Skip to main content

Advertisement

Log in

EIF4A3-induced circFIP1L1 represses miR-1253 and promotes radiosensitivity of nasopharyngeal carcinoma

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Background

Radiation is currently used to be a mainstay of salvage therapy for nasopharyngeal carcinoma (NPC), however, development of radioresistance largely limits the radiation efficacy. Circular RNAs (circRNAs) have been shown to affect NPC progression, but its role in radioresistance remain unclear.

Methods

The circular structure of circFIP1L1(circ_0069740) was verified by RNA-sequencing, RT-PCR based on gDNA or cDNA, RNase R treatment, and actinomycin D treatment. Cellular localization of circFIP1L1 and miR-1253 was detected by nucleoplasmic separation and/or fluorescence in situ hybridization. Expression of non-coding RNAs and mRNAs was detected by qRT-PCR, protein expression was detected by Western blot. Functionally, EdU, CCK-8, and colony formation experiments were employed to assess cell proliferation, flow cytometry was adopted to estimate cell cycle and apoptosis. Xenograft tumor growth was performed to detect the role of circFIP1L1 in vivo. Mechanistically, we examined the interplay between miR-1253 and circFIP1L1 or EIF4A3 through dual-luciferase reporter assay. The potential regulatory impacts of EIF4A3 on circFIP1L1 or PTEN was examined by RNA immunoprecipitation and RNA pull-down assays.

Results

CircFIP1L1 overexpression and miR-1253 knockdown repressed NPC cell proliferation, facilitated NPC cell apoptosis, and enhanced NPC radiosensitivity. Mechanistically, circFIP1L1 was revealed to repress miR-1253 by binding to it, and EIF4A3 is a target gene of miR-1253. CircFIP1L1 regulated NPC proliferation, apoptosis, and radiosensitivity through miR-1253/EIF4A3. Moreover, we found that EIF4A3 bound to FIP1L1 mRNA transcript and induced circFIP1L1 formation, and thus stabilizing PTEN mRNA.

Conclusion

Our findings suggested that EIF4A3-induced circFIP1L1 repressed NPC cell proliferation, facilitated NPC cell apoptosis, and enhanced NPC radiosensitivity by miR-1253.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Kamran SC, Riaz N, Lee N (2015) Nasopharyngeal carcinoma. Surg Oncol Clin N Am 24(3):547–561

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    PubMed  Google Scholar 

  3. Lee AW, Ma BB, Ng WT, Chan AT (2015) Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol 33(29):3356–3364

    Article  PubMed  Google Scholar 

  4. Lai SZ, Li WF, Chen L, Luo W, Chen YY, Liu LZ et al (2011) How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int J Radiat Oncol Biol Phys 80(3):661–668

    Article  PubMed  Google Scholar 

  5. Chen YP, Wang ZX, Chen L, Liu X, Tang LL, Mao YP et al (2015) A Bayesian network meta-analysis comparing concurrent chemoradiotherapy followed by adjuvant chemotherapy, concurrent chemoradiotherapy alone and radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma. Ann Oncol 26(1):205–211

    Article  CAS  PubMed  Google Scholar 

  6. Lee AW, Ng WT, Pan JJ, Chiang CL, Poh SS, Choi HC et al (2019) International guideline on dose prioritization and acceptance criteria in radiation therapy planning for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 105(3):567–580

    Article  CAS  PubMed  Google Scholar 

  7. Yeo ELL, Li YQ, Soo KC, Wee JTS, Chua MLK (2018) Combinatorial strategies of radiotherapy and immunotherapy in nasopharyngeal carcinoma. Chin Clin Oncol 7(2):15

    Article  PubMed  Google Scholar 

  8. Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther 187:31–44

    Article  CAS  PubMed  Google Scholar 

  9. Kristensen LS, Hansen TB, Veno MT, Kjems J (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37(5):555–565

    Article  CAS  PubMed  Google Scholar 

  10. Chen B, Huang S (2018) Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett 418:41–50

    Article  CAS  PubMed  Google Scholar 

  11. Xu H, Wang C, Song H, Xu Y, Ji G (2019) RNA-Seq profiling of circular RNAs in human colorectal cancer liver metastasis and the potential biomarkers. Mol Cancer 18(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhu L, Liu Y, Yang Y, Mao XM, Yin ZD (2019) CircRNA ZNF609 promotes growth and metastasis of nasopharyngeal carcinoma by competing with microRNA-150-5p. Eur Rev Med Pharmacol Sci 23(7):2817–2826

    CAS  PubMed  Google Scholar 

  13. Hong X, Liu N, Liang Y, He Q, Yang X, Lei Y et al (2020) Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXQ1. Mol Cancer 19(1):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shuai M, Huang L (2020) High Expression of hsa_circRNA_001387 in nasopharyngeal carcinoma and the effect on efficacy of radiotherapy. Onco Targets Ther 13:3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaufmann I, Martin G, Friedlein A, Langen H, Keller W (2004) Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 23(3):616–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lackford B, Yao C, Charles GM, Weng L, Zheng X, Choi EA et al (2014) Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO J 33(8):878–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15(4):356–62

    Article  CAS  PubMed  Google Scholar 

  18. Qin H, Qin C (2020) Downregulation of long non-coding RNA NR2F2-AS1 inhibits proliferation and induces apoptosis of nasopharyngeal carcinoma cells by upregulating the expression of PTEN. Oncol Lett 19(2):1145–1150

    CAS  PubMed  Google Scholar 

  19. Yang C, Yuan W, Yang X, Li P, Wang J, Han J et al (2018) Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer 17(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yuan DD, Jia CD, Yan MY, Wang J (2021) Circular RNA hsa_circ_0000730 restrains cell proliferation, migration, and invasion in cervical cancer through miR-942-5p/PTEN axis. Kaohsiung J Med Sci 37(11):964–972

    Article  CAS  PubMed  Google Scholar 

  21. Lu Q, Liu T, Feng H, Yang R, Zhao X, Chen W et al (2019) Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol Cancer 18(1):111

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lu Y, Hu X, Yang X (2021) miR-934 promotes breast cancer metastasis by regulation of PTEN and epithelial-mesenchymal transition. Tissue Cell 71:101581

    Article  CAS  PubMed  Google Scholar 

  23. Zang X, Gu J, Zhang J, Shi H, Hou S, Xu X et al (2020) Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression. Cell Death Dis 11(4):215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang L, Sang J, Zhang Y, Gao L, Zhao D, Cao H (2022) Circular RNA ITCH attenuates the progression of nasopharyngeal carcinoma by inducing PTEN upregulation via miR-214. J Gene Med 24(1):e3391

    Article  CAS  PubMed  Google Scholar 

  25. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan JJ, Tay Y (2018) Noncoding RNA:RNA regulatory networks in cancer. Int J Mol Sci. 19(5):1310

    Article  PubMed Central  Google Scholar 

  27. Mo J, Zheng T, Lei L, Dai P, Liu J, He H et al (2021) MicroRNA-1253 suppresses cell proliferation migration and invasion of osteosarcoma by targeting MMP9. Technol Cancer Res Treat 20:1533033821995278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang D, Zhang D (2021) miR-1253, a novel tumor suppressor gene in colon cancer, is associated with poor patients prognosis. Clin Exp Med 21(4):563–571

    Article  CAS  PubMed  Google Scholar 

  29. Ferraiuolo MA, Lee CS, Ler LW, Hsu JL, Costa-Mattioli M, Luo MJ et al (2004) A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc Natl Acad Sci U S A 101(12):4118–4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J et al (2004) eIF4A3 is a novel component of the exon junction complex. RNA 10(2):200–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng X, Huang M, Xing L, Yang R, Wang X, Jiang R et al (2020) The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol Cancer 19(1):73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang S, Leng T, Zhang Q, Zhao Q, Nie X, Yang L (2018) Sanguinarine inhibits epithelial ovarian cancer development via regulating long non-coding RNA CASC2-EIF4A3 axis and/or inhibiting NF-kappaB signaling or PI3K/AKT/mTOR pathway. Biomed Pharmacother 102:302–308

    Article  CAS  PubMed  Google Scholar 

  33. Tang W, Wang D, Shao L, Liu X, Zheng J, Xue Y et al (2020) LINC00680 and TTN-AS1 stabilized by EIF4A3 promoted malignant biological behaviors of glioblastoma cells. Mol Ther Nucleic Acids 19:905–921

    Article  CAS  PubMed  Google Scholar 

  34. Papa A, Pandolfi PP (2019) The PTEN(-)PI3K axis in cancer. Biomolecules 9(4):153

    Article  CAS  PubMed Central  Google Scholar 

  35. Lin Y, Zhang J, Cai J, Liang R, Chen G, Qin G et al (2018) Systematic analysis of gene expression alteration and co-expression network of eukaryotic initiation factor 4A–3 in cancer. J Cancer 9(24):4568–4577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang R, Zhang S, Chen X, Li N, Li J, Jia R et al (2018) EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol Cancer 17(1):166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Ren S, Xia J, Wei Y, Xi Y (2020) EIF4A3-induced circ-BNIP3 aggravated hypoxia-induced injury of H9c2 cells by targeting miR-27a-3p/BNIP3. Mol Ther Nucleic Acids 19:533–545

    Article  CAS  PubMed  Google Scholar 

  38. Fan C, Qu H, Xiong F, Tang Y, Tang T, Zhang L et al (2021) CircARHGAP12 promotes nasopharyngeal carcinoma migration and invasion via ezrin-mediated cytoskeletal remodeling. Cancer Lett 496:41–56

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Zhu D, Liu S, Shao M, Liu Y, Li A et al (2020) Curcumin enhances radiosensitization of nasopharyngeal carcinoma by regulating circRNA network. Mol Carcinog 59(2):202–214

    Article  CAS  PubMed  Google Scholar 

  40. Kanchan RK, Perumal N, Atri P, Chirravuri Venkata R, Thapa I, Klinkebiel DL et al (2020) MiR-1253 exerts tumor-suppressive effects in medulloblastoma via inhibition of CDK6 and CD276 (B7–H3). Brain Pathol 30(4):732–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu M, Zhang Y, Zhang J, Cai H, Zhang C, Yang Z et al (2018) MicroRNA-1253 suppresses cell proliferation and invasion of non-small-cell lung carcinoma by targeting WNT5A. Cell Death Dis 9(2):189

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ding X, Zheng J, Cao M (2021) Circ_0004771 accelerates cell carcinogenic phenotypes via suppressing miR-1253-mediated DDAH1 inhibition in breast cancer. Cancer Manag Res 13:1–11

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from Health Commission of Hunan Province (202203033073); Education Department of Hunan Province (235355).

Author information

Authors and Affiliations

Authors

Contributions

XZ: experimental studies, writing- original draft preparation. GY: data acquisition, writing- reviewing and editing. YW: design, experimental studies. SY: data analysis. QJ: concepts. ST: supervision, writing- reviewing and editing. All the authors approved for the final version.

Corresponding authors

Correspondence to Qingshan Jiang or Sanyuan Tang.

Ethics declarations

Conflict of interest

The authors have no commercial or other associations that might pose a conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Affiliated Nanhua Hospital of University of South China, and informed consents were provided to each patient.

Consent to participate

Animal manipulates were conducted in accordance with the guidelines approved by the Committee on the Ethics of Animal Experiments of Affiliated Nanhua Hospital of University of South China.

Consent for publication

The informed consent obtained from study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2022_4350_MOESM1_ESM.tif

Supplementary file1 CircFIP1L1 knockdown promoted NPC cell proliferation, inhibited NPC cell apoptosis, and attenuated NPC cell radiosensitivity. (A-C) EdU, CCK-8, and colony formation assays were performed to analyze the effects of circFIP1L1 knockdown on NPC cell proliferation viability. (D and E) Effects of circFIP1L1 knockdown on NPC cell cycle and apoptosis were assessed through flow cytometry analysis. (F) Effects of circFIP1L1 knockdown on NPC cell radiosensitivity were evaluated by flow cytometry analysis under 2 Gy radiation. *, P<0.05, and **, P<0.01. Error bars represented mean ± standard deviation (SD). N=3 (TIF 16763 KB)

18_2022_4350_MOESM2_ESM.tif

Supplementary file2 Bioinformatics analysis of circFIP1L1 target miRNAs and proteins. (A) Venn diagram of target miRNAs identified by circinteractome and circBank. (B) Expression of the RBP proteins upstream of circFIP1L1 (AUF1, DGCR8, EIF4A3, HNRNPC, HuR and IGF2BP1/3) were detected in CNE1 and HONE1 cells treated with 2 Gy radiation (TIF 3244 KB)

18_2022_4350_MOESM3_ESM.tif

Supplementary file3 Effects of EIF4A3 overexpression on NPC cell proliferation and radiosensitivity were reversed by PTEN knockdown. (A) PTEN protein level in CNE1 and HONE1 cells treated with EIF4A3 or/and si-PTEN. (B and C) After treatment with EIF4A3 or/and si-PTEN, CNE1 and HONE1 cells were subjected to proliferation analysis using CCK-8 and colony formation assays. (D and E) CNE1 and HONE1 cells transfected with EIF4A3 or/and si-PTEN were subjected for cell apoptosis analysis using flow cytometry analysis under radiation (2 Gy). *, P<0.05, and **, P<0.01. Error bars represented mean ± standard deviation (SD). N=3 (TIF 3194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yuan, G., Wu, Y. et al. EIF4A3-induced circFIP1L1 represses miR-1253 and promotes radiosensitivity of nasopharyngeal carcinoma. Cell. Mol. Life Sci. 79, 357 (2022). https://doi.org/10.1007/s00018-022-04350-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04350-x

Keywords

Navigation