Skip to main content

Advertisement

Log in

Galectin-3 interferes with tissue repair and promotes cardiac dysfunction and comorbidities in a genetic heart failure model

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Galectin-3, a biomarker for heart failure (HF), has been associated with myocardial fibrosis. However, its causal involvement in HF pathogenesis has been questioned in certain models of cardiac injury-induced HF. To address this, we used desmin-deficient mice (des−/−), a model of progressive HF characterized by cardiomyocyte death, spontaneous inflammatory responses sustaining fibrosis, and galectin-3 overexpression. Genetic ablation or pharmacological inhibition of galectin-3 led to improvement of cardiac function and adverse remodeling features including fibrosis. Over the course of development of des−/− cardiomyopathy, monitored for a period of 12 months, galectin-3 deficiency specifically ameliorated the decline in systolic function accompanying the acute inflammatory phase (4-week-old mice), whereas a more pronounced protective effect was observed in older mice, including the preservation of diastolic function. Interestingly, the cardiac repair activities during the early inflammatory phase were restored under galectin-3 deficiency by increasing the proliferation potential and decreasing apoptosis of fibroblasts, while galectin-3 absence modulated macrophage–fibroblast coupled functions and suppressed both pro-fibrotic activation of cardiac fibroblasts and pro-fibrotic gene expression in the des−/− heart. In addition, galectin-3 also affected the emphysema-like comorbid pathology observed in the des−/− mice, as its absence partially normalized lung compliance. Collectively galectin-3 was found to be causally involved in cardiac adverse remodeling, inflammation, and failure by affecting functions of cardiac fibroblasts and macrophages. In concordance with this role, the effectiveness of pharmacological inhibition in ameliorating cardiac pathology features establishes galectin-3 as a valid intervention target for HF, with additive benefits for treatment of associated comorbidities, such as pulmonary defects.

Graphical abstract

Schematic illustrating top to bottom, the detrimental role of galectin-3 (Gal3) in heart failure progression: desmin deficiency-associated spontaneous myocardial inflammation accompanying cardiac cell death (reddish dashed border) is characterized by infiltration of macrophages (round cells) and up-regulation of Lgals3 (encoding secretable galectin-3, green) and detrimental macrophage-related genes (Ccr2 and Arg1). In this galectin-3-enriched milieu, the early up-regulation of profibrotic gene expression (Tgfb1, Acta2, Col1a1), in parallel to the suppression of proliferative activities and a potential of senescence induction by cardiac fibroblasts (spindle-like cells), collectively promote des−/− cardiac fibrosis and dysfunction establishing heart failure (left panel). Additionally, galectin-3+ macrophage-enrichment accompanies the development of emphysema-like lung comorbidities. In the absence of galectin-3 (right panel), the effect of macrophage–fibroblast dipole and associated events are modulated (grey color depicts reduced expression or activities) leading to attenuated cardiac pathology in the des−/−Lgals3−/− mice. Pulmonary comorbidities are also limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig. 5

Similar content being viewed by others

Availability of data and material

All data and material supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. de Boer RA, De Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG, Diez J, Du XJ, Ford P, Heinzel FR, Lipson KE, McDonagh T, Lopez-Andres N, Lunde IG, Lyon AR, Pollesello P, Prasad SK, Tocchetti CG, Mayr M, Sluijter JPG, Thum T, Tschöpe C, Zannad F, Zimmermann WH, Ruschitzka F, Filippatos G, Lindsey ML, Maack C, Heymans S (2019) Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail 21:272–285

    Article  Google Scholar 

  2. Psarras S, Beis D, Nikouli S, Tsikitis M, Capetanaki Y (2019) Three in a Box: understanding cardiomyocyte, fibroblast, and innate immune cell interactions to orchestrate cardiac repair processes. Front Cardiovasc Med 6:1–23. https://doi.org/10.3389/fcvm.2019.00032

    Article  CAS  Google Scholar 

  3. Ivey MJ, Kuwabara JT, Pai JT, Moore RE, Sun Z, Tallquist MD (2018) Resident fibroblast expansion during cardiac growth and remodeling. J Mol Cell Cardiol 114:161–174. https://doi.org/10.1016/j.yjmcc.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  4. Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction. Circ Res 119:91–112. https://doi.org/10.1161/CIRCRESAHA.116.303577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henderson NC, Rieder F, Wynn TA (2020) Fibrosis: from mechanisms to medicines. Nature 587:555–566. https://doi.org/10.1038/s41586-020-2938-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Triposkiadis F, Giamouzis G, Parissis J, Starling RC, Boudoulas H, Skoularigis J, Butler J, Filippatos G (2016) Reframing the association and significance of co-morbidities in heart failure. Eur J Heart Fail 18:744–758. https://doi.org/10.1002/ejhf.600

    Article  PubMed  Google Scholar 

  7. Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A (2018) Galectin-3: one molecule for an alphabet of diseases, from A to Z. Int J Mol Sci. https://doi.org/10.3390/ijms19020379

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lok DJ, Lok SI, Bruggink-André De La Porte PW, Badings E, Lipsic E, Van Wijngaarden J, De Boer RA, Van Veldhuisen DJ, Van Der Meer P (2013) Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol 102:103–110. https://doi.org/10.1007/s00392-012-0500-y

    Article  CAS  PubMed  Google Scholar 

  9. Suthahar N, Meijers WC, Silljé HHW, Ho JE, Liu FT, de Boer RA (2018) Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics 8:593–609

    Article  CAS  Google Scholar 

  10. González GE, Rhaleb N-E, D’Ambrosio MA, Nakagawa P, Liao T-D, Peterson EL, Leung P, Dai X, Janic B, Liu Y, Yang X, Carretero OA, Ambrosio MAD, Nakagawa P, Liao T-D, Peterson EL, Leung P, Dai X, Janic B, Liu Y, Yang X, Carretero OA, Ge G, Rhaleb N-E, Ma DA, Nakagawa P, Liao T-D, El P, Leung P, Dai X, Janic B, Liu Y, Yang X, Oa C (2016) Cardiac-deleterious role of galectin-3 in chronic angiotensin II-induced hypertension. Am J Physiol Circ Physiol 311:H1287-1296. https://doi.org/10.1152/ajpheart.00096.2016

    Article  Google Scholar 

  11. Yu L, Ruifrok WPT, Meissner M, Bos EM, Van Goor H, Sanjabi B, Van Der Harst P, Pitt B, Goldstein IJ, Koerts JA, Van Veldhuisen DJ, Bank RA, Van Gilst WH, Silljé HHW, De Boer RA (2013) Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Hear Fail 6:107–117. https://doi.org/10.1161/CIRCHEARTFAILURE.112.971168

    Article  CAS  Google Scholar 

  12. Nguyen MN, Su Y, Kiriazis H, Yang Y, Gao XM, McMullen JR, Dart AM, Du XJ (2018) Upregulated galectin-3 is not a critical disease mediator of cardiomyopathy induced by β2-adrenoceptor overexpression. Am J Physiol Hear Circ Physiol 314:H1169–H1178. https://doi.org/10.1152/ajpheart.00337.2017

    Article  CAS  Google Scholar 

  13. Frunza O, Russo I, Saxena A, Shinde AV, Humeres C, Hanif W, Rai V, Su Y, Frangogiannis NG (2016) Myocardial galectin-3 expression is associated with remodeling of the pressure-overloaded heart and may delay the hypertrophic response without affecting survival, dysfunction, and cardiac fibrosis. Am J Pathol 186:1114–1127. https://doi.org/10.1016/j.ajpath.2015.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, Davos CH, Georgopoulos S, Anesti V, Vlahou A, Capetanaki Y (2016) Desmin and αB-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci 129:3705–3720. https://doi.org/10.1242/jcs.192203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Psarras S, Mavroidis M, Sanoudou D, Davos CH, Xanthou G, Varela AE, Panoutsakopoulou V, Capetanaki Y (2012) Regulation of adverse remodelling by osteopontin in a genetic heart failure model. Eur Heart J 33:1954–1963. https://doi.org/10.1093/eurheartj/ehr119

    Article  CAS  PubMed  Google Scholar 

  16. Mavroidis M, Davos CH, Psarras S, Varela A, Athanasiadis NC, Katsimpoulas M, Kostavasili I, Maasch C, Vater A, van Tintelen JP, Capetanaki Y (2015) Complement system modulation as a target for treatment of arrhythmogenic cardiomyopathy. Basic Res Cardiol 110:27. https://doi.org/10.1007/s00395-015-0485-6

    Article  CAS  PubMed  Google Scholar 

  17. Milner DJ, Taffet GE, Wang X, Pham T, Tamura T, Hartley C, Gerdes MA, Capetanaki Y (1999) The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 31:2063–2076. https://doi.org/10.1006/jmcc.1999.1037

    Article  CAS  PubMed  Google Scholar 

  18. Colnot C, Fowlis D, Ripoche MA, Bouchaert I, Poirier F (1998) Embryonic implantation in galectin 1/galectin 3 double mutant mice. Dev Dyn 211:306–313. https://doi.org/10.1002/(SICI)1097-0177(199804)211:4%3c306::AID-AJA2%3e3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  19. Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134:1255–1270. https://doi.org/10.1083/jcb.134.5.1255

    Article  CAS  PubMed  Google Scholar 

  20. Apostolou E, Stavropoulos A, Sountoulidis A, Xirakia C, Giaglis S, Protopapadakis E, Ritis K, Mentzelopoulos S, Pasternack A, Foster M, Ritvos O, Tzelepis GE, Andreakos E, Sideras P (2012) Activin-A overexpression in the murine lung causes pathology that simulates acute respiratory distress syndrome. Am J Respir Crit Care Med 185:382–391. https://doi.org/10.1164/rccm.201105-0784OC

    Article  CAS  PubMed  Google Scholar 

  21. Bossios A, Psarras S, Gourgiotis D, Skevaki CLCL, Constantopoulos AGAGAG, Saxoni-Papageorgiou P, Papadopoulos NGNGNG (2005) Rhinovirus infection induces cytotoxicity and delays wound healing in bronchial epithelial cells. Respir Res 6:1–11. https://doi.org/10.1186/1465-9921-6-114

    Article  CAS  Google Scholar 

  22. Pratsinis H, Kletsas D, Melliou E, Chinou I (2010) Antiproliferative activity of Greek propolis. J Med Food 13:286–290

    Article  CAS  Google Scholar 

  23. Darzynkiewicz Z, Halicka H, Zhao H (2010) Analysis of cellular DNA content by flow and laser scanning cytometry. Adv Exp Med Biol 676:137–147

    Article  CAS  Google Scholar 

  24. Liakou E, Mavrogonatou E, Pratsinis H, Rizou S, Evangelou K, Panagiotou PN, Karamanos NK, Gorgoulis VG, Kletsas D (2016) Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging (Albany NY) 8:1650–1669. https://doi.org/10.18632/aging.100989

    Article  CAS  Google Scholar 

  25. Johannes L, Jacob R, Leffler H (2018) Galectins at a glance. J Cell Sci 131:1–9. https://doi.org/10.1242/jcs.208884

    Article  CAS  Google Scholar 

  26. Liu YH, D’Ambrosio M, Liao TD, Peng H, Rhaleb NE, Sharma U, Andre S, Gabius HJ, Carretero OA (2009) N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Hear Circ Physiol 296:H404–H412. https://doi.org/10.1152/ajpheart.00747.2008

    Article  CAS  Google Scholar 

  27. Piek A, de Boer RA, Silljé HHW (2016) The fibrosis-cell death axis in heart failure. Heart Fail Rev 21:199–211. https://doi.org/10.1007/s10741-016-9536-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li X, Tang X, Lu J, Yuan S (2018) Therapeutic inhibition of Galectin-3 improves cardiomyocyte apoptosis and survival during heart failure. Mol Med Rep 17:4106–4112. https://doi.org/10.3892/mmr.2017.8323

    Article  CAS  PubMed  Google Scholar 

  29. Maria DX, Asensio-lopez DELC, Dx S, Fernandez J, Palacio DEL, del Asensio-Lopez MC, Lax A, Fernandez del Palacio MJ, Sassi Y, Hajjar RJ, Pascual-Figal DA (2018) Pharmacological inhibition of the mitochondrial NADPH oxidase 4/PKCα/Gal-3 pathway reduces left ventricular fibrosis following myocardial infarction. Transl Res 199:4–23. https://doi.org/10.1016/j.trsl.2018.04.004

    Article  CAS  Google Scholar 

  30. Bajpai G, Bredemeyer AAL, Li WW, Zaitsev K, Koenig ALAL, Lokshina II, Mohan J, Ivey B, Hsiao HMH, Weinheimer CC, Kovacs A, Epelman S, Artyomov MM, Kreisel D, Lavine KJK (2019) Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res 124:263–278. https://doi.org/10.1161/CIRCRESAHA.118.314028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schlüter K-D, Schulz R, Schreckenberg R (2015) Arginase induction and activation during ischemia and reperfusion and functional consequences for the heart. Front Physiol 6:1–8. https://doi.org/10.3389/fphys.2015.00065

    Article  Google Scholar 

  32. Riehle C, Bauersachs J (2019) Small animal models of heart failure. Cardiovasc Res 115:1838–1849. https://doi.org/10.1093/cvr/cvz161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu CK, Su MY, Lee JK, Chiang FT, Hwang JJ, Lin JL, Chen JJ, Liu FT, Tsai CT (2015) Galectin-3 level and the severity of cardiac diastolic dysfunction using cellular and animal models and clinical indices. Sci Rep 5:1–10. https://doi.org/10.1038/srep17007

    Article  CAS  Google Scholar 

  34. Sonkawade S, Pokharel S, Karthikeyan B, Kim M, Xu S, Kc K, Sexton S, Catalfamo K, Spernyak J, Sharma UC (2021) Small endogeneous peptide mitigates myocardial remodeling in a mouse model of cardioselective galectin-3 overexpression. Circ Hear Fail 14:e008510

    CAS  Google Scholar 

  35. Cassaglia P, Penas F, Betazza C, Fontana Estevez F, Miksztowicz V, Martínez Naya N, Llamosas MC, Noli Truant S, Wilensky L, Volberg V, Cevey ÁC, Touceda V, Cicale E, Berg G, Fernández M, Goren N, Morales C, González GE (2020) Genetic deletion of galectin-3 alters the temporal evolution of macrophage infiltration and healing affecting the cardiac remodeling and function after myocardial infarction in mice. Am J Pathol 190:1789–1800. https://doi.org/10.1016/j.ajpath.2020.05.010

    Article  CAS  PubMed  Google Scholar 

  36. Mackinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180:20–22

    Article  Google Scholar 

  37. Nahrendorf M, Swirski FK (2016) Abandoning M1/M2 for a network model of macrophage function. Circ Res 119:414–417. https://doi.org/10.1161/CIRCRESAHA.116.309194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Walter W, Alonso-Herranz L, Trappetti V, Crespo I, Ibberson M, Cedenilla M, Karaszewska A, Núñez V, Xenarios I, Arroyo AG, Sánchez-Cabo F, Ricote M (2018) Deciphering the dynamic transcriptional and post-transcriptional networks of macrophages in the healthy heart and after myocardial injury. Cell Rep 23:622–636. https://doi.org/10.1016/j.celrep.2018.03.029

    Article  CAS  PubMed  Google Scholar 

  39. Adler M, Mayo A, Zhou X, Franklin RA, Meizlish ML, Medzhitov R, Kallenberger SM, Alon U (2020) Principles of cell circuits for tissue repair and fibrosis. iScience 23:100841. https://doi.org/10.1016/j.isci.2020.100841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu R, Ma F, Tosevska A, Farrell C, Pellegrini M, Deb A (2020) Cardiac fibroblast proliferation rates and collagen expression mature early and are unaltered with advancing age. JCI Insight. https://doi.org/10.1172/jci.insight.140628

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG (2008) Aging-Related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392. https://doi.org/10.1016/j.jacc.2008.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhu F, Li Y, Zhang J, Piao C, Liu T, Li HH, Du J (2013) Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One 8:1–12. https://doi.org/10.1371/journal.pone.0074535

    Article  CAS  Google Scholar 

  43. Ibarrola J, Sádaba R, Garcia-Peña A, Arrieta V, Martinez-Martinez E, Alvarez V, Fernández-Celis A, Gainza A, Santamaría E, Fernández-Irigoyen J, Cachofeiro V, Fay R, Rossignol P, López-Andrés N (2018) A role for fumarate hydratase in mediating oxidative effects of galectin-3 in human cardiac fibroblasts. Int J Cardiol 258:217–223. https://doi.org/10.1016/j.ijcard.2017.12.103

    Article  PubMed  Google Scholar 

  44. de Souza BSF, Silva DN, Carvalho RH, de Sampaio GLA, Paredes BD, Aragão França L, Azevedo CM, Vasconcelos JF, Meira CS, Neto PC, Macambira SG, da Silva KN, Allahdadi KJ, Tavora F, de Souza Neto JD, dos Santos RR, Soares MBP (2017) Association of cardiac galectin-3 expression, myocarditis, and fibrosis in chronic chagas disease cardiomyopathy. Am J Pathol 187:1134–1146. https://doi.org/10.1016/j.ajpath.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  45. González GE, Cassaglia P, Noli Truant S, Fernández MM, Wilensky L, Volberg V, Malchiodi EL, Morales C, Gelpi RJ (2014) Galectin-3 is essential for early wound healing and ventricular remodeling after myocardial infarction in mice. Int J Cardiol 176:1423–1425. https://doi.org/10.1016/j.ijcard.2014.08.011

    Article  PubMed  Google Scholar 

  46. Shirakawa K, Endo J, Kataoka M, Katsumata Y, Yoshida N, Yamamoto T, Isobe S, Moriyama H, Goto S, Kitakata H, Hiraide T, Fukuda K, Sano M (2018) IL (interleukin)-10-STAT3-galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. Circulation 138:2021–2035. https://doi.org/10.1161/CIRCULATIONAHA.118.035047

    Article  CAS  PubMed  Google Scholar 

  47. Shardonofsky FR, Capetanaki Y, Boriek AM (2006) Desmin modulates lung elastic recoil and airway responsiveness. Am J Physiol Lung Cell Mol Physiol 290:890–896. https://doi.org/10.1152/ajplung.00397.2005

    Article  CAS  Google Scholar 

  48. Mohamed JS, Hajira A, Li Z, Paulin D, Boriek AM (2011) Desmin regulates airway smooth muscle hypertrophy through early growth-responsive protein-1 and microRNA-26a. J Biol Chem 286:43394–43404. https://doi.org/10.1074/jbc.M111.235127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Higham A, Quinn AM, Cançado JED, Singh D (2019) The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res 20:1–11. https://doi.org/10.1186/s12931-019-1017-y

    Article  Google Scholar 

  50. Pilette C, Colinet B, Kiss R, André S, Kaltner H, Gabius HJ, Delos M, Vaerman JP, Decramer M, Sibille Y (2007) Increased galectin-3 expression and intra-epithelial neutrophils in small airways in severe COPD. Eur Respir J 29:914–922. https://doi.org/10.1183/09031936.00073005

    Article  CAS  PubMed  Google Scholar 

  51. Markowska AI, Liu F-T, Panjwani N (2010) Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med 207:1981–1993. https://doi.org/10.1084/jem.20090121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cahill TJ, Choudhury RP, Riley PR (2017) Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov 16:699–717. https://doi.org/10.1038/nrd.2017.106

    Article  CAS  PubMed  Google Scholar 

  53. Dick SA, Epelman S (2016) Chronic heart failure and inflammation. Circ Res 119:159–176. https://doi.org/10.1161/CIRCRESAHA.116.308030

    Article  CAS  PubMed  Google Scholar 

  54. Dings RPM, Miller MC, Griffin RJ, Mayo KH (2018) Galectins as molecular targets for therapeutic intervention. Int J Mol Sci 19:1–22. https://doi.org/10.3390/ijms19030905

    Article  CAS  Google Scholar 

  55. Seropian IM, Cerliani JP, Toldo S, Van Tassell BW, Ilarregui JM, González GE, Matoso M, Salloum FN, Melchior R, Gelpi RJ, Stupirski JC, Benatar A, Gómez KA, Morales C, Abbate A, Rabinovich GA (2013) Galectin-1 controls cardiac inflammation and ventricular remodeling during acute myocardial infarction. Am J Pathol 182:29–40. https://doi.org/10.1016/j.ajpath.2012.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci USA 110:17253–17258. https://doi.org/10.1073/pnas.1308887110

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ibarrola J, Matilla L, Martínez-Martínez E, Gueret A, Fernández-Celis A, Henry JP, Nicol L, Jaisser F, Mulder P, Ouvrard-Pascaud A, López-Andrés N (2019) Myocardial injury after ischemia/reperfusion is attenuated by pharmacological galectin-3 inhibition. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-46119-6

    Article  CAS  Google Scholar 

  58. Miller M, Ludwig A, Wichapong K, Kaltner H, Kopitz J, Gabius H, Mayo K (2018) Adhesion/growth-regulatory galectins tested in combination: evidence for formation of hybrids as heterodimers. Biochem J 475:1003–1018. https://doi.org/10.1042/BCJ20170658

    Article  CAS  PubMed  Google Scholar 

  59. D’Haene N, Sauvage S, Maris C, Adanja I, Le Mercier M, Decaestecker C, Baum L, Salmon I (2013) VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis. PLoS One 8:e67029. https://doi.org/10.1371/journal.pone.0067029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. von Hundelshausen P, Wichapong K, Gabius HJ, Mayo KH (2021) The marriage of chemokines and galectins as functional heterodimers. Cell Mol Life Sci 78:8073–8095. https://doi.org/10.1007/s00018-021-04010-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Aris Charonis, Argyris Efstratiadis and Dimitris Beis for helpful discussions and antibodies provided, Stamatis Pagakis, Dimosthene Mitrossilis and Eleni Rigana for help with image analysis and confocal microscopy, Anastasia Apostolidou for FACSAria sorting, Niki Karagianni, Maria Platounari, Pagona Karvouni, Lorentsa Tsansizi, Alkistis Kapelouzou, Ioanna Kostavasili and Anna Agapaki for assistance.

Funding

Supported by a Hellenic Cardiology Society grant 2010–13/151 (SP) and the Synergasia ESPA 09SYN-21–965 grant from the Greek General Secretariat for Research and Technology (G.S.R.T.) – Ministerium of Education (YC).

Author information

Authors and Affiliations

Authors

Contributions

FV, KS, KN and SP performed experiments, EV performed echocardiography, ES performed lung mechanics experiments and HP performed BrdU and assisted with cardiac fibroblast apoptosis and ex vivo aging experiments. SP designed the study and prepared the manuscript. All the authors provided critical input, reviewed the manuscript, contributed to the discussion/interpretation of the obtained results, and approved the final version.

Corresponding author

Correspondence to Stelios Psarras.

Ethics declarations

Conflict of interest

On behalf of all authors the corresponding author states that there is no conflict of interest.

Ethics approval

The approved procedures for animal care and treatment have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Consent to participate/for publication

Not applicable. The manuscript does not contain clinical studies or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3562 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlachou, F., Varela, A., Stathopoulou, K. et al. Galectin-3 interferes with tissue repair and promotes cardiac dysfunction and comorbidities in a genetic heart failure model. Cell. Mol. Life Sci. 79, 250 (2022). https://doi.org/10.1007/s00018-022-04266-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04266-6

Keywords

Navigation