Skip to main content

Advertisement

Log in

Inhibition of ALG3 stimulates cancer cell immunogenic ferroptosis to potentiate immunotherapy

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Immune checkpoint blockade therapy has drastically improved the prognosis of certain advanced-stage cancers. However, low response rates and immune-related adverse events remain important limitations. Here, we report that inhibiting ALG3, an a-1,3-mannosyltransferase involved in protein glycosylation in the endoplasmic reticulum (ER), can boost the response of tumors to immune checkpoint blockade therapy. Deleting N-linked glycosylation gene ALG3 in mouse cancer cells substantially attenuates their growth in mice in a manner depending on cytotoxic T cells. Furthermore, ALG3 inhibition or N-linked glycosylation inhibitor tunicamycin treatment synergizes with anti-PD1 therapy in suppressing tumor growth in mouse models of cancer. Mechanistically, we found that inhibiting ALG3 induced deficiencies of post-translational N-linked glycosylation modification and led to excessive lipid accumulation through sterol-regulated element-binding protein (SREBP1)-dependent lipogenesis in cancer cells. N-linked glycosylation deficiency-mediated lipid hyperperoxidation induced immunogenic ferroptosis of cancer cells and promoted a pro-inflammatory microenvironment, which boosted anti-tumor immune responses. In human subjects with cancer, elevated levels of ALG3 expression in tumor tissues are associated with poor patient survival. Taken together, we reveal an unappreciated role of ALG3 in regulating tumor immunogenicity and propose a potential therapeutic strategy for enhancing cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data sets generated correlations between ferroptosis and immune gene expression profile during the current study are available in the public RNA sequencing data from NCBI Gene Expression Omnibus (accession number: GSE128392) All other data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555. https://doi.org/10.1038/nrc3982

    Article  CAS  PubMed  Google Scholar 

  2. Clerc F, Reiding KR, Jansen BC, Kammeijer GS, Bondt A, Wuhrer M (2016) Human plasma protein N-glycosylation. Glycoconj J. 33(3):309–343. https://doi.org/10.1007/s10719-015-9626-2

    Article  CAS  PubMed  Google Scholar 

  3. Tim C, Huffaker PWR (1983) Yeast mutants deficient in protein glycosylation. Proc Natl Acad Sci USA 80:7466–7470

    Article  Google Scholar 

  4. Leto DE, Morgens DW, Zhang L et al (2019) Genome-wide CRISPR analysis identifies substrate-specific conjugation modules in ER-associated degradation. Mol Cell 73(2):377-389 e11. https://doi.org/10.1016/j.molcel.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  5. Liu K, Tan S, Jin W et al (2020) N-glycosylation of PD-1 promotes binding of camrelizumab. EMBO Rep 21(12):e51444. https://doi.org/10.15252/embr.202051444

  6. Krishnan V, Bane SM, Kawle PD, Naresh KN, Kalraiya RD (2005) Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis 22(1):11–24. https://doi.org/10.1007/s10585-005-2036-2

    Article  CAS  PubMed  Google Scholar 

  7. Bettigole SE, Glimcher LH (2015) Endoplasmic reticulum stress in immunity. Annu Rev Immunol 33:107–138. https://doi.org/10.1146/annurev-immunol-032414-112116

    Article  CAS  PubMed  Google Scholar 

  8. Frakes AE, Dillin A (2017) The UPR(ER): sensor and coordinator of organismal homeostasis. Mol Cell 66(6):761–771. https://doi.org/10.1016/j.molcel.2017.05.031

    Article  CAS  PubMed  Google Scholar 

  9. Tufanli O, TelkoparanAkillilar P, Acosta-Alvear D et al (2017) Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci USA 114(8):E1395–E1404. https://doi.org/10.1073/pnas.1621188114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Azim MHS (1979) Glycoprotein synthesis and inhibition of glycosylation by tunicamycin in preimplantation mouse embryos: compaction and trophoblast adhesion. Cell 1979(18):217–227

    Article  Google Scholar 

  11. Figueroa-Juarez E, Noriega LG, Perez-Monter C et al (2021) The role of the unfolded protein response on renal lipogenesis in C57BL/6 mice. Biomolecules. https://doi.org/10.3390/biom11010073

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cheng C, Ru P, Geng F et al (2015) Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth. Cancer Cell 28(5):569–581. https://doi.org/10.1016/j.ccell.2015.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han J, Kaufman RJ (2016) The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 57(8):1329–1338. https://doi.org/10.1194/jlr.R067595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016) Ferroptosis is an autophagic cell death process. Cell Res 26(9):1021–1032. https://doi.org/10.1038/cr.2016.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muir A, Danai LV, Gui DY, Waingarten CY, Lewis CA, Vander Heiden MG (2017) Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. Elife. https://doi.org/10.7554/eLife.27713

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176. https://doi.org/10.1016/j.tcb.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  17. Xie Y, Hou W, Song X et al (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. https://doi.org/10.1038/cdd.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doll S, Freitas FP, Shah R et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575(7784):693–698. https://doi.org/10.1038/s41586-019-1707-0

    Article  CAS  PubMed  Google Scholar 

  19. Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown CW, Amante JJ, Chhoy P et al (2019) Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell 51(5):575-586 e4. https://doi.org/10.1016/j.devcel.2019.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu C, Sun S, Johnson T et al (2021) The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep 35(11):109235. https://doi.org/10.1016/j.celrep.2021.109235

    Article  CAS  PubMed  Google Scholar 

  22. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31(2):107–125. https://doi.org/10.1038/s41422-020-00441-1

    Article  CAS  PubMed  Google Scholar 

  23. Schinzel RT, Higuchi-Sanabria R, Shalem O et al (2019) The hyaluronidase, TMEM2, promotes ER homeostasis and longevity independent of the UPR(ER). Cell 179(6):1306-1318 e18. https://doi.org/10.1016/j.cell.2019.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li B, Li C, Guo M et al (2018) Predictive value of LDH kinetics in bevacizumab treatment and survival of patients with advanced NSCLC. Onco Targets Ther 11:6287–6294. https://doi.org/10.2147/OTT.S171566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aregger M, Lawson KA, Billmann M et al (2020) Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nat Metab 2(6):499–513. https://doi.org/10.1038/s42255-020-0211-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Urata S, Yun N, Pasquato A, Paessler S, Kunz S, de la Torre JC (2011) Antiviral activity of a small-molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease. J Virol 85(2):795–803. https://doi.org/10.1128/JVI.02019-10

    Article  CAS  PubMed  Google Scholar 

  27. Geng F, Cheng X, Wu X et al (2016) Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis. Clin Cancer Res 22(21):5337–5348. https://doi.org/10.1158/1078-0432.CCR-15-2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davidson RC, Nett JH, Renfer E et al (2004) Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. Glycobiology 14(5):399–407. https://doi.org/10.1093/glycob/cwh023

    Article  CAS  PubMed  Google Scholar 

  29. Maurel M, Samali A, Chevet E (2014) Endoplasmic reticulum stress: at the crossroads of inflammation and metabolism in hepatocellular carcinoma development. Cancer Cell 26(3):301–303. https://doi.org/10.1016/j.ccr.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  30. Keestra-Gounder AM, Byndloss MX, Seyffert N et al (2016) NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532(7599):394–397. https://doi.org/10.1038/nature17631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spiteller G, Afzal M (2014) The action of peroxyl radicals, powerful deleterious reagents, explains why neither cholesterol nor saturated fatty acids cause atherogenesis and age-related diseases. Chemistry 20(46):14928–14945. https://doi.org/10.1002/chem.201404383

    Article  CAS  PubMed  Google Scholar 

  32. Hadian K, Stockwell BR (2020) SnapShot: ferroptosis. Cell 181(5):1188-1188 e1. https://doi.org/10.1016/j.cell.2020.04.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeng C, Tang H, Chen H, Li M, Xiong D (2020) Ferroptosis: a new approach for immunotherapy. Cell Death Discov 6(1):122. https://doi.org/10.1038/s41420-020-00355-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang W, Green M, Choi JE et al (2019) CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569(7755):270–274. https://doi.org/10.1038/s41586-019-1170-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Bao X, Hu M et al (2020) Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 588(7839):693–698. https://doi.org/10.1038/s41586-020-2911-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76(1):17–27. https://doi.org/10.1016/0092-8674(94)90169-4

    Article  CAS  PubMed  Google Scholar 

  38. Himmelreich N, Dimitrov B, Geiger V et al (2019) Novel variants and clinical symptoms in four new ALG3-CDG patients, review of the literature, and identification of AAGRP-ALG3 as a novel ALG3 variant with alanine and glycine-rich N-terminus. Hum Mutat 40(7):938–951. https://doi.org/10.1002/humu.23764

    Article  CAS  PubMed  Google Scholar 

  39. Ke SB, Qiu H, Chen JM et al (2020) ALG3 contributes to the malignancy of non-small cell lung cancer and is negatively regulated by MiR-98-5p. Pathol Res Pract 216(3):152761. https://doi.org/10.1016/j.prp.2019.152761

    Article  CAS  PubMed  Google Scholar 

  40. Zhou H, Cao T, Li WP, Wu G (2019) Combined expression and prognostic significance of PPFIA1 and ALG3 in head and neck squamous cell carcinoma. Mol Biol Rep 46(3):2693–2701. https://doi.org/10.1007/s11033-019-04712-y

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Weng Y, Pan Y et al (2021) A novel prognostic signature based on metabolism-related genes to predict survival and guide personalized treatment for head and neck squamous carcinoma. Front Oncol 11:685026. https://doi.org/10.3389/fonc.2021.685026

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun X, He Z, Guo L et al (2021) ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-beta receptor II in breast cancer. J Exp Clin Cancer Res 40(1):149. https://doi.org/10.1186/s13046-021-01932-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friedmann Angeli JP, Krysko DV, Conrad M (2019) Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 19(7):405–414. https://doi.org/10.1038/s41568-019-0149-1

    Article  CAS  PubMed  Google Scholar 

  44. Lee HH, Wang YN, Xia W et al (2019) Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell 36(2):168-178 e4. https://doi.org/10.1016/j.ccell.2019.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cha JH, Yang WH, Xia W et al (2018) Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell 71(4):606-620 e7. https://doi.org/10.1016/j.molcel.2018.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li CW, Lim SO, Xia W et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632. https://doi.org/10.1038/ncomms12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dunn WB, Broadhurst D, Begley P et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083. https://doi.org/10.1038/nprot.2011.335

    Article  CAS  PubMed  Google Scholar 

  48. Sarafian MH, Gaudin M, Lewis MR et al (2014) Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal Chem 86(12):5766–5774. https://doi.org/10.1021/ac500317c

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Guangdong Basic and Applied Basic Research Foundation Grant (2020B1515020054), and Shenzhen Science and Technology Program Grant (JCY20190807154813511).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: XL, CL. Development of methodology: PL, CL, JC, QH, J-AP. Acquisition of data: PL, CL, ZL, CZ, DX, ZL, LH. Writing, review, and/or revision of the manuscript: XL, PL. Study supervision: XL.

Corresponding author

Correspondence to Xinjian Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All animal experiment protocols were approved by the Sun Yat-sen University Institutional Animal Use and Care Committee.

Consent for publication

All authors provided their consent to publish the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Lin, C., Liu, Z. et al. Inhibition of ALG3 stimulates cancer cell immunogenic ferroptosis to potentiate immunotherapy. Cell. Mol. Life Sci. 79, 352 (2022). https://doi.org/10.1007/s00018-022-04365-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04365-4

Keywords

Navigation