. Immunohistochemical analyses of Ki67 and cleaved Caspase-3 in primary tumor tissues. Xenografts of PC3 cells from athymic nude mice were dissected, sectioned, and immune-stained with Ki67 and cleaved Caspase-3 Abs. Arrows indicate the cells positive in cleaved caspase-3. Scale bars: 75 µm. D. Immunofluorescence staining of the FN and collagen-IV deposited by the cells on the glass coverslips, as described in Figure 3F, were imaged by fluorescence microscopy and quantified with ImageJ as fluorescence units (mean±SD, n=3 individual experiments, 5 random microscopic fields per experiment). The cells on the glass coverslips were stained with crystal violet and quantified as optical density (mean±SD, n=3 individual experiments). ** p<0.01, *** p<0.001, and **** p<0.0001. Scale bars: 50 µm. E. Tumor tissues sections were stained by Sirius Red. Scale bars: 75 µm (TIF 5990 KB)

18_2022_4417_MOESM3_ESM.tif

Figure S3 Examination of PC3 transfectant cells with CD9 mAbs ALB6 and C9BB. A. Flowstream analysis of PC3-Mock and PC3-EWI2 KO cells with CD9 mAbs ALB6 (for total CD9) and C9BB (for homo-clustered CD9). CD9 levels at the cell surfaces were presented as MFI (mean±SD, n=3 individual experiments). ** p<0.05 and ** p<0.01. B. Flowstream images of the representative PC3 cells immune-stained with CD9 mAbs. Scale bars: 10 µm (TIF 766 KB)

18_2022_4417_MOESM4_ESM.tif

Figure S4 Colocalizations of CD9 with clathrin heavy chain and caveolin-1 in PC3-Mock and -EWI2 KO cells. A and B. Colocalizations of CHC (A) and caveolin-1 (B) with total and homo-clustered CD9, stained by CD9 mAbs ALB6 and C9BB, respectively, were examined in immunofluorescence, imaged with confocal microscopy, and quantified as Manders colocalization coefficients (mean±SD, n=3 individual experiments, nine cells per experiment). M1=CHC or caveolin-1-colocalized CD9/CD9, and M2 CD9-colocalized CHC or caveolin-1/CHC or caveolin-1. Scale bar: 6 µm (TIF 5778 KB)

18_2022_4417_MOESM5_ESM.tif

Figure S5 Relationship between EWI2 gene expression and PRAD. A. MEXPRESS (https://mexpress.be/) was used to analyze the relationship between EWI2 mRNA levels and PRAD based on TCGA (https://www.cancer.gov/) data (PRAD: n=617). B. EWI2 alteration in different types of cancers was obtained from cBioPortal (https://www.cbioportal.org/). SKCM: Skin Cutaneous Melanoma. STAD: Stomach adenocarcinoma. C. TCGA data of EWI2 and PRAD were obtained from UALCAN (http://ualcan.path.uab.edu/analysis.html), by grouping them based on sample types (normal: n=52, PRAD: n=497). ****: p<0.0001. D. Kaplan-Meier survival curves for EWI2 in TCGA data were plotted using GEPIA (http://gepia.cancer-pku.cn/) (PRAD: n=246). Patients were divided by median EWI2 expression levels. E. Correlations of EWI2 with EGFR, HER2, and HER3 in gene expression in PRAD were examined in GEPIA (PRAD: n=252). F. Correlations of EWI2 with MEK1, MEK2, Erk1, and Erk2 in gene expression in PRAD were examined in GEPIA (PRAD: n=252) (TIF 1064 KB)

Supplementary file6 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Wang, J., Pallikkuth, S. et al. EWI2 prevents EGFR from clustering and endocytosis to reduce tumor cell movement and proliferation. Cell. Mol. Life Sci. 79, 389 (2022). https://doi.org/10.1007/s00018-022-04417-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04417-9

Keywords

Navigation