Skip to main content

Advertisement

Log in

miR-155 regulates physiological angiogenesis but an miR-155-rich microenvironment disrupts the process by promoting unproductive endothelial sprouting

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Angiogenesis involves cell specification orchestrated by regulatory interactions between the vascular endothelial growth factor and Notch signaling pathways. However, the role of microRNAs in these regulations remains poorly explored. Here we show that a controlled level of miR-155 is essential for proper angiogenesis. In the mouse retina angiogenesis model, antimiR-155 altered neovascularization. In vitro assays established that endogenous miR-155 is involved in podosome formation, activation of the proteolytic machinery and cell migration but not in morphogenesis. The role of miR-155 was explored using miR-155 mimics. In vivo, exposing the developing vasculature to miR-155 promoted hypersprouting, thus phenocopying defects associated with Notch deficiency. Mechanistically, miR-155 overexpression weakened Notch signaling by reducing Smad1/5 expression, leading to the formation of tip cell-like cells which did not reach full invasive capacity and became unable to undergo morphogenesis. These results identify miR-155 as a novel regulator of physiological angiogenesis and as a novel actor of pathological angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Abbreviations

ECs:

Endothelial cells

BM:

Basement membrane

TNF-α:

Tumor necrosis factor α

VEGF-A:

Vascular endothelial growth factor A

VEGFR2:

Vascular endothelial growth factor receptor 2

Dll4:

Delta like Notch ligand 4

NICD:

Notch intracellular domain

Jag1:

Jagged Notch ligand 1

Nrp1:

Neuropilin-1

MMPs:

Matrix metalloproteases

miRs:

MicroRNAs

HMVECs:

Human microvascular ECs

Col-IV:

Collagen-IV

References

  1. Sainson RC, Johnston DA, Chu HC, Holderfield MT, Nakatsu MN, Crampton SP et al (2008) TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111(10):4997–5007. https://doi.org/10.1182/blood-2007-08-108597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780. https://doi.org/10.1038/nature05571

    Article  CAS  PubMed  Google Scholar 

  3. Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 104(9):3225–3230. https://doi.org/10.1073/pnas.0611177104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O et al (2012) Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484(7392):110–114. https://doi.org/10.1038/nature10908

    Article  CAS  PubMed  Google Scholar 

  5. Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135. https://doi.org/10.1016/j.cell.2009.03.025

    Article  CAS  PubMed  Google Scholar 

  6. Hofmann JJ, Luisa I-A (2007) Notch expression patterns in the retina: an eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns 7(4):461–470. https://doi.org/10.1016/j.modgep.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  7. Aspalter IM, Gordon E, Dubrac A, Ragab A, Narloch J, Vizan P et al (2015) Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun 6:7264. https://doi.org/10.1038/ncomms8264

    Article  PubMed  Google Scholar 

  8. Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A et al (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22(3):489–500. https://doi.org/10.1016/j.devcel.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spuul P, Daubon T, Pitter B, Alonso F, Fremaux I, Kramer I et al (2016) VEGF-A/Notch-induced podosomes proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis. Cell Rep 17(2):484–500. https://doi.org/10.1016/j.celrep.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  10. Conway EM (2021) VEGF-induced endothelial podosomes via ROCK2-dependent thrombomodulin expression initiate sprouting angiogenesis. Arterioscler Thromb Vasc Biol 41(5):1657–1671. https://doi.org/10.1161/ATVBAHA.121.315931

    Article  PubMed  Google Scholar 

  11. Daubon T, Spuul P, Alonso F, Fremaux I, Genot E (2016) VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. J Cell Sci 129(13):2586–2598. https://doi.org/10.1242/jcs.186585

    Article  CAS  PubMed  Google Scholar 

  12. Veillat V, Spuul P, Daubon T, Egana I, Kramer I, Genot E (2015) Podosomes: multipurpose organelles? Int J Biochem Cell Biol 65:52–60. https://doi.org/10.1016/j.biocel.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  13. Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532(1):1–12. https://doi.org/10.1016/j.gene.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  14. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792(6):497–505. https://doi.org/10.1016/j.bbadis.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  15. Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S et al (2017) Methodological guidelines to study extracellular vesicles. Circ Res 120(10):1632–1648. https://doi.org/10.1161/CIRCRESAHA.117.309417

    Article  CAS  PubMed  Google Scholar 

  16. Staszel T, Zapala B, Polus A, Sadakierska-Chudy A, Kiec-Wilk B, Stepien E et al (2011) Role of microRNAs in endothelial cell pathophysiology. Pol Arch Med Wewn 121(10):361–366

    CAS  PubMed  Google Scholar 

  17. Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79(4):581–588. https://doi.org/10.1093/cvr/cvn156

    Article  CAS  PubMed  Google Scholar 

  18. Riedl J, Flynn KC, Raducanu A, Gartner F, Beck G, Bosl M et al (2010) Lifeact mice for studying F-actin dynamics. Nat Methods 7(3):168–169

    Article  CAS  PubMed  Google Scholar 

  19. Haefliger JA, Allagnat F, Hamard L, Le Gal L, Meda P, Nardelli-Haefliger D et al (2017) Targeting Cx40 (Connexin40) expression or function reduces angiogenesis in the developing mouse retina. Arterioscler Thromb Vasc Biol 37(11):2136–2146. https://doi.org/10.1161/ATVBAHA.117.310072

    Article  CAS  PubMed  Google Scholar 

  20. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tatin F, Grise F, Reuzeau E, Genot E, Moreau V (2010) Sodium fluoride induces podosome formation in endothelial cells. Biol Cell 102(9):489–498. https://doi.org/10.1042/BC20100030

    Article  CAS  PubMed  Google Scholar 

  22. Varon C, Tatin F, Moreau V, Van Obberghen-Schilling E, Fernandez-Sauze S, Reuzeau E et al (2006) Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol 26(9):3582–3594. https://doi.org/10.1128/MCB.26.9.3582-3594.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Le Roux-Goglin E, Varon C, Spuul P, Asencio C, Megraud F, Genot E (2012) Helicobacter infection induces podosome assembly in primary hepatocytes in vitro. Eur J Cell Biol 91(3):161–170. https://doi.org/10.1016/j.ejcb.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  24. Curado F, Spuul P, Egana I, Rottiers P, Daubon T, Veillat V et al (2014) ALK5 and ALK1 play antagonistic roles in transforming growth factor beta-induced podosome formation in aortic endothelial cells. Mol Cell Biol 34(24):4389–4403. https://doi.org/10.1128/MCB.01026-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robertson B, Dalby AB, Karpilow J, Khvorova A, Leake D, Vermeulen A (2010) Specificity and functionality of microRNA inhibitors. Silence 1(1):10. https://doi.org/10.1186/1758-907X-1-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Varon C, Basoni C, Reuzeau E, Moreau V, Kramer IJ, Genot E (2006) TGFbeta1-induced aortic endothelial morphogenesis requires signaling by small GTPases Rac1 and RhoA. Exp Cell Res 312(18):3604–3619

    Article  CAS  PubMed  Google Scholar 

  27. Díaz B (2013) Invadopodia detection and gelatin degradation assay. Bio-Protoc 3(24):e997. https://doi.org/10.21769/BioProtoc.997

    Article  PubMed  Google Scholar 

  28. Tatin F, Varon C, Genot E, Moreau V (2006) A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. J Cell Sci 119(Pt 4):769–781

    Article  CAS  PubMed  Google Scholar 

  29. Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM et al (2010) The mouse retina as an angiogenesis model. Investig Ophthalmol Vis Sci 51(6):2813–2826. https://doi.org/10.1167/iovs.10-5176

    Article  Google Scholar 

  30. Fraccaroli A, Franco CA, Rognoni E, Neto F, Rehberg M, Aszodi A et al (2012) Visualization of endothelial actin cytoskeleton in the mouse retina. PLoS One 7(10):e47488. https://doi.org/10.1371/journal.pone.0047488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim DH, Wirtz D (2013) Focal adhesion size uniquely predicts cell migration. FASEB J 27(4):1351–1361. https://doi.org/10.1096/fj.12-220160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Du P, Subbiah R, Park JH, Park K (2014) Vascular morphogenesis of human umbilical vein endothelial cells on cell-derived macromolecular matrix microenvironment. Tissue Eng Part A 20(17–18):2365–2377. https://doi.org/10.1089/ten.TEA.2013.0693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsin JP, Lu Y, Loeb GB, Leslie CS, Rudensky AY (2018) The effect of cellular context on miR-155-mediated gene regulation in four major immune cell types. Nat Immunol 19(10):1137–1145. https://doi.org/10.1038/s41590-018-0208-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beets K, Huylebroeck D, Moya IM, Umans L, Zwijsen A (2013) Robustness in angiogenesis: notch and BMP shaping waves. Trends Genet 29(3):140–149. https://doi.org/10.1016/j.tig.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  35. Moya IM, Umans L, Maas E, Pereira PN, Beets K, Francis A et al (2012) Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev Cell 22(3):501–514. https://doi.org/10.1016/j.devcel.2012.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benn A, Alonso F, Mangelschots J, Genot E, Lox M, Zwijsen A (2020) BMP-SMAD1/5 signaling regulates retinal vascular development. Biomolecules 10(3):488. https://doi.org/10.3390/biom10030488

    Article  CAS  PubMed Central  Google Scholar 

  37. Mehta A, Baltimore D (2016) MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 16(5):279–294. https://doi.org/10.1038/nri.2016.40

    Article  CAS  PubMed  Google Scholar 

  38. Neto F, Klaus-Bergmann A, Ong YT, Alt S, Vion AC, Szymborska JA et al (2018) YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. Elife 7(e31037):1–30

    Google Scholar 

  39. Nariman-Saleh-Fam Z, Saadatian Z, Daraei A, Mansoori Y, Bastami M, Tavakkoli-Bazzaz J (2019) The intricate role of miR-155 in carcinogenesis: potential implications for esophageal cancer research. Biomark Med 13(2):147–159. https://doi.org/10.2217/bmm-2018-0127

    Article  CAS  PubMed  Google Scholar 

  40. Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC et al (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 31(19):4087–4096. https://doi.org/10.1128/MCB.01276-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weber M, Baker MB, Moore JP, Searles CD (2010) MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 393(4):643–648. https://doi.org/10.1016/j.bbrc.2010.02.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahesh G, Biswas R (2019) MicroRNA-155: a master regulator of inflammation. J Interferon Cytokine Res 39(6):321–330. https://doi.org/10.1089/jir.2018.0155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 22(3):125–132. https://doi.org/10.1016/j.tcb.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  44. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J et al (2014) Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33(6):679–689. https://doi.org/10.1038/onc.2012.636

    Article  CAS  PubMed  Google Scholar 

  45. Tili E, Croce CM, Michaille JJ (2009) miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol 28(5):264–284. https://doi.org/10.1080/08830180903093796

    Article  CAS  PubMed  Google Scholar 

  46. Sredni ST, Gadd S, Jafari N, Huang CC (2011) A parallel study of mRNA and microRNA profiling of peripheral blood in young adult women. Front Genet 2:49. https://doi.org/10.3389/fgene.2011.00049

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ekiz HA, Ramstead AG, Lee SH, Nelson MC, Bauer KM, Wallace JA et al (2020) T cell-expressed microRNA-155 reduces lifespan in a mouse model of age-related chronic inflammation. J Immunol 204(8):2064–2075. https://doi.org/10.4049/jimmunol.1901484

    Article  CAS  PubMed  Google Scholar 

  48. Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King-Robson J et al (2014) MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 28(6):2551–2565. https://doi.org/10.1096/fj.13-248880

    Article  CAS  PubMed  Google Scholar 

  49. Yan L, Lee S, Lazzaro DR, Aranda J, Grant MB, Chaqour B (2015) Single and compound knock-outs of microRNA (miRNA)-155 and its angiogenic gene target CCN1 in mice alter vascular and neovascular growth in the retina via resident microglia. J Biol Chem 290(38):23264–23281. https://doi.org/10.1074/jbc.M115.646950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  51. Foss FM, Querfeld C, Kim HY, Pinter-Brown LC, William BM, Porcu P et al (2018) Phase 1 study of cobomarsen (MRG-106) in cutaneous T cell lymphoma and HTLV-1 associated T cell leukemia/lymphoma, ASCO Annual Meeting 2018, Abstract #2511

  52. Querfeld C, Pacheco T, Foss F, Halwani A, Porcu P, Seto A et al (2016) Preliminary results of a phase 1 trial evaluating MRG-106, a synthetic microRNA antagonist (LNA antimiR) of microRNA-155, in patients with CTCL. Blood 128(22):1829. https://doi.org/10.1182/blood.V128.22.1829.1829

    Article  Google Scholar 

  53. Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, Bragin D, Yang Y, Erhardt EB et al (2015) In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci 35(36):12446–12464. https://doi.org/10.1523/JNEUROSCI.1641-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chamorro-Jorganes A, Araldi E, Suarez Y (2013) MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacol Res 75:15–27. https://doi.org/10.1016/j.phrs.2013.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the animal facilities of the University of Bordeaux. The help of Laetitia Medan is acknowledged. We also thank Amani Ghousein and Nicola Mosca (INSERM U1035, University of Bordeaux, France) for preliminary qRT-PCR experiments (not included in the publication).

Funding

This work was supported by INSERM (recurrent funding), ITMO Cancer AVIESAN (Alliance Nationale pour les Sicences de la Vie et de la Santé/ National Alliance for Life Sciences & Health) within the framework of Cancer 2020 and additional fundings were from the Ligue contre le Cancer (comité des Landes) and Fondation de France. Y.D. was supported by a Chinese Scholarship Council fellowship.

Author information

Authors and Affiliations

Authors

Contributions

YD performed most in vitro experiments. TJ performed experiments for the revision, FA performed the animal experiments. CG guided the miR strategies. IF designed and performed qRT-PCR experiments. All authors analyzed the data. EG designed the study, supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Elisabeth Génot.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14360 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Alonso, F., Jahjah, T. et al. miR-155 regulates physiological angiogenesis but an miR-155-rich microenvironment disrupts the process by promoting unproductive endothelial sprouting. Cell. Mol. Life Sci. 79, 208 (2022). https://doi.org/10.1007/s00018-022-04231-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04231-3

Keywords

Navigation