Shi J, Vakoc CR (2014) The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54:728–736
CAS
PubMed
Article
Google Scholar
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I et al (2010) Selective inhibition of BET bromodomains. Nature 468:1067–1073
CAS
PubMed
PubMed Central
Article
Google Scholar
Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M et al (2011) RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478:524–528
CAS
PubMed
PubMed Central
Article
Google Scholar
Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H et al (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468:1119–1123
CAS
PubMed
PubMed Central
Article
Google Scholar
Winter GE, Mayer A, Buckley DL, Erb MA, Roderick JE, Vittori S, Reyes JM, di Iulio J, Souza A, Ott CJ et al (2017) BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol Cell 67(5–18):e19
Google Scholar
Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q (2005) Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19:535–545
CAS
PubMed
Article
Google Scholar
Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19:523–534
CAS
PubMed
Article
Google Scholar
Zheng B, Aoi Y, Shah AP, Iwanaszko M, Das S, Rendleman EJ, Zha D, Khan N, Smith ER, Shilatifard A (2021) Acute perturbation strategies in interrogating RNA polymerase II elongation factor function in gene expression. Genes Dev 35:273–285
CAS
PubMed
PubMed Central
Article
Google Scholar
Stonestrom AJ, Hsu SC, Jahn KS, Huang P, Keller CA, Giardine BM, Kadauke S, Campbell AE, Evans P, Hardison RC, Blobel GA (2015) Functions of BET proteins in erythroid gene expression. Blood 125:2825–2834
CAS
PubMed
PubMed Central
Article
Google Scholar
Cheung KL, Zhang F, Jaganathan A, Sharma R, Zhang Q, Konuma T, Shen T, Lee JY, Ren C, Chen CH et al (2017) Distinct roles of Brd2 and Brd4 in potentiating the transcriptional program for Th17 Cell differentiation. Mol Cell 65:1068-1080.e1065
CAS
PubMed
PubMed Central
Article
Google Scholar
Surface LE, Fields PA, Subramanian V, Behmer R, Udeshi N, Peach SE, Carr SA, Jaffe JD, Boyer LA (2016) H2A.Z1 monoubiquitylation antagonizes BRD2 to maintain poised chromatin in ESCs. Cell Rep 14:1142–1155
CAS
PubMed
PubMed Central
Article
Google Scholar
Vardabasso C, Gaspar-Maia A, Hasson D, Punzeler S, Valle-Garcia D, Straub T, Keilhauer EC, Strub T, Dong J, Panda T et al (2015) Histone Variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol Cell 59:75–88
CAS
PubMed
PubMed Central
Article
Google Scholar
Peng J, Dong W, Chen L, Zou T, Qi Y, Liu Y (2007) Brd2 is a TBP-associated protein and recruits TBP into E2F–1 transcriptional complex in response to serum stimulation. Mol Cell Biochem 294:45–54
CAS
PubMed
Article
Google Scholar
Bagchi RA, Ferguson BS, Stratton MS, Hu T, Cavasin MA, Sun L, Lin YH, Liu D, Londono P, Song K et al (2018) HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight. https://doi.org/10.1172/jci.insight.120159
Article
PubMed
PubMed Central
Google Scholar
Izumikawa K, Ishikawa H, Yoshikawa H, Fujiyama S, Watanabe A, Aburatani H, Tachikawa H, Hayano T, Miura Y, Isobe T et al (2019) LYAR potentiates rRNA synthesis by recruiting BRD2/4 and the MYST-type acetyltransferase KAT7 to rDNA. Nucleic Acids Res 47:10357–10372
CAS
PubMed
PubMed Central
Article
Google Scholar
Denis GV, McComb ME, Faller DV, Sinha A, Romesser PB, Costello CE (2006) Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J Proteome Res 5:502–511
CAS
PubMed
PubMed Central
Article
Google Scholar
Hsu SC, Gilgenast TG, Bartman CR, Edwards CR, Stonestrom AJ, Huang P, Emerson DJ, Evans P, Werner MT, Keller CA et al (2017) The BET protein BRD2 cooperates with CTCF to enforce transcriptional and architectural boundaries. Mol Cell 66(102–116):e107
Google Scholar
Kim JJ, Lee SY, Gong F, Battenhouse AM, Boutz DR, Bashyal A, Refvik ST, Chiang CM, Xhemalce B, Paull TT et al (2019) Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes Dev 33:1751–1774
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu Z, Scannell DR, Eisen MB, Tjian R (2011) Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 146:720–731
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang C, Lee JE, Lai B, Macfarlan TS, Xu S, Zhuang L, Liu C, Peng W, Ge K (2016) Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition. Proc Natl Acad Sci USA 113:11871–11876
CAS
PubMed
PubMed Central
Article
Google Scholar
Whyte WA, Bilodeau S, Orlando DA, Hoke HA, Frampton GM, Foster CT, Cowley SM, Young RA (2012) Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482:221–225
CAS
PubMed
PubMed Central
Article
Google Scholar
Lin C, Garruss AS, Luo Z, Guo F, Shilatifard A (2013) The RNA Pol II elongation factor Ell3 marks enhancers in ES cells and primes future gene activation. Cell 152:144–156
CAS
PubMed
Article
Google Scholar
Pal DK, Evgrafov OV, Tabares P, Zhang F, Durner M, Greenberg DA (2003) BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am J Hum Genet 73:261–270
CAS
PubMed
PubMed Central
Article
Google Scholar
Velíšek L, Shang E, Velíšková J, Chachua T, Macchiarulo S, Maglakelidze G, Wolgemuth DJ, Greenberg DA (2011) GABAergic neuron deficit as an idiopathic generalized epilepsy mechanism: the role of BRD2 haploinsufficiency in juvenile myoclonic epilepsy. PLoS ONE 6:e23656
PubMed
PubMed Central
Article
CAS
Google Scholar
Shang E, Wang X, Wen D, Greenberg DA, Wolgemuth DJ (2009) Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev Dyn 238:908–917
CAS
PubMed
PubMed Central
Article
Google Scholar
Gyuris A, Donovan DJ, Seymour KA, Lovasco LA, Smilowitz NR, Halperin AL, Klysik JE, Freiman RN (2009) The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. Biochim Biophys Acta 1789:413–421
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang F, Liu H, Blanton WP, Belkina A, Lebrasseur NK, Denis GV (2009) Brd2 disruption in mice causes severe obesity without Type 2 diabetes. Biochem J 425:71–83
PubMed
Article
CAS
Google Scholar
Jiang Y, Huang J, Lun K, Li B, Zheng H, Li Y, Zhou R, Duan W, Wang C, Feng Y et al (2020) Genome-wide analyses of chromatin interactions after the loss of Pol I, Pol II, and Pol III. Genome Biol 21:158
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang J, Liu Z, Jia J (2021) Mechanisms of smoothened regulation in hedgehog signaling. Cells 10:2138
CAS
PubMed
PubMed Central
Article
Google Scholar
Cheng ZY, He TT, Gao XM, Zhao Y, Wang J (2021) ZBTB transcription factors: key regulators of the development, differentiation and effector function of T cells. Front Immunol 12:713294
CAS
PubMed
PubMed Central
Article
Google Scholar
Edwards DS, Maganti R, Tanksley JP, Luo J, Park JJH, Balkanska-Sinclair E, Ling J, Floyd SR (2020) BRD4 prevents R-loop formation and transcription-replication conflicts by ensuring efficient transcription elongation. Cell Rep 32:108166
CAS
PubMed
PubMed Central
Article
Google Scholar
Chakraborty P, Huang JTJ, Hiom K (2018) DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nat Commun 9:4346
PubMed
PubMed Central
Article
CAS
Google Scholar
Brannan K, Kim H, Erickson B, Glover-Cutter K, Kim S, Fong N, Kiemele L, Hansen K, Davis R, Lykke-Andersen J, Bentley DL (2012) mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol Cell 46:311–324
CAS
PubMed
PubMed Central
Article
Google Scholar
Lauberth SM, Nakayama T, Wu X, Ferris AL, Tang Z, Hughes SH, Roeder RG (2013) H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152:1021–1036
CAS
PubMed
PubMed Central
Article
Google Scholar
Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA, Baltissen MP, Stunnenberg HG, Mann M, Timmers HT (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69
CAS
PubMed
Article
Google Scholar
Lambert JP, Picaud S, Fujisawa T, Hou H, Savitsky P, Uusküla-Reimand L, Gupta GD, Abdouni H, Lin ZY, Tucholska M et al (2019) Interactome rewiring following pharmacological targeting of BET bromodomains. Mol Cell 73:621-638.e617
CAS
PubMed
PubMed Central
Article
Google Scholar
LeRoy G, Rickards B, Flint SJ (2008) The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell 30:51–60
CAS
PubMed
PubMed Central
Article
Google Scholar
Donczew R, Hahn S (2021) BET family members Bdf1/2 modulate global transcription initiation and elongation in Saccharomyces cerevisiae. Elife. https://doi.org/10.7554/eLife.69619
Article
PubMed
PubMed Central
Google Scholar
Boija A, Klein IA, Young RA (2021) Biomolecular condensates and cancer. Cancer Cell 39:174–192
CAS
PubMed
PubMed Central
Article
Google Scholar
Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC et al (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science. https://doi.org/10.1126/science.aar3958
Article
PubMed
PubMed Central
Google Scholar
Daneshvar K, Ardehali MB, Klein IA, Hsieh FK, Kratkiewicz AJ, Mahpour A, Cancelliere SOL, Zhou C, Cook BM, Li W et al (2020) lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation. Nat Cell Biol 22:1211–1222
CAS
PubMed
PubMed Central
Article
Google Scholar
Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, Abraham BJ, Cohen MA, Nabet B, Buckley DL et al (2017) YY1 is a structural regulator of enhancer-promoter loops. Cell 171(1573–1588):e1528
Google Scholar
Kieffer-Kwon KR, Tang Z, Mathe E, Qian J, Sung MH, Li G, Resch W, Baek S, Pruett N, Grontved L et al (2013) Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 155:1507–1520
CAS
PubMed
Article
Google Scholar
Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, Weintraub AS, Schujiers J, Lee TI, Zhao K, Young RA (2014) Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159:374–387
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang C, Lee JE, Cho YW, Xiao Y, Jin Q, Liu C, Ge K (2012) UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc Natl Acad Sci USA 109:15324–15329
CAS
PubMed
PubMed Central
Article
Google Scholar
Berwick DC, Harvey K (2012) LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins and membrane-localized LRP6. Hum Mol Genet 21:4966–4979
CAS
PubMed
PubMed Central
Article
Google Scholar
Tokue M, Ikami K, Mizuno S, Takagi C, Miyagi A, Takada R, Noda C, Kitadate Y, Hara K, Mizuguchi H et al (2017) SHISA6 confers resistance to differentiation-promoting Wnt/β-catenin signaling in mouse spermatogenic stem cells. Stem Cell Reports 8:561–575
CAS
PubMed
PubMed Central
Article
Google Scholar
Andrieu GP, Denis GV (2018) BET proteins exhibit transcriptional and functional opposition in the epithelial-to-mesenchymal transition. Mol Cancer Res 16:580–586
CAS
PubMed
PubMed Central
Article
Google Scholar
Branigan GL, Olsen KS, Burda I, Haemmerle MW, Ho J, Venuto A, D’Antonio ND, Briggs IE, DiBenedetto AJ (2021) Zebrafish paralogs brd2a and brd2b are needed for proper circulatory, excretory and central nervous system formation and act as genetic antagonists during development. J Dev Biol. https://doi.org/10.3390/jdb9040046
Article
PubMed
PubMed Central
Google Scholar
Wu SY, Chiang CM (2007) The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 282:13141–13145
CAS
PubMed
Article
Google Scholar
Slaughter MJ, Shanle EK, Khan A, Chua KF, Hong T, Boxer LD, Allis CD, Josefowicz SZ, Garcia BA, Rothbart SB et al (2021) HDAC inhibition results in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Rep 34:108638
CAS
PubMed
PubMed Central
Article
Google Scholar
Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, Escara-Wilke J, Wilder-Romans K, Dhanireddy S, Engelke C et al (2014) Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510:278–282
CAS
PubMed
PubMed Central
Article
Google Scholar
LeRoy G, Chepelev I, DiMaggio PA, Blanco MA, Zee BM, Zhao K, Garcia BA (2012) Proteogenomic characterization and mapping of nucleosomes decoded by Brd and HP1 proteins. Genome Biol 13:R68
PubMed
PubMed Central
Article
Google Scholar
Anders L, Guenther MG, Qi J, Fan ZP, Marineau JJ, Rahl PB, Loven J, Sigova AA, Smith WB, Lee TI et al (2014) Genome-wide localization of small molecules. Nat Biotechnol 32:92–96
CAS
PubMed
Article
Google Scholar
Warfield L, Ramachandran S, Baptista T, Devys D, Tora L, Hahn S (2017) Transcription of nearly all yeast RNA polymerase II-transcribed genes is dependent on transcription factor TFIID. Mol Cell 68(118–129):e115
Google Scholar
Mylonas C, Lee C, Auld AL, Cisse II, Boyer LA (2021) A dual role for H2A.Z.1 in modulating the dynamics of RNA polymerase II initiation and elongation. Nat Struct Mol Biol 28:435–442
CAS
PubMed
Article
Google Scholar
Wen Z, Zhang L, Ruan H, Li G (2020) Histone variant H2A.Z regulates nucleosome unwrapping and CTCF binding in mouse ES cells. Nucleic Acids Res 48:5939–5952
CAS
PubMed
PubMed Central
Article
Google Scholar
Bi M, Zhang Z, Jiang YZ, Xue P, Wang H, Lai Z, Fu X, De Angelis C, Gong Y, Gao Z et al (2020) Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nat Cell Biol 22:701–715
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhu C, Li L, Zhang Z, Bi M, Wang H, Su W, Hernandez K, Liu P, Chen J, Chen M et al (2019) A non-canonical role of YAP/TEAD is required for activation of estrogen-regulated enhancers in breast cancer. Mol Cell 75(791–806):e798
Google Scholar
Jang Y, Park YK, Lee JE, Wan D, Tran N, Gavrilova O, Ge K (2021) MED1 is a lipogenesis coactivator required for postnatal adipose expansion. Genes Dev 35:713–728
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang Y, Zhang L, Xiong C, Chen J, Wang L, Wen Z, Yu J, Chen P, Xu Y, Jin J et al (2021) HIRA complex presets transcriptional potential through coordinating depositions of the histone variants H3.3 and H2A.Z on the poised genes in mESCs. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab1221
Article
PubMed
PubMed Central
Google Scholar
Park YK, Lee JE, Yan Z, McKernan K, O’Haren T, Wang W, Peng W, Ge K (2021) Interplay of BAF and MLL4 promotes cell type-specific enhancer activation. Nat Commun 12:1630
CAS
PubMed
PubMed Central
Article
Google Scholar
Lai B, Lee JE, Jang Y, Wang L, Peng W, Ge K (2017) MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis. Nucleic Acids Res 45:6388–6403
CAS
PubMed
PubMed Central
Article
Google Scholar