Skip to main content
Log in

Neuroendocrinal and molecular basis of flight performance in locusts

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Insect flight is a complex physiological process that involves sensory and neuroendocrinal control, efficient energy metabolism, rhythmic muscle contraction, and coordinated wing movement. As a classical study model for insect flight, locusts have attracted much attention from physiologists, behaviorists, and neuroendocrinologists over the past decades. In earlier research, scientists made extensive efforts to explore the hormone regulation of metabolism related to locust flight; however, this work was hindered by the absence of molecular and genetic tools. Recently, the rapid development of molecular and genetic tools as well as multi-omics has greatly advanced our understanding of the metabolic, molecular, and neuroendocrinal basis of long-term flight in locusts. Novel neural and molecular factors modulating locust flight and their regulatory mechanisms have been explored. Moreover, the molecular mechanisms underlying phase-dependent differences in locust flight have also been revealed. Here, we provide a systematic review of locust flight physiology, with emphasis on recent advances in the neuroendocrinal, genetic, and molecular basis. Future research directions and potential challenges are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Wegener G (1996) Flying insects: Model systems in exercise physiology. Experientia 52(5):404–412. https://doi.org/10.1007/Bf01919307

    Article  CAS  PubMed  Google Scholar 

  2. Dudley R, Pass G (2018) Wings and powered flight: Core novelties in insect evolution. Arthropod Struct Dev 47(4):319–321. https://doi.org/10.1016/j.asd.2018.06.006

    Article  PubMed  Google Scholar 

  3. Verlinden H, Sterck L, Li J, Li Z, Yssel A, Gansemans Y, Verdonck R, Holtof M, Song H, Behmer ST, Sword GA, Matheson T, Ott SR, Deforce D, Van Nieuwerburgh F, Van de Peer Y, Vanden Broeck J (2020) First draft genome assembly of the desert locust, Schistocerca gregaria. F1000Rres 9:775. https://doi.org/10.12688/f1000research.25148.2

    Article  CAS  Google Scholar 

  4. Taylor GK, Krapp HG (2007) Sensory systems and flight stability: What do insects measure and why? Adv Insect Physiol 34:231–316. https://doi.org/10.1016/S0065-2806(07)34005-8

    Article  Google Scholar 

  5. Robertson RM (1986) Neuronal circuits controlling flight in the locust - central generation of the rhythm. Trends Neurosci 9(6):278–280

    Article  Google Scholar 

  6. Candy DJ, Becker A, Wegener G (1997) Coordination and integration of metabolism in insect flight. Comp Biochem Phys B 117(4):497–512. https://doi.org/10.1016/S0305-0491(97)00212-5

    Article  Google Scholar 

  7. Sadaf S, Reddy OV, Sane SP, Hasan G (2015) Neural control of wing coordination in flies. Curr Biol 25(1):80–86. https://doi.org/10.1016/j.cub.2014.10.069

    Article  CAS  PubMed  Google Scholar 

  8. Pener MP, Simpson SJ (2009) Locust phase polyphenism: an update. Adv Insect Physiol 36:1–272. https://doi.org/10.1016/S0065-2806(08)36001-9

    Article  Google Scholar 

  9. Du BZ, Ding D, Ma C, Guo W, Kang L (2022) Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits. Proc Natl Acad Sci U S A 119(1):e2115753118. https://doi.org/10.1073/pnas.2115753118

    Article  CAS  PubMed  Google Scholar 

  10. Duch C, Pfluger HJ (1999) DUM neurons in locust flight: a model system for amine-mediated peripheral adjustments to the requirements of a central motor program. J Comp Physiol A 184(5):489–499. https://doi.org/10.1007/s003590050349

    Article  CAS  Google Scholar 

  11. Van der Horst DJ, Rodenburg KW (2010) Locust flight activity as a model for hormonal regulation of lipid mobilization and transport. J Insect Physiol 56(8):844–853. https://doi.org/10.1016/j.jinsphys.2010.02.015

    Article  CAS  PubMed  Google Scholar 

  12. Worm RAA, Beenakkers AMT (1980) Regulation of substrate utilization in the flight-muscle of the locust, Locusta migratoria, during Flight. Insect Biochem 10(1):53–59. https://doi.org/10.1016/0020-1790(80)90038-4

    Article  CAS  Google Scholar 

  13. Vanmarrewijk WJA, Beenakkers AMT (1986) Role of adipokinetic hormone in the control of glycogen mobilization for locust flight. B Soc Zool Fr 111(1–2):52–52

    Google Scholar 

  14. Goldsworthy GJ, Jutsum AR, Robinson NL (1975) Adipokinetic hormone and flight metabolism in locusts. J Endocrinol 64(3):P66–P67

    Google Scholar 

  15. Wilson DM, Waldron I (1968) Models for generation of motor output pattern in flying locusts. Pr Inst Electr Elect 56(6):1058. https://doi.org/10.1109/Proc.1968.6457

    Article  Google Scholar 

  16. Kutsch W, Neubauer K, Kramer H (1991) Flight motor pattern in abdominal segments of locusts. J Exp Biol 156:629–635

    Google Scholar 

  17. Mentel T, Duch C, Stypa H, Wegener G, Muller U, Pfluger HJ (2003) Central modulatory neurons control fuel selection in flight muscle of migratory locust. J Neurosci 23(4):1109–1113

    Article  CAS  Google Scholar 

  18. Gade G (1992) The hormonal integration of insect flight metabolism. Zool Jahrb Allg Zool 96(2):211–225

    Google Scholar 

  19. Lorenz MW, Gade G (2009) Hormonal regulation of energy metabolism in insects as a driving force for performance. Integr Comp Biol 49(4):380–392. https://doi.org/10.1093/icb/icp019

    Article  CAS  PubMed  Google Scholar 

  20. Van der Horst DJ (2003) Insect adipokinetic hormones: release and integration of flight energy metabolism. Comp Biochem Phys B 136(2):217–226. https://doi.org/10.1016/S1096-4959(03)00151-9

    Article  CAS  Google Scholar 

  21. Van Der Horst DJ, Van Marrewijk WJA, Vullings HGB, Diederen JHB (1999) Metabolic neurohormones: release, signal transduction and physiological responses of adipokinetic hormones in insects. Eur J Entomol 96(3):299–308

    Google Scholar 

  22. Cao T, Jin JP (2020) Evolution of flight muscle contractility and energetic efficiency. Front Physiol 11:1038. https://doi.org/10.3389/fphys.2020.01038

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kutsch W, Usherwood P (1970) Studies of the innervation and electrical activity of flight muscles in the locust, Schistocerca gregaria. J Exp Biol 52(2):299–312

    Article  Google Scholar 

  24. Milner LD, Landmesser LT (1999) Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J Neurosci 19(8):3007–3022

    Article  CAS  Google Scholar 

  25. Pfluger HJ, Duch C (2011) Dynamic neural control of insect muscle metabolism related to motor behavior. Physiology (Bethesda) 26(4):293–303. https://doi.org/10.1152/physiol.00002.2011

    Article  CAS  Google Scholar 

  26. Sacktor B (1976) Biochemical adaptations for flight in the insect. Biochem Soc Symp 41:111–131

    CAS  Google Scholar 

  27. Gagnon J, Kurowski TT, Wiesner RJ, Zak R (1991) Correlations between a nuclear and a mitochondrial messenger-RNA of cytochrome-c-oxidase subunits, enzymatic-activity and total cessenger-RNA content, in rat-tissues. Mol Cell Biochem 107(1):21–29. https://doi.org/10.1007/Bf02424572

    Article  CAS  PubMed  Google Scholar 

  28. Brosemer RW, Vogell W, Buecher T (1963) Morphological and enzymatic patterns in the development of the indirect flight muscle of the Locust migratoria. Biochem Z 338:854–910

    CAS  PubMed  Google Scholar 

  29. Sogl B, Gellissen G, Wiesner RJ (2000) Biogenesis of giant mitochondria during insect flight muscle development in the locust, Locusta migratoria (L.)—transcription, translation and copy number of mitochondrial DNA. Eur J Biochem 267(1):11–17. https://doi.org/10.1046/j.1432-1327.2000.00936.x

    Article  CAS  PubMed  Google Scholar 

  30. Bahat A, Gross A (2019) Mitochondrial plasticity in cell fate regulation. J Biol Chem 294(38):13852–13863. https://doi.org/10.1074/jbc.REV118.000828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haunerland NH (1997) Transport and utilization in insect flight muscles. Comp Biochem Phys B 117(4):475–482

    Article  Google Scholar 

  32. Van der Horst DJ, Roosendaal SD, Rodenburg KW (2009) Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Mol Cell Biochem 326(1–2):105–119. https://doi.org/10.1007/s11010-008-0011-3

    Article  CAS  PubMed  Google Scholar 

  33. Zhang CX, Brisson JA, Xu HJ (2019) Molecular mechanisms of wing polymorphism in insects. Annu Rev Entomol 64:297–314. https://doi.org/10.1146/annurev-ento-011118-112448

    Article  CAS  PubMed  Google Scholar 

  34. Oudejans RCHM, Harthoorn LF, Diederen JHB, Van der Horst DJ (1999) Adipokinetic hormones - coupling between biosynthesis and release. Ann Ny Acad Sci 897:291–299. https://doi.org/10.1111/j.1749-6632.1999.tb07900.x

    Article  CAS  PubMed  Google Scholar 

  35. Van der Horst DJ, Van Marrewijk WJ, Diederen JH (2001) Adipokinetic hormones of insect: release, signal transduction, and responses. Int Rev Cytol 211:179–240. https://doi.org/10.1016/s0074-7696(01)11019-3

    Article  PubMed  Google Scholar 

  36. Lorenz MW (2001) Synthesis of lipids in the fat body of Gryllus bimaculatus: age-dependency and regulation by adipokinetic hormone. Arch Insect Biochem Physiol 47(4):198–214. https://doi.org/10.1002/arch.1052

    Article  CAS  PubMed  Google Scholar 

  37. Kodrik D, Goldsworthy GJ (1995) Inhibition of RNA-synthesis by adipokinetic hormones and brain factor (S) in adult fat-body of Locusta migratoria. J Insect Physiol 41(2):127–133. https://doi.org/10.1016/0022-1910(94)00096-Y

    Article  CAS  Google Scholar 

  38. Steele JE, Ireland R (1999) Hormonal activation of phosphorylase in cockroach fat body trophocytes: A correlation with trans-membrane calcium flux. Arch Insect Biochem Physiol 42(4):233–244. https://doi.org/10.1002/(SICI)1520-6327(199912)42:4%3c233::AID-ARCH2%3e3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  39. Keeley LL, Park JH, Lu KH, Bradfield JY (1996) Neurohormone signal transduction for dual regulation of metabolism and gene expression in insects: hypertrehalosemic hormone as a model. Arch Insect Biochem 33(3–4):283–301

    Article  CAS  Google Scholar 

  40. Arrese EL, Canavoso LE, Jouni ZE, Pennington JE, Tsuchida K, Wells MA (2001) Lipid storage and mobilization in insects: current status and future directions. Insect Biochem Mol Biol 31(1):7–17. https://doi.org/10.1016/s0965-1748(00)00102-8

    Article  CAS  PubMed  Google Scholar 

  41. Gade G, Auerswald L (2002) Beetles’ choice–proline for energy output: control by AKHs. Comp Biochem Physiol B Biochem Mol Biol 132(1):117–129. https://doi.org/10.1016/s1096-4959(01)00541-3

    Article  PubMed  Google Scholar 

  42. Oudejans RC, Vroemen SF, Jansen RF, Van der Horst DJ (1996) Locust adipokinetic hormones: carrier-independent transport and differential inactivation at physiological concentrations during rest and flight. Proc Natl Acad Sci U S A 93(16):8654–8659. https://doi.org/10.1073/pnas.93.16.8654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Auerswald L, Gade G (2006) Endocrine control of TAG lipase in the fat body of the migratory locust, Locusta migratoria. Insect Biochem Mol Biol 36(10):759–768. https://doi.org/10.1016/j.ibmb.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  44. Gade G, Auerswald L (2003) Mode of action of neuropeptides from the adipokinetic hormone family. Gen Comp Endocrinol 132(1):10–20. https://doi.org/10.1016/s0016-6480(03)00159-x

    Article  CAS  PubMed  Google Scholar 

  45. Gade G (2009) Peptides of the adipokinetic hormone/red pigment-concentrating hormone family: a new take on biodiversity. Ann N Y Acad Sci 1163:125–136. https://doi.org/10.1111/j.1749-6632.2008.03625.x

    Article  CAS  PubMed  Google Scholar 

  46. Siegert KJ, Kellner R, Gade G (2000) A third active AKH is present in the pyrgomorphid grasshoppers Phymateus morbillosus and Dictyophorus spumans. Insect Biochem Mol 30(11):1061–1067. https://doi.org/10.1016/S0965-1748(00)00081-3

    Article  CAS  Google Scholar 

  47. Oudejans RC, Kooiman FP, Heerma W, Versluis C, Slotboom AJ, Beenakkers MT (1991) Isolation and structure elucidation of a novel adipokinetic hormone (Lom-AKH-III) from the glandular lobes of the corpus cardiacum of the migratory locust, Locusta migratoria. Eur J Biochem 195(2):351–359. https://doi.org/10.1111/j.1432-1033.1991.tb15713.x

    Article  CAS  PubMed  Google Scholar 

  48. Gade G (1996) The revolution in insect neuropeptides illustrated by the adipokinetic hormone/red pigment-concentrating hormone family of peptides. Z Naturforsch C 51(9–10):607–617

    Article  CAS  Google Scholar 

  49. Hou L, Jiang F, Yang P, Wang X, Kang L (2015) Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust. Insect Biochem Mol Biol 63:63–71. https://doi.org/10.1016/j.ibmb.2015.05.014

    Article  CAS  PubMed  Google Scholar 

  50. Harthoorn LF, Diederen JH, Oudejans RC, Van der Horst DJ (1999) Differential location of peptide hormones in the secretory pathway of insect adipokinetic cells. Cell Tissue Res 298(2):361–369. https://doi.org/10.1007/s004419900094

    Article  CAS  PubMed  Google Scholar 

  51. Harthoorn LF, Oudejans RCHM, Diederen JHB, Van de Wijngaart DJ, Van der Horst DJ (2001) Absence of coupling between release and biosynthesis of peptide hormones in insect neuroendocrine cells. Eur J Cell Biol 80(7):451–457. https://doi.org/10.1078/0171-9335-00183

    Article  CAS  PubMed  Google Scholar 

  52. Oudejans RC, Mes TH, Kooiman FP, van der Horst DJ (1993) Adipokinetic peptide hormone content and biosynthesis during locust development. Peptides 14(5):877–881. https://doi.org/10.1016/0196-9781(93)90062-l

    Article  CAS  PubMed  Google Scholar 

  53. Diederen JH, Oudejans RC, Harthoorn LF, Van der Horst DJ (2002) Cell biology of the adipokinetic hormone-producing neurosecretory cells in the locust corpus cardiacum. Microsc Res Tech 56(3):227–236. https://doi.org/10.1002/jemt.10026

    Article  CAS  PubMed  Google Scholar 

  54. Hou L, Guo S, Wang Y, Nie X, Yang P, Ding D, Li B, Kang L, Wang X (2021) Neuropeptide ACP facilitates lipid oxidation and utilization during long-term flight in locusts. Elife 10:e65279. https://doi.org/10.7554/eLife.65279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Candy DJ (2002) Adipokinetic hormones concentrations in the haemolymph of Schistocerca gregaria, measured by radioimmunoassay. Insect Biochem Mol Biol 32(11):1361–1367. https://doi.org/10.1016/s0965-1748(02)00056-5

    Article  CAS  PubMed  Google Scholar 

  56. Bogerd J, Kooiman FP, Pijnenburg MA, Hekking LH, Oudejans RC, Van der Horst DJ (1995) Molecular cloning of three distinct cDNAs, each encoding a different adipokinetic hormone precursor, of the migratory locust, Locusta migratoria. Differential expression of the distinct adipokinetic hormone precursor genes during flight activity. J Biol Chem 270(39):23038–23043. https://doi.org/10.1074/jbc.270.39.23038

    Article  CAS  PubMed  Google Scholar 

  57. Glinka AV, Kleiman AM, Wyatt GR (1995) Roles of juvenile hormone, a brain factor and adipokinetic hormone in regulation of vitellogenin biosynthesis in Locusta migratoria. Biochem Mol Biol Int 35(2):323–328

    CAS  PubMed  Google Scholar 

  58. Moshitzky P, Applebaum SW (1990) The role of adipokinetic hormone in the control of vitellogenesis in locusts. Insect Biochem 20(3):319–323. https://doi.org/10.1016/0020-1790(90)90050-5

    Article  CAS  Google Scholar 

  59. Zheng H, Chen C, Liu C, Song Q, Zhou S (2020) Rhythmic change of adipokinetic hormones diurnally regulates locust vitellogenesis and egg development. Insect Mol Biol 29(3):283–292. https://doi.org/10.1111/imb.12633

    Article  CAS  PubMed  Google Scholar 

  60. Jackson GE, Pavadai E, Gade G, Andersen NH (2019) The adipokinetic hormones and their cognate receptor from the desert locust, Schistocerca gregaria: solution structure of endogenous peptides and models of their binding to the receptor. PeerJ 7:e7514. https://doi.org/10.7717/peerj.7514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nassel DR, Passier PCCM, Elekes K, Dircksen H, Vullings HGB, Cantera R (1995) Evidence that Locustatachykinin-I is involved in release of adipokinetic hormone from locust Corpora-Cardiaca. Regul Peptides 57(3):297–310. https://doi.org/10.1016/0167-0115(95)00043-B

    Article  CAS  Google Scholar 

  62. Hansen KK, Stafflinger E, Schneider M, Hauser F, Cazzamali G, Williamson M, Kollmann M, Schachtner J, Grimmelikhuijzen CJ (2010) Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J Biol Chem 285(14):10736–10747. https://doi.org/10.1074/jbc.M109.045369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Siegert KJ (1999) Locust corpora cardiaca contain an inactive adipokinetic hormone. Febs Lett 447(2–3):237–240. https://doi.org/10.1016/s0014-5793(99)00299-9

    Article  CAS  PubMed  Google Scholar 

  64. Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, Pollard DA, Sackton TB, Larracuente AM, Singh ND, Abad JP, Abt DN, Adryan B, Aguade M, Akashi H, Anderson WW, Aquadro CF, Ardell DH, Arguello R, Artieri CG, Barbash DA et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450(7167):203–218. https://doi.org/10.1038/nature06341

    Article  CAS  PubMed  Google Scholar 

  65. Patel H, Orchard I, Veenstra JA, Lange AB (2014) The distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: Adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide. Gen Comp Endocr 203:307–314. https://doi.org/10.1016/j.ygcen.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  66. Lucke C, Qiao Y, van Moerkerk HT, Veerkamp JH, Hamilton JA (2006) Fatty-acid-binding protein from the flight muscle of Locusta migratoria: evolutionary variations in fatty acid binding. Biochemistry 45(20):6296–6305. https://doi.org/10.1021/bi060224f

    Article  CAS  PubMed  Google Scholar 

  67. Haunerland NH, Andolfatto P, Chisholm JM, Wang Z, Chen X (1992) Fatty-acid-binding protein in locust flight muscle. Developmental changes of expression, concentration and intracellular distribution. Eur J Biochem 210(3):1045–1051. https://doi.org/10.1111/j.1432-1033.1992.tb17510.x

    Article  CAS  PubMed  Google Scholar 

  68. Haunerland NH, Chisholm JM (1990) Fatty-acid binding-protein in flight-muscle of the locust Schistocerca gregaria. Biochim Biophys Acta 1047(3):233–238. https://doi.org/10.1016/0005-2760(90)90521-X

    Article  CAS  PubMed  Google Scholar 

  69. Rajapakse S, Qu D, Ahmed AS, Rickers-Haunerland J, Haunerland NH (2019) Effects of FABP knockdown on flight performance of the desert locust Schistocerca gregaria. J Exp Biol 222(Pt:21):jeb203455. https://doi.org/10.1242/jeb.203455

    Article  Google Scholar 

  70. Chen XM, Wang ZX, Haunerland NH (1993) Flight-muscle fatty-acid binding-protein synthesis in juvenile and adult forms of the desert locust Schistocerca gregaria. Insect Biochem Mol 23(3):337–343. https://doi.org/10.1016/0965-1748(93)90017-M

    Article  CAS  Google Scholar 

  71. Chen XM, Haunerland NH (1994) Fatty-acid-binding protein expression in locust flight-muscle-induction by flight, adipokinetic hormone, and low-density lipophorin. Insect Biochem Molec 24(6):573–579. https://doi.org/10.1016/0965-1748(94)90093-0

    Article  CAS  Google Scholar 

  72. Lim PS, Li J, Holloway AF, Rao S (2013) Epigenetic regulation of inducible gene expression in the immune system. Immunology 139(3):285–293. https://doi.org/10.1111/imm.12100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Qu H, Cui L, Rickers-Haunerland J, Haunerland NH (2007) Fatty acid-dependent expression of the muscle FABP gene—comparative analysis of gene control in functionally related, but evolutionary distant animal systems. Mol Cell Biochem 299(1–2):45–53. https://doi.org/10.1007/s11010-005-9036-z

    Article  CAS  PubMed  Google Scholar 

  74. Wu QW, Haunerland NH (2001) A novel fatty acid response element controls the expression of the flight muscle FABP gene of the desert locust, Schistocerca gregaria. Eur J Biochem 268(22):5894–5900. https://doi.org/10.1046/j.0014-2956.2001.02538.x

    Article  CAS  PubMed  Google Scholar 

  75. Zhou YJ, Fukumura K, Nagata S (2018) Effects of adipokinetic hormone and its related peptide on maintaining hemolymph carbohydrate and lipid levels in the two-spotted cricket, Gryllus bimaculatus. Biosci Biotechnol Biochem 82(2):274–284. https://doi.org/10.1080/09168451.2017.1422106

    Article  CAS  PubMed  Google Scholar 

  76. Lee WS, Monaghan P, Metcalfe NB (2010) The trade-off between growth rate and locomotor performance varies with perceived time until breeding. J Exp Biol 213(19):3289–3298. https://doi.org/10.1242/jeb.043083

    Article  PubMed  Google Scholar 

  77. Galikova M, Diesner M, Klepsatel P, Hehlert P, Xu YJ, Bickmeyer I, Predel R, Kuhnlein RP (2015) Energy homeostasis control in Drosophila adipokinetic hormone mutants. Genetics 201(2):665. https://doi.org/10.1534/genetics.115.178897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. White MA, Chen DS, Wolfner MF (2021) She’s got nerve: roles of octopamine in insect female reproduction. J Neurogenet. https://doi.org/10.1080/01677063.2020.1868457

    Article  PubMed  Google Scholar 

  79. Novikova ES, Zhukovskaya MI (2015) Octopamine, the insect stress hormone, alters grooming pattern in the cockroach Periplaneta americana. J Evol Biochem Phys 51(2):160–162. https://doi.org/10.1134/S0022093015020118

    Article  Google Scholar 

  80. Wolf H, Pearson KG (1989) Comparison of motor patterns in the intact and deafferented flight system of the locust. 3. Patterns of interneuronal activity. J Comp Physiol A-Sens Neural and Behav Physiol 165(1):61–74. https://doi.org/10.1007/Bf00613800

    Article  Google Scholar 

  81. Ramirez JM, Pearson KG (1991) Octopaminergic modulation of interneurons in the flight system of the locust. J Neurophysiol 66(5):1522–1537. https://doi.org/10.1152/jn.1991.66.5.1522

    Article  CAS  PubMed  Google Scholar 

  82. Wegener G, Beinhauer I, Klee A, Newsholme EA (1987) Properties of locust muscle 6-phosphofructokinase and their importance in the regulation of glycolytic flux during prolonged flight. J Comp Physiol B-Biochem Syst Environ Physiol 157(3):315–326. https://doi.org/10.1007/Bf00693358

    Article  CAS  Google Scholar 

  83. Wegener G, Michel R, Newsholme EA (1986) Fructose 2,6-bisphosphate as a signal for changing from sugar to lipid oxidation during flight in locusts. Febs Lett 201(1):129–132. https://doi.org/10.1016/0014-5793(86)80584-1

    Article  CAS  Google Scholar 

  84. Blau C, Wegener G (1994) Metabolic integration in locust flight - the effect of octopamine on fructose 2,6-bisphosphate content of flight-muscle in-vivo. J Comp Physiol B-Biochem Syst Environ Physiol 164(1):11–15. https://doi.org/10.1007/Bf00714565

    Article  CAS  Google Scholar 

  85. Orchard I, Ramirez JM, Lange AB (1993) A multifunctional role for octopamine in locust flight. Annu Rev Entomol 38:227–249. https://doi.org/10.1146/annurev.en.38.010193.001303

    Article  CAS  Google Scholar 

  86. Robb S, Cheek TR, Hannan FL, Hall LM, Midgley JM, Evans PD (1994) Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. Embo J 13(6):1325–1330

    Article  CAS  Google Scholar 

  87. Goosey MW, Candy DJ (1980) The D-octopamine content of the hemolymph of the locust, Schistocerca-americana-gregaria and its elevation during flight. Insect Biochem 10(4):393–397. https://doi.org/10.1016/0020-1790(80)90009-8

    Article  CAS  Google Scholar 

  88. Orchard I, Carlisle JA, Loughton BG, Gole JW, Downer RG (1982) In vitro studies on the effects of octopamine on locust fat body. Gen Comp Endocrinol 48(1):7–13. https://doi.org/10.1016/0016-6480(82)90031-4

    Article  CAS  PubMed  Google Scholar 

  89. Wang ZW, Hayakawa Y, Downer RGH (1990) Factors influencing cyclic-AMP and diacylglycerol levels in fat-body of Locusta migratoria. Insect Biochem 20(4):325–330

    Article  CAS  Google Scholar 

  90. Orchard I, Loughton BG, Webb RA (1981) Octopamine and short-term hyperlipaemia in the locust. Gen Comp Endocrinol 45(2):175–180. https://doi.org/10.1016/0016-6480(81)90102-7

    Article  CAS  PubMed  Google Scholar 

  91. Orchard I, Lange AB (1984) Cyclic-AMP in Locust Fat-Body - Correlation with octopamine and adipokinetic hormones during flight. J Insect Physiol 30(12):901–904. https://doi.org/10.1016/0022-1910(84)90066-0

    Article  CAS  Google Scholar 

  92. Orchard I, Martin RJ, Sloley BD, Downer RGH (1986) The sssociation of 5-hydroxytryptamine, octopamine, and dopamine with the intrinsic (Glandular) lobe of the Corpus Cardiacum of Locusta migratoria. Can J Zool 64(1):271–274. https://doi.org/10.1139/z86-045

    Article  CAS  Google Scholar 

  93. Pannabecker T, Orchard I (1986) Octopamine and cyclic-Amp mediate release of adipokinetic hormone-I and hormone-II from isolated locust neuroendocrine tissue. Mol Cell Endocrinol 48(2–3):153–159. https://doi.org/10.1016/0303-7207(86)90037-7

    Article  CAS  PubMed  Google Scholar 

  94. Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, Li B, Cui F, Wei J, Ma C, Wang Y, He J, Luo Y, Wang Z, Guo X, Guo W, Wang X, Zhang Y, Yang M, Hao S, Chen B, Ma Z, Yu D, Xiong Z, Zhu Y et al (2014) The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 5:2957. https://doi.org/10.1038/ncomms3957

    Article  CAS  PubMed  Google Scholar 

  95. Cooper-Mullin C, McWilliams SR (2016) The role of the antioxidant system during intense endurance exercise: lessons from migrating birds. J Exp Biol 219(Pt 23):3684–3695. https://doi.org/10.1242/jeb.123992

    Article  PubMed  Google Scholar 

  96. Ding D, Zhang J, Du BZ, Wang XZ, Hou L, Guo SY, Chen B, Kang L (2021) Non-canonical function of a Hif-1α splice variant contributes to the sustained flight of locusts. bioRxiv 76:11

    Google Scholar 

  97. Rytkonen KT, Storz JF (2011) Evolutionary origins of oxygen sensing in animals. Embo Rep 12(1):3–4. https://doi.org/10.1038/embor.2010.192

    Article  CAS  PubMed  Google Scholar 

  98. Menzies FM, Yenisetti SC, Min KT (2005) Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol 15(17):1578–1582. https://doi.org/10.1016/j.cub.2005.07.036

    Article  CAS  PubMed  Google Scholar 

  99. Taira T, Saito Y, Niki T, Iguchi-Ariga SMM, Takahashi K, Ariga H (2004) DJ-1 has a role in antioxidative stress to prevent cell death. Embo Rep 5(2):213–218. https://doi.org/10.1038/sj.embor.7400074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30 year history. Dyn Med 8:1. https://doi.org/10.1186/1476-5918-8-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482(3):419–425. https://doi.org/10.1016/j.bbrc.2016.10.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bulos BA, Shukla SP, Sacktor B (1973) Bioenergetics of mitochondria from flight muscle of aging blowflies. Gerontologist 13(3):35–35

    Google Scholar 

  103. Sohal RS (1973) Mitochondrial changes with age in flight muscle of adult Drosophila melanogaster. J Cell Biol 59(2):A328–A328

    Google Scholar 

  104. Miller MS, Lekkas P, Braddock JM, Farman GP, Ballif BA, Irving TC, Maughan DW, Vigoreaux JO (2008) Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila. Biophys J 95(5):2391–2401. https://doi.org/10.1529/biophysj.108.130005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wone BWM, Pathak J, Davidowitz G (2018) Flight duration and flight muscle ultrastructure of unfed hawk moths. Arthropod Struct Dev 47(5):457–464. https://doi.org/10.1016/j.asd.2018.05.003

    Article  PubMed  Google Scholar 

  106. Zheng J, Edelman SW, Tharmarajah G, Walker DW, Pletcher SD, Seroude L (2005) Differential patterns of apoptosis in response to aging in Drosophila. Proc Natl Acad Sci U S A 102(34):12083–12088. https://doi.org/10.1073/pnas.0503374102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo SY, Yang PC, Liang B, Zhou F, Hou L, Kang L, Wang XH (2021) Aging features of the migratory locust at physiological and transcriptional levels. BMC Genom. https://doi.org/10.1186/s12864-021-07585-3

    Article  Google Scholar 

  108. de Magalhaes JP, Toussaint O (2004) GenAge: a genomic and proteomic network map of human ageing. Febs Lett 571(1–3):243–247. https://doi.org/10.1016/j.febslet.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  109. Tort F, Ferrer-Cortes X, Thio M, Navarro-Sastre A, Matalonga L, Quintana E, Bujan N, Arias A, Garcia-Villoria J, Acquaviva C, Vianey-Saban C, Artuch R, Garcia-Cazorla A, Briones P, Ribes A (2014) Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes. Hum Mol Genet 23(7):1907–1915. https://doi.org/10.1093/hmg/ddt585

    Article  CAS  PubMed  Google Scholar 

  110. Ayali A, Golenser E, Pener MP (1996) Flight fuel related differences between solitary and gregarious locusts (Locusts migratoria migratorioides). Physiol Entomol 21(1):1–6. https://doi.org/10.1111/j.1365-3032.1996.tb00828.x

    Article  Google Scholar 

  111. Levin E, Lopez-Martinez G, Fane B, Davidowitz G (2017) Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 355(6326):733–734. https://doi.org/10.1126/science.aah4634

    Article  CAS  PubMed  Google Scholar 

  112. Weisfogh T (1952) Fat combustion and metabolic rate of flying locusts (Schistocerca gregaria Forskal). Philos T Roy Soc B 237(640):1–36. https://doi.org/10.1098/rstb.1952.0011

    Article  CAS  Google Scholar 

  113. Vanmarrewijk WJA, Vandenbroek ATM, Beenakkers AMT (1991) Adipokinetic hormone is dependent on extracellular Ca2+ for its stimulatory action on the glycogenolytic pathway in locust fat-body in vitro. Insect Biochem 21(4):375–380. https://doi.org/10.1016/0020-1790(91)90003-W

    Article  CAS  Google Scholar 

  114. Ayali A, Pener MP, Sowa SM, Keeley LL (1996) Adipokinetic hormone content of the corpora cardiaca in gregarious and solitary migratory locusts. Physiol Entomol 21(3):167–172. https://doi.org/10.1111/j.1365-3032.1996.tb00851.x

    Article  CAS  Google Scholar 

  115. Ayali A, Pener MP (1992) Density-dependent phase polymorphism affects response to adipokinetic hormone in locusta. Comp Biochem Physiol a-Mol Integr Physiol 101(3):549–552. https://doi.org/10.1016/0300-9629(92)90507-M

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Le Kang for helpful suggestions on the writing of this review. Figures were produced using Adobe Illustrator.

Funding

This study was supported by the National Natural Science Foundation of China (Grant NO. 31930012, 32070497, 32100388) and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDPB16) and Youth Innovation Promotion Association CAS (No. 2021079).

Author information

Authors and Affiliations

Authors

Contributions

LH and SYG wrote the manuscript and drew the figures, DD and BZD revised the manuscript, XHW revised and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xianhui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

The manuscript was reviewed and approved by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Guo, S., Ding, D. et al. Neuroendocrinal and molecular basis of flight performance in locusts. Cell. Mol. Life Sci. 79, 325 (2022). https://doi.org/10.1007/s00018-022-04344-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04344-9

Keywords

Navigation