Skip to main content

Advertisement

Log in

Impaired GATE16-mediated exocytosis in exocrine tissues causes Sjögren’s syndrome-like exocrinopathy

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Sjögren’s syndrome (SjS) is a chronic autoimmune disease characterized by immune cell infiltration of the exocrine glands, mainly the salivary and lacrimal glands. Despite recent advances in the clinical and mechanistic characterization of the disease, its etiology remains largely unknown. Here, we report that mice with a deficiency for either Atg7 or Atg3, which are enzymes involved in the ubiquitin modification pathway, in the salivary glands exhibit a SjS-like phenotype, characterized by immune cell infiltration with autoantibody detection, acinar cell death, and dry mouth. Prior to the onset of the SjS-like phenotype in these null mice, we detected an accumulation of secretory vesicles in the acinar cells of the salivary glands and found that GATE16, an uncharacterized autophagy-related molecule activated by ATG7 (E1-like enzyme) and ATG3 (E2-like enzyme), was highly expressed in these cells. Notably, GATE16 was activated by isoproterenol, an exocytosis inducer, and localized on the secretory vesicles in the acinar cells of the salivary glands. Failure to activate GATE16 was correlated with exocytosis defects in the acinar cells of the salivary glands in Atg7 and Atg3 cKO mice. Taken together, our results show that GATE16 activation regulated by the autophagic machinery is crucial for exocytosis and that defects in this pathway cause SjS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data that support the findings in this study are available from the corresponding author upon reasonable request.

References

  1. Bencharit S, Baxter SS, Carlson J, Byrd WC, Mayo MV, Border MB, Kohltfarber H, Urrutia E, Howard-Williams EL, Offenbacher S, Wu MC, Buse JB (2013) Salivary proteins associated with hyperglycemia in diabetes: a proteomic analysis. Mol BioSyst 9:2785–2797

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Border MB, Schwartz S, Carlson J, Dibble CF, Kohltfarber H, Offenbacher S, Buse JB, Bencharit S (2012) Exploring salivary proteomes in edentulous patients with type 2 diabetes. Mol BioSyst 8:1304–1310

    CAS  PubMed  Google Scholar 

  3. Dodds MW, Yeh CK, Johnson DA (2000) Salivary alterations in type 2 (non-insulin-dependent) diabetes mellitus and hypertension. Community Dent Oral Epidemiol 28:373–381

    CAS  PubMed  Google Scholar 

  4. Izumi M, Zhang BX, Dean DD, Lin AL, Saunders MJ, Hazuda HP, Yeh CK (2015) Secretion of salivary statherin is compromised in uncontrolled diabetic patients. BBA Clin 3:135–140

    PubMed  PubMed Central  Google Scholar 

  5. Kalburgi V, Leburu S, Warad S (2014) Saliva as a surrogate to explore the association between lipid profiles and chronic periodontitis: a case-control study. Dent Res J (Isfahan) 11:619–623

    Google Scholar 

  6. Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744:493–517

    PubMed  Google Scholar 

  7. Cosen-Binker LI, Binker MG, Wang CC, Hong W, Gaisano HY (2008) VAMP8 is the v-SNARE that mediates basolateral exocytosis in a mouse model of alcoholic pancreatitis. J Clin Investig 118:2535–2551

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kamoi M, Ogawa Y, Nakamura S, Dogru M, Nagai T, Obata H, Ito M, Kaido M, Kawakita T, Okada Y, Kawakami Y, Shimmura S, Tsubota K (2012) Accumulation of secretory vesicles in the lacrimal gland epithelia is related to non-Sjogren’s type dry eye in visual display terminal users. PLoS ONE 7:e43688

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Barrera MJ, Sanchez M, Aguilera S, Alliende C, Bahamondes V, Molina C, Quest AF, Urzua U, Castro I, Gonzalez S, Sung HH, Albornoz A, Hermoso M, Leyton C, Gonzalez MJ (2012) Aberrant localization of fusion receptors involved in regulated exocytosis in salivary glands of Sjogren’s syndrome patients is linked to ectopic mucin secretion. J Autoimmun 39:83–92

    CAS  PubMed  Google Scholar 

  10. Lou X, Shin YK (2016) SNARE zippering. Biosci Rep 36(3): https://doi.org/10.1042/BSR20160004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coursey TG, Tukler Henriksson J, Barbosa FL, de Paiva CS, Pflugfelder SC (2016) Interferon-gamma-induced unfolded protein response in conjunctival goblet cells as a cause of mucin deficiency in Sjogren syndrome. Am J Pathol 186:1547–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Subramani S, Malhotra V (2013) Non-autophagic roles of autophagy-related proteins. EMBO Rep 14:143–151

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Deretic V, Jiang S, Dupont N (2012) Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol 22:397–406

    PubMed  PubMed Central  Google Scholar 

  14. Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, Kominami E (2002) Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem 277:13739–13744

    CAS  PubMed  Google Scholar 

  15. Lee YK, Lee JA (2016) Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep 49:424–430

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Slobodkin MR, Elazar Z (2013) The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 55:51–64

    CAS  PubMed  Google Scholar 

  17. Wesch N, Kirkin V, Rogov VV (2020) Atg8-family proteins-structural features and molecular interactions in autophagy and beyond. Cells 9(9):2008. https://doi.org/10.3390/cells9092008

    Article  CAS  PubMed Central  Google Scholar 

  18. Schaaf MB, Keulers TG, Vooijs MA, Rouschop KM (2016) LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J 30:3961–3978

    CAS  PubMed  Google Scholar 

  19. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    CAS  PubMed  Google Scholar 

  20. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    CAS  PubMed  Google Scholar 

  22. Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Kominami E, Tanaka K, Komatsu M (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19:4762–4775

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    CAS  PubMed  Google Scholar 

  24. Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z (2011) LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell 20:444–454

    CAS  PubMed  Google Scholar 

  25. Shvets E, Abada A, Weidberg H, Elazar Z (2011) Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes. Autophagy 7:683–688

    CAS  PubMed  Google Scholar 

  26. Chakrama FZ, Seguin-Py S, Le Grand JN, Fraichard A, Delage-Mourroux R, Despouy G, Perez V, Jouvenot M, Boyer-Guittaut M (2010) GABARAPL1 (GEC1) associates with autophagic vesicles. Autophagy 6:495–505

    CAS  PubMed  Google Scholar 

  27. Koike M, Tanida I, Nanao T, Tada N, Iwata J, Ueno T, Kominami E, Uchiyama Y (2013) Enrichment of GABARAP relative to LC3 in the axonal initial segments of neurons. PLoS ONE 8:e63568

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29:1792–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    CAS  PubMed  Google Scholar 

  30. Suzuki A, Shim J, Ogata K, Yoshioka H, Iwata J (2019) Cholesterol metabolism plays a crucial role in the regulation of autophagy for cell differentiation of granular convoluted tubules in male mouse submandibular glands. Development 146(20):dev178335. https://doi.org/10.1242/dev.178335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Li L, Hou C, Lai Y, Long J, Liu J, Zhong Q, Diao J (2016) SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol 60:97–104

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Javaid MA, Ahmed AS, Durand R, Tran SD (2016) Saliva as a diagnostic tool for oral and systemic diseases. J Oral Boil Craniofac Res 6:66–75

    Google Scholar 

  33. Liu J, Duan Y (2012) Saliva: a potential media for disease diagnostics and monitoring. Oral Oncol 48:569–577

    PubMed  Google Scholar 

  34. Bahamondes V, Albornoz A, Aguilera S, Alliende C, Molina C, Castro I, Urzua U, Quest AF, Barrera MJ, Gonzalez S, Sanchez M, Hartel S, Hermoso M, Leyton C, Gonzalez MJ (2011) Changes in Rab3D expression and distribution in the acini of Sjogren’s syndrome patients are associated with loss of cell polarity and secretory dysfunction. Arthritis Rheum 63:3126–3135

    CAS  PubMed  Google Scholar 

  35. Castro I, Sepulveda D, Cortes J, Quest AF, Barrera MJ, Bahamondes V, Aguilera S, Urzua U, Alliende C, Molina C, Gonzalez S, Hermoso MA, Leyton C, Gonzalez MJ (2013) Oral dryness in Sjogren’s syndrome patients. Not just a question of water. Autoimmun Rev 12:567–574

    CAS  PubMed  Google Scholar 

  36. Barrera MJ, Bahamondes V, Sepulveda D, Quest AF, Castro I, Cortes J, Aguilera S, Urzua U, Molina C, Perez P, Ewert P, Alliende C, Hermoso MA, Gonzalez S, Leyton C, Gonzalez MJ (2013) Sjogren’s syndrome and the epithelial target: a comprehensive review. J Autoimmun 42:7–18

    CAS  PubMed  Google Scholar 

  37. Castro I, Albornoz N, Aguilera S, Barrera MJ, Gonzalez S, Nunez M, Carvajal P, Jara D, Lagos C, Molina C, Urzua U, Hermoso MA, Gonzalez MJ (2020) Aberrant MUC1 accumulation in salivary glands of Sjogren’s syndrome patients is reversed by TUDCA in vitro. Rheumatology 59:742–753

    CAS  PubMed  Google Scholar 

  38. da Costa SR, Wu K, Veigh MM, Pidgeon M, Ding C, Schechter JE, Hamm-Alvarez SF (2006) Male NOD mouse external lacrimal glands exhibit profound changes in the exocytotic pathway early in postnatal development. Exp Eye Res 82:33–45

    PubMed  Google Scholar 

  39. Sreebny L, Zhu WX (1996) Whole saliva and the diagnosis of Sjogren’s syndrome: an evaluation of patients who complain of dry mouth and dry eyes. Part 1: Screening tests. Gerodontology 13:35–43

    CAS  PubMed  Google Scholar 

  40. Park YS, Gauna AE, Cha S (2015) Mouse Models of Primary Sjogren’s Syndrome. Curr Pharm Des 21:2350–2364

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 30:4701–4711

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bel S, Pendse M, Wang Y, Li Y, Ruhn KA, Hassell B, Leal T, Winter SE, Xavier RJ, Hooper LV (2017) Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science 357:1047–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Morgan-Bathke M, Lin HH, Chibly AM, Zhang W, Sun X, Chen CH, Flodby P, Borok Z, Wu R, Arnett D, Klein RR, Ann DK, Limesand KH (2013) Deletion of ATG5 shows a role of autophagy in salivary homeostatic control. J Dent Res 92:911–917

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin HH, Lin SM, Chung Y, Vonderfecht S, Camden JM, Flodby P, Borok Z, Limesand KH, Mizushima N, Ann DK (2014) Dynamic involvement of ATG5 in cellular stress responses. Cell Death Dis 5:e1478

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Morgan-Bathke M, Hill GA, Harris ZI, Lin HH, Chibly AM, Klein RR, Burd R, Ann DK, Limesand KH (2014) Autophagy correlates with maintenance of salivary gland function following radiation. Sci Rep 4:5206

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li B, Wang F, Schall N, Muller S (2018) Rescue of autophagy and lysosome defects in salivary glands of MRL/lpr mice by a therapeutic phosphopeptide. J Autoimmun 90:132–145

    CAS  PubMed  Google Scholar 

  47. Voynova E, Lefebvre F, Qadri A, Muller S (2020) Correction of autophagy impairment inhibits pathology in the NOD.H-2h4 mouse model of primary Sjogren’s syndrome. J Autoimmun 108:102418

    CAS  PubMed  Google Scholar 

  48. Colafrancesco S, Vomero M, Iannizzotto V, Minniti A, Barbati C, Arienzo F, Mastromanno L, Colasanti T, Izzo R, Nayar S, Pipi E, Cerbelli B, Giordano C, Ciccia F, Conti F, Valesini G, Barone F, Priori R, Alessandri C (2020) Autophagy occurs in lymphocytes infiltrating Sjogren’s syndrome minor salivary glands and correlates with histological severity of salivary gland lesions. Arthritis Res Ther 22:238

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Alessandri C, Ciccia F, Priori R, Astorri E, Guggino G, Alessandro R, Rizzo A, Conti F, Minniti A, Barbati C, Vomero M, Pendolino M, Finucci A, Ortona E, Colasanti T, Pierdominici M, Malorni W, Triolo G, Valesini G (2017) CD4 T lymphocyte autophagy is upregulated in the salivary glands of primary Sjogren’s syndrome patients and correlates with focus score and disease activity. Arthritis Res Ther 19:178

    PubMed  PubMed Central  Google Scholar 

  50. Colafrancesco S, Barbati C, Priori R, Putro E, Giardina F, Gattamelata A, Monosi B, Colasanti T, Celia AI, Cerbelli B, Giordano C, Scarpa S, Fusconi M, Cavalli G, Berardicurti O, Gandolfo S, Nayar S, Barone F, Giacomelli R, De Vita S, Alessandri C, Conti F (2022) Maladaptive autophagy in the pathogenesis of autoimmune epithelitis in Sjogren’s Syndrome. Arthritis Rheumatol 74(4):654–664. https://doi.org/10.1002/art.42018

    Article  CAS  PubMed  Google Scholar 

  51. Orhon I, Rocchi C, Villarejo-Zori B, Serrano Martinez P, Baanstra M, Brouwer U, Boya P, Coppes R, Reggiori F (2022) Autophagy induction during stem cell activation plays a key role in salivary gland self-renewal. Autophagy 18(2):293–308. https://doi.org/10.1080/15548627.2021.1924036

    CAS  PubMed  Google Scholar 

  52. Antonucci L, Fagman JB, Kim JY, Todoric J, Gukovsky I, Mackey M, Ellisman MH, Karin M (2015) Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A 112:E6166-6174

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang Y, Chen M, Zhai Z, Dai Y, Gu H, Zhou X, Hong J (2021) Long Non-coding RNAs Gabarapl2 and Chrnb2 positively regulate inflammatory signaling in a mouse model of dry eye. Front Med 8:808940

    Google Scholar 

  54. Charpin C, Arnoux F, Martin M, Toussirot E, Lambert N, Balandraud N, Wendling D, Diot E, Roudier J, Auger I (2013) New autoantibodies in early rheumatoid arthritis. Arthritis Res Ther 15:R78

    PubMed  PubMed Central  Google Scholar 

  55. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    CAS  PubMed  Google Scholar 

  56. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127:4775–4785

    CAS  PubMed  Google Scholar 

  57. Jia W, He YW (2011) Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol 186:5313–5322

    CAS  PubMed  Google Scholar 

  58. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    CAS  PubMed  Google Scholar 

  59. Suzuki A, Pelikan RC, Iwata J (2015) WNT/beta-catenin signaling regulates multiple steps of myogenesis by regulating step-specific targets. Mol Cell Biol 35:1763–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Iwata J, Hosokawa R, Sanchez-Lara PA, Urata M, Slavkin H, Chai Y (2010) Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. J Biol Chem 285:4975–4982

    CAS  PubMed  Google Scholar 

  61. Iwata J, Hacia JG, Suzuki A, Sanchez-Lara PA, Urata M, Chai Y (2012) Modulation of noncanonical TGF-beta signaling prevents cleft palate in Tgfbr2 mutant mice. J Clin Investig 122:873–885

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Integrated Microscopy Core of Baylor College of Medicine, UTHealth Flow Cytometry Service Center for flow cytometry, and The High-Resolution Electron Microscopy Facility of the UT MD Anderson Cancer Center for technical assistance.

Funding

This study was supported by grants from the National Institute of Dental and Craniofacial Research (DE026767 to JI) and UTHealth School of Dentistry faculty funding to JI.

Author information

Authors and Affiliations

Authors

Contributions

AS and JI designed research; AS, CI, KO, HY, JS, and JI performed research; AS, IT, MK, NT, and JI contributed to generate new mouse models; AS, CI, KO, HY, and JI analyzed data; and AS and JI wrote the paper.

Corresponding author

Correspondence to Junichi Iwata.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7933 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Iwaya, C., Ogata, K. et al. Impaired GATE16-mediated exocytosis in exocrine tissues causes Sjögren’s syndrome-like exocrinopathy. Cell. Mol. Life Sci. 79, 307 (2022). https://doi.org/10.1007/s00018-022-04334-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04334-x

Keywords

Navigation