Skip to main content

Advertisement

Log in

Single-cell RNA-sequencing of zebrafish hair cells reveals novel genes potentially involved in hearing loss

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

A Correction to this article was published on 12 May 2023

This article has been updated

Abstract

Hair cells play key roles in hearing and balance, and hair cell loss would result in hearing loss or vestibular dysfunction. Cellular and molecular research in hair cell biology provides us a better understanding of hearing and deafness. Zebrafish, owing to their hair cell-enriched organs, have been widely applied in hair cell-related research worldwide. Similar to mammals, zebrafish have inner ear hair cells. In addition, they also have lateral line neuromast hair cells. These different types of hair cells vary in morphology and function. However, systematic analysis of their molecular characteristics remains lacking. In this study, we analyzed the GFP+ cells isolated from Tg(Brn3c:mGFP) larvae with GFP expression in all hair cells using single-cell RNA-sequencing (scRNA-seq). Three subtypes of hair cells, namely macula hair cell (MHC), crista hair cell (CHC), and neuromast hair cell (NHC), were characterized and validated by whole-mount in situ hybridization analysis of marker genes. The hair cell scRNA-seq data revealed hair cell-specific genes, including hearing loss genes that have been identified in humans and novel genes potentially involved in hair cell formation and function. Two novel genes were discovered to specifically function in NHCs and MHCs, corresponding to their specific expression in NHCs and MHCs. This study allows us to understand the specific genes in hair cell subpopulations of zebrafish, which will shed light on the genetics of both human vestibular and cochlear hair cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All the high-throughput sequencing data generated in this study have been deposited in the Gene Expression Omnibus database under accession number GSE221471 and are available at the following URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85337. All the experimental materials generated in this study are available from the corresponding authors upon reasonable request.

Change history

References

  1. Taylor RR, Filia A, Paredes U, Asai Y, Holt JR, Lovett M, Forge A (2018) Regenerating hair cells in vestibular sensory epithelia from humans. Elife. https://doi.org/10.7554/eLife.34817

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA, Cui R, Nakanishi H, Fujikawa T, Kawashima Y, Choi BY, Monahan K, Holt JR, Griffith AJ, Kachar B (2015) TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia. Cell Rep 12(10):1606–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wagner EL, Shin JB (2019) Mechanisms of hair cell damage and repair. Trends Neurosci 42(6):414–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nordang L, Cestreicher E, Arnold W, Anniko M (2000) Glutamate is the afferent neurotransmitter in the human cochlea. Acta Otolaryngol 120(3):359–362

    Article  CAS  PubMed  Google Scholar 

  5. Dalet A, Bonsacquet J, Gaboyard-Niay S, Calin-Jageman I, Chidavaenzi RL, Venteo S, Desmadryl G, Goldberg JM, Lysakowski A, Chabbert C (2012) Glutamate transporters EAAT4 and EAAT5 are expressed in vestibular hair cells and calyx endings. PLoS ONE 7(9):e46261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Highstein SM, Holstein GR, Mann MA, Rabbitt RD (2014) Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses. Proc Natl Acad Sci USA 111(14):5421–5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dallos P (1992) The active cochlea. J Neurosci 12(12):4575–4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burns JC, Stone JS (2017) Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 65:96–105

    Article  CAS  PubMed  Google Scholar 

  9. Day BL, Fitzpatrick RC (2005) The vestibular system. Curr Biol 15(15):R583–R586

    Article  CAS  PubMed  Google Scholar 

  10. Patton EE, Zon LI, Langenau DM (2021) Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov. https://doi.org/10.1038/s41573-021-00210-8 (1474-1784 (Electronic))

    Article  PubMed  PubMed Central  Google Scholar 

  11. Riley BB, Moorman SJ (2000) Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish. J Neurobiol 43(4):329–337

    Article  CAS  PubMed  Google Scholar 

  12. Yao Q, DeSmidt AA, Tekin M, Liu X, Lu Z (2016) Hearing assessment in zebrafish during the first week postfertilization. Zebrafish 13(2):79–86

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith ET, Pacentine I, Shipman A, Hill M, Nicolson T (2020) Disruption of tmc1/2a/2b genes in zebrafish reveals subunit requirements in subtypes of inner ear hair cells. J Neurosci 40(23):4457–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pacentine IV, Nicolson T (2019) Subunits of the mechano-electrical transduction channel, Tmc1/2b, require Tmie to localize in zebrafish sensory hair cells. PLoS Genet 15(2):e1007635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Erickson T, Pacentine IV, Venuto A, Clemens R, Nicolson T (2019) The lhfpl5 Ohnologs lhfpl5a and lhfpl5b are required for mechanotransduction in distinct populations of sensory hair cells in zebrafish. Front Mol Neurosci 12:320

    Article  CAS  PubMed  Google Scholar 

  16. Navajas Acedo J, Voas MG, Alexander R, Woolley T, Unruh JR, Li H, Moens C, Piotrowski T (2019) PCP and Wnt pathway components act in parallel during zebrafish mechanosensory hair cell orientation. Nat Commun 10(1):3993

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lush ME, Diaz DC, Koenecke N, Baek S, Boldt H, St Peter MK, Gaitan-Escudero T, Romero-Carvajal A, Busch-Nentwich EM, Perera AG, Hall KE, Peak A, Haug JS, Piotrowski T (2019) scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling. Elife. https://doi.org/10.7554/eLife.44431

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kozlovskaja-Gumbriene A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, Knaut H, McClain M, Piotrowski T (2017) Proliferation-independent regulation of organ size by Fgf/Notch signaling. Elife. https://doi.org/10.7554/eLife.21049

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xiao T, Roeser T, Staub W, Baier H (2005) A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection. Development 132(13):2955–2967

    Article  CAS  PubMed  Google Scholar 

  20. Huo L, Jiao Li J, Chen L, Yu Z, Hutvagner G, Li J (2021) Single-cell multi-omics sequencing: application trends, COVID-19, data analysis issues and prospects. Brief Bioinform. https://doi.org/10.1093/bib/bbab229

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang CH, Cheng CH, Chen GD, Liao WH, Chen YC, Huang KY, Hwang PP, Hwang SP, Huang CJ (2011) Zona pellucida domain-containing protein β-tectorin is crucial for zebrafish proper inner ear development. PLoS ONE 6(8):e23078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kozak EL, Palit S, Miranda-Rodriguez JR, Janjic A, Bottcher A, Lickert H, Enard W, Theis FJ, Lopez-Schier H (2020) Epithelial planar bipolarity emerges from notch-mediated asymmetric inhibition of Emx2. Curr Biol 30(6):1142-1151 e6

    Article  CAS  PubMed  Google Scholar 

  23. Pistocchi A, Feijoo CG, Cabrera P, Villablanca EJ, Allende ML, Cotelli F (2009) The zebrafish prospero homolog prox1 is required for mechanosensory hair cell differentiation and functionality in the lateral line. BMC Dev Biol 9:58

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aman A, Piotrowski T (2008) Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell 15(5):749–761

    Article  CAS  PubMed  Google Scholar 

  25. Seiler C, Ben-David O, Sidi S, Hendrich O, Rusch A, Burnside B, Avraham KB, Nicolson T (2004) Myosin VI is required for structural integrity of the apical surface of sensory hair cells in zebrafish. Dev Biol 272(2):328–338

    Article  CAS  PubMed  Google Scholar 

  26. Ernest S, Rosa FM (2015) A genomic region encompassing a newly identified exon provides enhancing activity sufficient for normal myo7aa expression in zebrafish sensory hair cells. Dev Neurobiol 75(9):961–983

    Article  CAS  PubMed  Google Scholar 

  27. Wu Z, Muller U (2016) Molecular identity of the mechanotransduction channel in hair cells: not quiet there yet. J Neurosci 36(43):10927–10934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qiu X, Muller U (2018) Mechanically gated ion channels in mammalian hair cells. Front Cell Neurosci 12:100

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xiong W, Grillet N, Elledge HM, Wagner TF, Zhao B, Johnson KR, Kazmierczak P, Muller U (2012) TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 151(6):1283–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giese APJ, Tang YQ, Sinha GP, Bowl MR, Goldring AC, Parker A, Freeman MJ, Brown SDM, Riazuddin S, Fettiplace R, Schafer WR, Frolenkov GI, Ahmed ZM (2017) CIB2 interacts with TMC1 and TMC2 and is essential for mechanotransduction in auditory hair cells. Nat Commun 8(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Li J, Yao X, Li W, Du H, Tang M, Xiong W, Chai R, Xu Z (2017) Loss of CIB2 causes profound hearing loss and abolishes mechanoelectrical transduction in mice. Front Mol Neurosci 10:401

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sollner C, Rauch GJ, Siemens J, Geisler R, Schuster SC, Muller U, Nicolson T (2004) Tubingen screen, consortium, mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428(6986):955–959

    Article  PubMed  Google Scholar 

  33. Sakaguchi H, Tokita J, Muller U, Kachar B (2009) Tip links in hair cells: molecular composition and role in hearing loss. Curr Opin Otolaryngol Head Neck Surg 17(5):388–393

    Article  PubMed  PubMed Central  Google Scholar 

  34. Choudhary D, Narui Y, Neel BL, Wimalasena LN, Klanseck CF, De-la-Torre P, Chen C, Araya-Secchi R, Tamilselvan E, Sotomayor M (2020) Structural determinants of protocadherin-15 mechanics and function in hearing and balance perception. Proc Natl Acad Sci USA 117(40):24837–24848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang S, Dong Y, Qiang R, Zhang Y, Zhang X, Chen Y, Jiang P, Ma X, Wu L, Ai J, Gao X, Wang P, Chen J, Chai R (2021) Characterization of strip1 expression in mouse cochlear hair cells. Front Genet 12:625867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cossins AR, Williams DR, Foulkes NS, Berenbrink M, Kipar A (2009) Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish. J Exp Biol 212(5):627–638

    Article  CAS  PubMed  Google Scholar 

  37. Quinting T, Heymann AK, Bicker A, Nauth T, Bernardini A, Hankeln T, Fandrey J, Schreiber T (2021) Myoglobin protects breast cancer cells due to Its ROS and NO scavenging properties. Front Endocrinol (Lausanne) 12:732190

    Article  PubMed  Google Scholar 

  38. Chen ZF, Huang ZH, Chen SJ, Jiang YD, Qin ZK, Zheng SB, Chen T (2021) Oncogenic potential of macrophage-capping protein in clear cell renal cell carcinoma. Mol Med Rep. https://doi.org/10.3892/mmr.2020.11718

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jiang S, Yang Y, Zhang Y, Ye Q, Song J, Zheng M, Li X (2022) Overexpression of CAPG Is associated with poor prognosis and immunosuppressive cell infiltration in ovarian cancer. Dis Markers 2022:9719671

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lang Z, Chen Y, Zhu H, Sun Y, Zhang H, Huang J, Zou Z (2019) Prognostic and clinicopathological significance of CapG in various cancers: Evidence from a meta-analysis. Pathol Res Pract 215(12):152683

    Article  CAS  PubMed  Google Scholar 

  41. Nader JS, Boissard A, Henry C, Valo I, Verrièle V, Grégoire M, Coqueret O, Guette C, Pouliquen DL (2020) Cross-species proteomics identifies CAPG and SBP1 as crucial invasiveness biomarkers in rat and human malignant mesothelioma. Cancers (Basel) 12(9):2430

    Article  CAS  PubMed  Google Scholar 

  42. Prescher N, Hänsch S, Knobbe-Thomsen CB, Stühler K, Poschmann G (2021) The migration behavior of human glioblastoma cells is influenced by the redox-sensitive human macrophage capping protein CAPG. Free Radic Biol Med 167:81–93

    Article  CAS  PubMed  Google Scholar 

  43. Lahbib S, Leblond CS, Hamza M, Regnault B, Lemee L, Mathieu A, Jaouadi H, Mkaouar R, Youssef-Turki IB, Belhadj A, Kraoua I, Bourgeron T, Abdelhak S (2019) Homozygous 2p11.2 deletion supports the implication of ELMOD3 in hearing loss and reveals the potential association of CAPG with ASD/ID etiology. J Appl Genet 60(1):49–56

    Article  CAS  PubMed  Google Scholar 

  44. Shi J, Fok KL, Dai P, Qiao F, Zhang M, Liu H, Sang M, Ye M, Liu Y, Zhou Y, Wang C, Sun F, Xie G, Chen H (2021) Spatio-temporal landscape of mouse epididymal cells and specific mitochondria-rich segments defined by large-scale single-cell RNA-seq. Cell Discov 7(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qian F, Wang X, Yin Z, Xie G, Yuan H, Liu D, Chai R (2020) The slc4a2b gene is required for hair cell development in zebrafish. Aging (Albany NY) 12(19):18804–18821

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Gao Y, Zhang R, Sun F, Cheng C, Qian F, Duan X, Wei G, Sun C, Pang X, Chen P, Chai R, Yang T, Wu H, Liu D (2020) THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis. PLoS Genet 16(8):e1008953

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang C, Zhong Z, Sun P, Zhong H, Li H, Chen F (2017) Evaluation of the hair cell regeneration in zebrafish larvae by measuring and quantifying the startle responses. Neural Plast 2017:8283075

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gong J, Qian P, Hu Y, Guo C, Wei G, Wang C, Cai C, Wang H, Liu D, Claudin H (2021) Is essential for hair cell morphogenesis and auditory function in zebrafish. Front Cell Dev Biol 9:663995

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sun P, Zhang Y, Zhao F, Wu JP, Pun SH, Peng C, Du M, Vai MI, Liu D, Chen F (2018) An assay for systematically quantifying the vestibulo-ocular reflex to assess vestibular function in zebrafish larvae. Front Cell Neurosci 12:257

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by grants from the National Natural Science Foundation of China, http://www.nsfc.gov.cn (2018YFA0801004 and 81870359 received by Dong Liu; 31900484 to Gangcai Xie); Natural Science Foundation of Jiangsu Province, http://kjjh.jspc.org.cn (BK20180048 and BRA2019278 received by Dong Liu; BK20190924 to Gangcai Xie; BK20190920 to Guanyun Wei). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FQ, DL, GX, and RC conceived and designed the experiments, and wrote the manuscript. FQ, YG, XW, JG, CG, XW, XZ, JZ, CW, MX, YH, and GY performed the experiments. FQ, GW, JK, GX, DL, and RC analyzed the data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Renjie Chai, Gangcai Xie or Dong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval and consent to participate

All zebrafish experimentation was carried out in accordance with the NIH Guidelines for the care and use of laboratory animals (http://oacu.od.nih.gov/regs/index.htm) and ethically approved by the Administration Committee of Experimental Animals, Jiangsu Province, China (Approval ID: 20180405-039).

Consent for publication

The authors declare the consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2022_4410_MOESM1_ESM.pdf

Supplementary file1 Fig. S1. The procedure of single cell preparation and cell sorting using the FACS method. Fig. S2. The FACS sorting data. Cells of Tg(Brn3c:mGFP) zebrafish at 6 dpf were sorted. Fig. S3. The expression pattern of GFP, tectb and zpld1a gene in sequenced cells. The feature plot and violin plot are shown. Fig. S4. The expression patterns of the cluster 0- and cluster 7-enriched genes. The feature plot and violin plot are shown for each gene. Fig. S5. The expression pattern of the cluster 1-enriched gene. The feature plot and violin plot are shown for each gene. Fig. S6. The expression patterns of the cluster 9-enriched genes. The feature plot and violin plot are shown for each gene. Fig. S7. The expression patterns of some hair cell marker genes. The feature plot and violin plot are shown for each gene. Fig. S8. The expression pattern of capgb and mb gene. The feature plot and violin plot are shown for each gene. Fig. S9. The verification of gene knockdown using RT-PCR. The gene expression was reduced in capgb-morphants and mb-morphants compared to the control (Ctrl). The white dotted boxes indicate the gene expression detected. (PDF 1521 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, F., Wei, G., Gao, Y. et al. Single-cell RNA-sequencing of zebrafish hair cells reveals novel genes potentially involved in hearing loss. Cell. Mol. Life Sci. 79, 385 (2022). https://doi.org/10.1007/s00018-022-04410-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04410-2

Keywords

Navigation