Skip to main content

Advertisement

Log in

Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into neurons

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Overexpression of exogenous lineage-specific transcription factors could directly induce terminally differentiated somatic cells into target cell types. However, the low conversion efficiency and the concern about introducing exogenous genes limit the clinical application. With the rapid progress in genome editing, the application of CRISPR/dCas9 has been expanding rapidly, including converting somatic cells into other types of cells in vivo and in vitro. Using the CRISPR/dCas9 system, direct neuronal reprogramming could be achieved by activating endogenous genes. Here, we will discuss the latest progress, new insights, and future challenges of the application of the dCas9 system in direct neuronal reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Feng GD, He BR, Lu F, Liu LH, Zhang L, Chen B, He ZP, Hao DJ, Yang H (2014) Fibroblast growth factor 4 is required but not sufficient for the astrocyte dedifferentiation. Mol Neurobiol 50:997–1012

    Article  CAS  PubMed  Google Scholar 

  2. Chen YC, Ma NX, Pei ZF, Wu Z, Do-Monte FH, Keefe S, Yellin E, Chen MS, Yin JC, Lee G et al (2020) A neuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol Ther 28:217–234

    Article  CAS  PubMed  Google Scholar 

  3. Huang Y, Tan S (2015) Direct lineage conversion of astrocytes to induced neural stem cells or neurons. Neurosci Bull 31:357–367

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  6. Taura D, Noguchi M, Sone M, Hosoda K, Mori E, Okada Y, Takahashi K, Homma K, Oyamada N, Inuzuka M et al (2009) Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett 583:1029–1033

    Article  CAS  PubMed  Google Scholar 

  7. An N, Xu H, Gao WQ, Yang H (2018) Direct conversion of somatic cells into induced neurons. Mol Neurobiol 55:642–651

    Article  CAS  PubMed  Google Scholar 

  8. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19:998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bocchi R, Masserdotti G, Götz M (2021) Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches. Neuron 110:366

    Article  PubMed  Google Scholar 

  10. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18:80–86

    Article  CAS  PubMed  Google Scholar 

  11. Qin H, Zhao A, Fu X (2017) Small molecules for reprogramming and transdifferentiation. Cell Mol Life Sci 74:3553–3575

    Article  CAS  PubMed  Google Scholar 

  12. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11:198–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao Y, Xiong X, Wong S, Charles EJ, Lim WA, Qi LS (2016) Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat Methods 13:1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Eswer PRI, Lin S, Kiani S, Guzman CD, Wiegand DJ et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12:326–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nihongaki Y, Furuhata Y, Otabe T, Hasegawa S, Yoshimoto K, Sato M (2017) CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat Methods 14:963–966

    Article  CAS  PubMed  Google Scholar 

  18. Liu S, Striebel J, Pasquini G, Ng AHM, Khoshakhlagh P, Church GM, Busskamp V (2021) Neuronal cell-type engineering by transcriptional activation. Front Genome Ed 3:715697

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yun Y, Ha Y (2020) CRISPR/Cas9-mediated gene correction to understand ALS. Int J Mol Sci 21:3801

    Article  CAS  PubMed Central  Google Scholar 

  23. Zalatan J, Lee M, Almeida R, Gilbert L, Whitehead E, Larussa M, Tsai J, Weissman J, Dueber J, Qi L et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA Scaffolds. Cell 160:339–350

    Article  CAS  PubMed  Google Scholar 

  24. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13:127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moradpour M, Abdulah SNA (2020) CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnol J 18:32–44

    Article  PubMed  Google Scholar 

  26. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li JF (2017) A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3:930–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Didovyk A, Borek B, Tsimring L, Hasty J (2016) Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications. Curr Opin Biotechnol 40:177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Black J, Adler AF, Wang H-G, Dippolito AM, Hutchinson HA, Reddy TE, Pitt GS, Leong K, Gersbach CA (2016) Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19:406–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Y, Yu C, Daley TP, Wang F, Cao WS, Bhate S, Lin X, Still C, Liu H, Zhao D et al (2018) CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23:758-771.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou H, Liu J, Zhou C, Gao N, Rao Z, Li H, Hu X, Li C, Yao X, Shen X et al (2018) In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nat Neurosci 21:440–446

    Article  CAS  PubMed  Google Scholar 

  34. Mertens J, Marchetto MC, Bardy C, Gage FH (2016) Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 17:424–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou M, Tao X, Sui M, Cui M, Liu D, Wang B, Wang T, Zheng Y, Luo J, Mu Y et al (2021) Reprogramming astrocytes to motor neurons by activation of endogenous Ngn2 and Isl1. Stem Cell Rep 16:1777–1791

    Article  CAS  Google Scholar 

  36. Russo GL, Sonsalla G, Natarajan P, Breunig CT, Bulli G, Merl-Pham J, Schmitt S, Giehrl-Schwab J, Giesert F, Jastroch M et al (2021) CRISPR-mediated induction of neuron-enriched mitochondrial proteins boosts direct glia-to-neuron conversion. Cell Stem Cell 28:524-534.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Colasante G, Qiu Y, Massimino L, Di Berardino C, Cornford JH, Snowball A, Weston M, Jones SP, Giannelli S, Lieb A et al (2020) In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy. Brain 143:891–905

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yamagata T, Raveau M, Kobayashi K, Miyamoto H, Tatsukawa T, Ogiwara I, Itohara S, Hensch TK, Yamakawa K (2020) CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol Dis 141:104954

    Article  CAS  PubMed  Google Scholar 

  39. Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA, Bauman AJ, Thukral S, Sultan FA, Goska NA, Ianov L et al (2020) A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci Adv 6:eaba4221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 13:868–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Böhm S, Splith V, Riedmayr LM, Rötzer RD, Gasparoni G, Nordström KJV, Wagner JE, Hinrichsmeyer KS, Walter J, Wahl-Schott C et al (2020) A gene therapy for inherited blindness using dCas9-VPR-mediated transcriptional activation. Sci Adv 6:eaba55614

    Article  Google Scholar 

  42. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu Z, Jiang H, Zhong P, Yan Z, Chen S, Feng J (2016) Direct conversion of human fibroblasts to induced serotonergic neurons. Mol Psychiatry 21:62–70

    Article  CAS  PubMed  Google Scholar 

  44. Caiazzo M, Dell’anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227

    Article  CAS  PubMed  Google Scholar 

  45. Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8:e1000373

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu Y, Miao Q, Yuan J, Han S, Zhang P, Li S, Rao Z, Zhao W, Ye Q, Geng J et al (2015) Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo. J Neurosci 35:9336–9355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. He F, Sun YE (2007) Glial cells more than support cells? Int J Biochem Cell Biol 39:661–665

    Article  CAS  PubMed  Google Scholar 

  48. Matsuda T, Irie T, Katsurabayashi S, Hayashi Y, Nagai T, Hamazaki N, Adefuin AMD, Miura F, Ito T, Kimura H et al (2019) Pioneer factor NeuroD1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion. Neuron 101:472-485.e7

    Article  CAS  PubMed  Google Scholar 

  49. Rao Y, Du S, Yang B, Wang Y, Li Y, Li R, Zhou T, Du X, He Y, Wang Y et al (2021) NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage reprogramming. Neuron 109:4094-4108.e5

    Article  CAS  PubMed  Google Scholar 

  50. Wang LL, Serrano C, Zhong X, Ma S, Zou Y, Zhang CL (2021) Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell 184:5465-5481.e16

    Article  CAS  PubMed  Google Scholar 

  51. Savell KE, Day JJ (2017) Applications of CRISPR/Cas9 in the mammalian central nervous system. Yale J Biol Med 90:567–581

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lau CH, Ho JW, Lo PK, Tin C (2019) Targeted transgene activation in the brain tissue by systemic delivery of engineered AAV1 expressing CRISPRa. Mol Ther Nucleic Acids 16:637–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nidetz NF, Mcgee MC, Tse LV, Li C, Cong L, Li Y, Huang W (2020) Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. Pharmacol Ther 207:107453

    Article  CAS  PubMed  Google Scholar 

  54. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, Mcintosh J, Linch DC, Chowdary P, Riddell A, Pie AJ, Harrington C et al (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365:2357–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaudet D, Méthot J, Déry S, Brisson D, Essiembre C, Tremblay G, Tremblay K, De Wal J, Twisk J, Van Den Bulk N et al (2013) Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 20:361–369

    Article  CAS  PubMed  Google Scholar 

  56. Colella P, Ronzitti G, Mingozzi F (2018) Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev 8:87–104

    Article  CAS  PubMed  Google Scholar 

  57. Weber T (2021) Anti-AAV antibodies in AAV gene therapy: current challenges and possible solutions. Front Immunol 12:658399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang D, Tai PWL, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18:358–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumar M, Keller B, Makalou N, Sutton RE (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 12:1893–1905

    Article  CAS  PubMed  Google Scholar 

  60. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K et al (2016) Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 34:1060–1065

    Article  CAS  PubMed  Google Scholar 

  62. Nelles DA, Fang MY, O’connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA Tracking in Live Cells with CRISPR/Cas9. Cell 165:488–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dahlman JE, Abudayyeh OO, Joung J, Gootenberg JS, Zhang F, Konermann S (2015) Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol 33:1159–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shechner DM, Hacisuleyman E, Younger ST, Rinn JL (2015) Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods 12:664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  69. O’geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ (2015) A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res 43:3389–3404

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32:677–683

    Article  CAS  PubMed  Google Scholar 

  71. Hilton IB, D’ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197

    Article  CAS  PubMed  Google Scholar 

  73. Dow LE, Fisher J, O’rourke KP, Muley A, Kastenhuber ER, Livshits G, Tschaharganeh DF, Socci ND, Lowe SW (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE (2019) Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10:729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu P, Chen M, Liu Y, Qi LS, Ding S (2018) CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22(252–261):e4

    Google Scholar 

  77. Weltner J, Balboa D, Katayama S, Bespalov M, Krjutškov K, Jouhilahti EM, Trokovic R, Kere J, Otonkoski T (2018) Human pluripotent reprogramming with CRISPR activators. Nat Commun 9:2643

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, Xiao Q, Wang B, Wu W, Sun Y et al (2020) Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181:590-603.e16

    Article  CAS  PubMed  Google Scholar 

  79. Huang H, Zou X, Zhong L, Hou Y, Zhou J, Zhang Z, Xing X, Sun J (2019) CRISPR/dCas9-mediated activation of multiple endogenous target genes directly converts human foreskin fibroblasts into Leydig-like cells. J Cell Mol Med 23:6072–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of Zhang’s laboratory for the constructive discussions.

Funding

This work was supported by the National Natural Science Foundation of China 81471283 (B. Z.) and the National Natural Science Foundation of China 82072795 (F. W.).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was drafted by MZ. YC, MS, XS, FW, and BZ edited the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Feng Wan or Bin Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Consent for publication was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Cao, Y., Sui, M. et al. Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into neurons. Cell. Mol. Life Sci. 79, 315 (2022). https://doi.org/10.1007/s00018-022-04324-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04324-z

Keywords

Navigation