Skip to main content

Advertisement

Log in

ALX1-transcribed LncRNA AC132217.4 promotes osteogenesis and bone healing via IGF-AKT signaling in mesenchymal stem cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) is critical for bone formation and regeneration. A high non-/delayed-union rate of fracture healing still occurs in specific populations, implying an urgent need to discover novel targets for promoting osteogenesis and bone regeneration. Long non-coding (lnc)RNAs are emerging regulators of multiple physiological processes, including osteogenesis. Based on differential expression analysis of RNA sequencing data, we found that lncRNA AC132217.4, a 3'UTR-overlapping lncRNA of insulin growth factor 2 (IGF2), was highly induced during osteogenic differentiation of BMSCs. Afterward, both gain-of-function and loss-of-function experiments proved that AC132217.4 promotes osteoblast development from BMSCs. As for its molecular mechanism, we found that AC132217.4 binds with IGF2 mRNA to regulate its expression and downstream AKT activation to control osteoblast maturation and function. Furthermore, we identified two splicing factors, splicing component 35 KDa (SC35) and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), which regulate the biogenesis of AC132217.4 at the post-transcriptional level. We also identified a transcription factor, ALX1, which regulates AC132217.7 expression at the transcriptional level to promote osteogenesis. Importantly, in-vivo over-expression of AC132217.4 essentially promotes the bone healing process in a murine tibial drill-hole model. Our study demonstrates that lncRNA AC132217.4 is a novel anabolic regulator of BMSC osteogenesis and could be a plausible therapeutic target for improving bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data available statement

RNA-seq data of hBMSCs during osteogenesis are deposited in the NCBI Gene Expression Omnibus and are accessible through GEO Series accession number GSE114117 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi). All other data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Donev R, Newall A, Thome J, Sheer D (2007) A role for SC35 and hnRNPA1 in the determination of amyloid precursor protein isoforms. Mol Psychiatry 12(7):681–690. https://doi.org/10.1038/sj.mp.4001971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Munir H, McGettrick HM (2015) Mesenchymal stem cell therapy for autoimmune disease: risks and rewards. Stem Cells Dev 24(18):2091–2100. https://doi.org/10.1089/scd.2015.0008

    Article  PubMed  Google Scholar 

  3. Gonzalez-Rey E, Gonzalez MA, Varela N, O’Valle F, Hernandez-Cortes P, Rico L, Buscher D et al (2010) Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis 69(1):241–248. https://doi.org/10.1136/ard.2008.101881

    Article  CAS  PubMed  Google Scholar 

  4. Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7(6):259–264. https://doi.org/10.1016/S1471-4914(01)02016-0

    Article  CAS  PubMed  Google Scholar 

  5. Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D (2018) Modeling the human bone marrow niche in mice: from host bone marrow engraftment to bioengineering approaches. J Exp Med 215(3):729–743. https://doi.org/10.1084/jem.20172139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu M, Chen G, Li YP (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gennari L, Rotatori S, Bianciardi S, Nuti R, Merlotti D (2016) Treatment needs and current options for postmenopausal osteoporosis. Expert Opin Pharmacother 17(8):1141–1152. https://doi.org/10.1080/14656566.2016.1176147

    Article  CAS  PubMed  Google Scholar 

  8. Black DM, Rosen CJ (2016) Clinical practice. Postmenopausal osteoporosis. N Engl J Med 374(3):254–262. https://doi.org/10.1056/NEJMcp1513724

    Article  CAS  PubMed  Google Scholar 

  9. Lin H, Sohn J, Shen H, Langhans MT, Tuan RS (2019) Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing. Biomaterials 203:96–110. https://doi.org/10.1016/j.biomaterials.2018.06.026

    Article  CAS  PubMed  Google Scholar 

  10. Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y et al (2021) Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioact Mater 6(11):4110–4140. https://doi.org/10.1016/j.bioactmat.2021.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen G, Xu H, Yao Y, Xu T, Yuan M, Zhang X, Lv Z et al (2020) BMP signaling in the development and regeneration of cranium bones and maintenance of calvarial stem cells. Front Cell Dev Biol 8:135. https://doi.org/10.3389/fcell.2020.00135

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jiao H, Xiao E, Graves DT (2015) Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep 13(5):327–335. https://doi.org/10.1007/s11914-015-0286-8

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kline AJ, Gruen GS, Pape HC, Tarkin IS, Irrgang JJ, Wukich DK (2009) Early complications following the operative treatment of pilon fractures with and without diabetes. Foot Ankle Int 30(11):1042–1047. https://doi.org/10.3113/fai.2009.1042

    Article  PubMed  Google Scholar 

  14. Liu SJ, Dang HX, Lim DA, Feng FY, Maher CA (2021) Long noncoding RNAs in cancer metastasis. Nat Rev Cancer. https://doi.org/10.1038/s41568-021-00353-1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ulitsky I, Bartel David P (2013) lincRNAs: Genomics, evolution, and mechanisms. Cell 154(1):26–46. https://doi.org/10.1016/j.cell.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21. https://doi.org/10.1038/nrg3606

    Article  CAS  PubMed  Google Scholar 

  17. Hung T, Wang YL, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621-U196. https://doi.org/10.1038/ng.848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gu H, Li Z, Lv XF, Zhao AB, Zhu MY, Zhang Y (2019) LncRNA KCNQ1OT1 delayed fracture healing through the Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 23(11):4575–4583. https://doi.org/10.26355/eurrev_201906_18034

    Article  CAS  PubMed  Google Scholar 

  19. Li D, Liu J, Yang C, Tian Y, Yin C, Hu L, Chen Z et al (2021) Targeting long noncoding RNA PMIF facilitates osteoprogenitor cells migrating to bone formation surface to promote bone formation during aging. Theranostics 11(11):5585–5604. https://doi.org/10.7150/thno.54477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu YB, Lin LP, Zou R, Zhao QH, Lin FQ (2019) Silencing long non-coding RNA MEG3 accelerates tibia fraction healing by regulating the Wnt/β-catenin signalling pathway. J Cell Mol Med 23(6):3855–3866. https://doi.org/10.1111/jcmm.14229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu ZC, Xu YL, Jiang Y, Liu Y, Wei ZC, Liu SG, Yang SJ (2019) Low-expression of lncRNA-ANCR promotes tibial fracture healing via targeting RUNX2. Eur Rev Med Pharmacol Sci 23(3 Suppl):60–66. https://doi.org/10.26355/eurrev_201908_18629

    Article  PubMed  Google Scholar 

  22. Wang L, Wang YP, Li ZY, Li ZQ, Yu B (2015) Differential expression of long noncoding ribonucleic acids during osteogenic differentiation of human bone marrow mesenchymal stem cells. Int Orthop 39(5):1013–1019. https://doi.org/10.1007/s00264-015-2683-0

    Article  PubMed  Google Scholar 

  23. Jia Q, Jiang WK, Ni LX (2015) Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells. Arch Oral Biol 60(2):234–241. https://doi.org/10.1016/j.archoralbio.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  24. Nojima T, Proudfoot NJ (2022) Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-021-00447-6

    Article  PubMed  Google Scholar 

  25. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  26. Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Ma C, Zhang L, Li N, Zhang X, He J, He R et al (2017) LncRNAAC132217.4, a KLF8-regulated long non-coding RNA, facilitates oral squamous cell carcinoma metastasis by upregulating IGF2 expression. Cancer Lett 407:45–56. https://doi.org/10.1016/j.canlet.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  28. Zhang C, Hong FF, Wang CC, Li L, Chen JL, Liu F, Quan RF et al (2017) TRIB3 inhibits proliferation and promotes osteogenesis in hBMSCs by regulating the ERK1/2 signaling pathway. Sci Rep UK. https://doi.org/10.1038/s41598-017-10601-w

    Article  Google Scholar 

  29. Li Z, Helms JA (2021) Drill hole models to investigate bone repair. Methods Mol Biol 2221:193–204. https://doi.org/10.1007/978-1-0716-0989-7_12

    Article  CAS  PubMed  Google Scholar 

  30. Chen EEM, Zhang W, Ye CYCY, Gao X, Jiang LJLJ, Zhao TFTF, Pan ZJZJ et al (2017) Knockdown of SIRT7 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly via activation of the Wnt/beta-catenin signaling pathway. Cell Death Dis. https://doi.org/10.1038/cddis.2017.429

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Bikle DD, Chang W (2013) Autocrine and paracrine actions of IGF-I signaling in skeletal development. Bone Res 1(3):249–259. https://doi.org/10.4248/br201303003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yakar S, Werner H, Rosen CJ (2018) Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol 61(1):T115-t137. https://doi.org/10.1530/jme-17-0298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi Y, Chen J, Karner CM, Long F (2015) Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci USA 112(15):4678–4683. https://doi.org/10.1073/pnas.1502301112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hardouin SN, Guo R, Romeo PH, Nagy A, Aubin JE (2011) Impaired mesenchymal stem cell differentiation and osteoclastogenesis in mice deficient for Igf2-P2 transcripts. Development (Cambridge, England) 138(2):203–213. https://doi.org/10.1242/dev.054916

    Article  CAS  Google Scholar 

  35. Kang H, Sung J, Jung HM, Woo KM, Hong SD, Roh S (2012) Insulin-like growth factor 2 promotes osteogenic cell differentiation in the parthenogenetic murine embryonic stem cells. Tissue Eng Part A 18(3–4):331–341. https://doi.org/10.1089/ten.TEA.2011.0074

    Article  CAS  PubMed  Google Scholar 

  36. Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11(1):45–54. https://doi.org/10.1038/nrrheum.2014.164

    Article  PubMed  Google Scholar 

  37. Liu SJ, Lim DA (2018) Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep. https://doi.org/10.15252/embr.201846955

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ettensohn CA, Illies MR, Oliveri P, De Jong DL (2003) Alx1, a member of the Cart1/Alx3/Alx4 subfamily of paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo. Development (Cambridge, England) 130(13):2917–2928. https://doi.org/10.1242/dev.00511

    Article  CAS  Google Scholar 

  39. Khor JM, Ettensohn CA (2017) Functional divergence of paralogous transcription factors supported the evolution of biomineralization in echinoderms. Elife. https://doi.org/10.7554/eLife.32728

    Article  PubMed  PubMed Central  Google Scholar 

  40. Beverdam A, Brouwer A, Reijnen M, Korving J, Meijlink F (2001) Severe nasal clefting and abnormal embryonic apoptosis in Alx3/Alx4 double mutant mice. Development (Cambridge, England) 128(20):3975–3986

    Article  CAS  Google Scholar 

  41. Dee CT, Szymoniuk CR, Mills PE, Takahashi T (2013) Defective neural crest migration revealed by a Zebrafish model of Alx1-related frontonasal dysplasia. Hum Mol Genet 22(2):239–251. https://doi.org/10.1093/hmg/dds423

    Article  CAS  PubMed  Google Scholar 

  42. Iyyanar PPR, Wu Z, Lan Y, Hu YC, Jiang R (2022) Alx1 deficient mice recapitulate craniofacial phenotype and reveal developmental basis of ALX1-related frontonasal dysplasia. Front Cell Dev Biol 10:777887. https://doi.org/10.3389/fcell.2022.777887

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lyons LA, Erdman CA, Grahn RA, Hamilton MJ, Carter MJ, Helps CR, Alhaddad H et al (2016) Aristaless-like homeobox protein 1 (ALX1) variant associated with craniofacial structure and frontonasal dysplasia in Burmese cats. Dev Biol 409(2):451–458. https://doi.org/10.1016/j.ydbio.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Q, Behringer RR, de Crombrugghe B (1996) Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nat Genet 13(3):275–283. https://doi.org/10.1038/ng0796-275

    Article  CAS  PubMed  Google Scholar 

  45. Pini J, Kueper J, Hu YD, Kawasaki K, Yeung P, Tsimbal C, Yoon B et al (2020) ALX1-related frontonasal dysplasia results from defective neural crest cell development and migration. EMBO Mol Med 12(10):e12013. https://doi.org/10.15252/emmm.202012013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uz E, Alanay Y, Aktas D, Vargel I, Gucer S, Tuncbilek G, von Eggeling F et al (2010) Disruption of ALX1 causes extreme microphthalmia and severe facial clefting: expanding the spectrum of autosomal-recessive ALX-related frontonasal dysplasia. Am J Hum Genet 86(5):789–796. https://doi.org/10.1016/j.ajhg.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Masunaga Y, Inoue T, Yamoto K, Fujisawa Y, Sato Y, Kawashima-Sonoyama Y, Morisada N et al (2020) IGF2 mutations. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgz034

    Article  PubMed  Google Scholar 

  48. Yamoto K, Saitsu H, Nakagawa N, Nakajima H, Hasegawa T, Fujisawa Y, Kagami M et al (2017) De novo IGF2 mutation on the paternal allele in a patient with Silver–Russell syndrome and ectrodactyly. Hum Mutat 38(8):953–958. https://doi.org/10.1002/humu.23253

    Article  CAS  PubMed  Google Scholar 

  49. Yang L, Li Y, Gong R, Gao MQ, Feng C, Liu TY, Sun Y et al (2019) The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Mol Ther 27(2):394–410. https://doi.org/10.1016/j.ymthe.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  50. Chen LA, Jiang W, Huang JY, He BC, Zuo GW, Zhang WL, Luo Q et al (2010) Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J Bone Miner Res 25(11):2447–2459. https://doi.org/10.1002/jbmr.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ding W, Li J, Singh J, Alif R, Vazquez-Padron RI, Gomes SA, Hare JM et al (2015) miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice. Cardiovasc Res 106(1):131–142. https://doi.org/10.1093/cvr/cvv030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hamidouche Z, Fromigue O, Ringe J, Haupl T, Marie PJ (2010) Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation. BMC Cell Biol. https://doi.org/10.1186/1471-2121-11-44

    Article  PubMed  PubMed Central  Google Scholar 

  53. Iyer S, Margulies BS, Kerr WG (2013) Role of SHIP1 in bone biology. Ann N Y Acad Sci 1280:11–14. https://doi.org/10.1111/nyas.12091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guntur AR, Rosen CJ (2011) The skeleton: a multi-functional complex organ: new insights into osteoblasts and their role in bone formation: the central role of PI3Kinase. J Endocrinol 211(2):123–130. https://doi.org/10.1530/joe-11-0175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun MY, Chi GF, Xu JJ, Tan Y, Xu JY, Lv S, Xu ZR et al (2018) Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin alpha 5. Stem Cell Res Ther. https://doi.org/10.1186/s13287-018-0798-0

    Article  PubMed  PubMed Central  Google Scholar 

  56. Andrew JG, Hoyland J, Freemont AJ, Marsh D (1993) Insulinlike growth factor gene expression in human fracture callus. Calcif Tissue Int 53(2):97–102. https://doi.org/10.1007/bf01321886

    Article  CAS  PubMed  Google Scholar 

  57. Koh A, Niikura T, Lee SY, Oe K, Koga T, Dogaki Y, Kurosaka M (2011) Differential gene expression and immunolocalization of insulin-like growth factors and insulin-like growth factor binding proteins between experimental nonunions and standard healing fractures. J Orthop Res 29(12):1820–1826. https://doi.org/10.1002/jor.21457

    Article  CAS  PubMed  Google Scholar 

  58. Chen QQ, Wang WM (2014) Expression of FGF-2 and IGF-1 in diabetic rats with fracture. Asian Pac J Trop Med 7(1):71–75. https://doi.org/10.1016/s1995-7645(13)60195-9

    Article  PubMed  Google Scholar 

  59. Szczęsny G, Olszewski WL, Zagozda M, Rutkowska J, Czapnik Z, Swoboda-Kopeć E, Górecki A (2011) Genetic factors responsible for long bone fractures non-union. Arch Orthop Trauma Surg 131(2):275–281. https://doi.org/10.1007/s00402-010-1171-7

    Article  PubMed  Google Scholar 

  60. Wang T, Wang Y, Menendez A, Fong C, Babey M, Tahimic CG, Cheng Z et al (2015) Osteoblast-specific loss of IGF1R signaling results in impaired endochondral bone formation during fracture healing. J Bone Miner Res 30(9):1572–1584. https://doi.org/10.1002/jbmr.2510

    Article  CAS  PubMed  Google Scholar 

  61. Taniguchi T, Matsumoto T, Shindo H (2003) Changes of serum levels of osteocalcin, alkaline phosphatase, IGF-I and IGF-binding protein-3 during fracture healing. Injury 34(7):477–479. https://doi.org/10.1016/s0020-1383(02)00380-7

    Article  PubMed  Google Scholar 

  62. Weiss S, Henle P, Bidlingmaier M, Moghaddam A, Kasten P, Zimmermann G (2008) Systemic response of the GH/IGF-I axis in timely versus delayed fracture healing. Growth Hormone IGF Res 18(3):205–212. https://doi.org/10.1016/j.ghir.2007.09.002

    Article  CAS  Google Scholar 

  63. Bach LA (2015) Endothelial cells and the IGF system. J Mol Endocrinol 54(1):R1-13. https://doi.org/10.1530/jme-14-0215

    Article  CAS  PubMed  Google Scholar 

  64. Fowlkes JL, Thrailkill KM, Liu L, Wahl EC, Bunn RC, Cockrell GE, Perrien DS et al (2006) Effects of systemic and local administration of recombinant human IGF-I (rhIGF-I) on de novo bone formation in an aged mouse model. J Bone Miner Res 21(9):1359–1366. https://doi.org/10.1359/jbmr.060618

    Article  CAS  PubMed  Google Scholar 

  65. Zhang X, Xing H, Qi F, Liu H, Gao L, Wang X (2020) Local delivery of insulin/IGF-1 for bone regeneration: carriers, strategies, and effects. Nanotheranostics 4(4):242–255. https://doi.org/10.7150/ntno.46408

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang F, Song YL, Li CX, Li DH, Zhang HP, Ma AJ, Xi XQ et al (2010) Sustained release of insulin-like growth factor-1 from poly(lactide-co-glycolide) microspheres improves osseointegration of dental implants in type 2 diabetic rats. Eur J Pharmacol 640(1–3):226–232. https://doi.org/10.1016/j.ejphar.2010.04.024

    Article  CAS  PubMed  Google Scholar 

  67. Locatelli V, Bianchi VE (2014) Effect of GH/IGF-1 on bone metabolism and osteoporsosis. Int J Endocrinol 2014:235060. https://doi.org/10.1155/2014/235060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Majidinia M, Sadeghpour A, Yousefi B (2018) The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 233(4):2937–2948. https://doi.org/10.1002/jcp.26042

    Article  CAS  PubMed  Google Scholar 

  69. Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van den Beucken J, Tabata Y et al (2014) Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 35(31):8829–8839. https://doi.org/10.1016/j.biomaterials.2014.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from National Natural Science Foundation of China (31900513, 81900806, 32070814), Application Program for Chinese Manned Space Station (YYWT-0901-EXP-06), and Qianjiang Talent Program of Zhejiang Province (QJD1902024).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MW, JW and CZ; methodology, MW, JW and CZ; investigation, CZ, SW, EC; resources, MW and CZ writing—original draft, MW, SW and CZ; writing—review and editing, MW and CZ; funding acquisition, MW YL and CZ; supervision, MW and JW.

Corresponding authors

Correspondence to Jinfu Wang or Mengrui Wu.

Ethics declarations

Conflict of interest

There are no competing financial interests related to the work described.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5822 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wu, S., Chen, E. et al. ALX1-transcribed LncRNA AC132217.4 promotes osteogenesis and bone healing via IGF-AKT signaling in mesenchymal stem cells. Cell. Mol. Life Sci. 79, 328 (2022). https://doi.org/10.1007/s00018-022-04338-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04338-7

Keywords

Navigation