Skip to main content

Advertisement

Log in

Intrinsic disorder in proteins associated with oxidative stress-induced JNK signaling

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The c-Jun N-terminal kinase (JNK) signaling cascade is a mitogen-activated protein kinase (MAPK) signaling pathway that can be activated in response to a wide range of environmental stimuli. Based on the type, degree, and duration of the stimulus, the JNK signaling cascade dictates the fate of the cell by influencing gene expression through its substrate transcription factors. Oxidative stress is a result of a disturbance in the pro-oxidant/antioxidant homeostasis of the cell and is associated with a large number of diseases, such as neurodegenerative disorders, cancer, diabetes, cardiovascular diseases, and disorders of the immune system, where it activates the JNK signaling pathway. Among different biological roles ascribed to the intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are signaling hub functions, as intrinsic disorder allows proteins to undertake multiple interactions, each with a different consequence. In order to ensure precise signaling, the cellular abundance of IDPs is highly regulated, and mutations or changes in abundance of IDPs/IDPRs are often associated with disease. In this study, we have used a combination of six disorder predictors to evaluate the presence of intrinsic disorder in proteins of the oxidative stress-induced JNK signaling cascade, and as per our findings, none of the 18 proteins involved in this pathway are ordered. The highest level of intrinsic disorder was observed in the scaffold proteins, JIP1, JIP2, JIP3; dual specificity phosphatases, MKP5, MKP7; 14-3-3ζ and transcription factor c-Jun. The MAP3Ks, MAP2Ks, MAPKs, TRAFs, and thioredoxin were the proteins that were predicted to be moderately disordered. Furthermore, to characterize the predicted IDPs/IDPRs in the proteins of the JNK signaling cascade, we identified the molecular recognition features (MoRFs), posttranslational modification (PTM) sites, and short linear motifs (SLiMs) associated with the disordered regions. These findings will serve as a foundation for experimental characterization of disordered regions in these proteins, which represents a crucial step for a better understanding of the roles of IDPRs in diseases associated with this important pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Abbreviations

Aβ:

Amyloid β

AD:

Alzheimer’s disease

AIDS:

Acquired immunodeficiency syndrome

ALS:

Amyotrophic lateral sclerosis

AP1:

Activator protein-1

ASK:

Apoptosis regulating kinase

ATF2:

Cyclic AMP-dependent transcription factor ATF-2

D2P2 :

Database of disordered protein predictions

DSP:

Dual specificity phosphatases

ELM:

Eukaryotic linear motif

ERK:

Extracellular signal-regulated kinases

IDP:

Intrinsically disordered protein

IDPR:

Intrinsically disordered protein region

JIP:

JNK interacting protein

JNK:

C-Jun N-terminal Kinase

MAP3K:

Mitogen-Activated Kinase kinase kinase

MAP2K:

Mitogen-Activated Protein Kinase kinase

MAPK:

Mitogen-Activated Protein Kinase

MEF:

Mouse embryonic fibroblast

MKP:

Mitogen-Activated Kinase phosphatases

MoRF:

Molecular recognition feature

NFATC3:

Nuclear factor of activated T-cells, cytoplasmic 3

NLR:

NOD-like receptor

NOD:

Nucleotide-binding oligomerization domain

PD:

Parkinson’s disease

PDB:

Protein data bank

PONDR:

Predictor of natural disordered regions

PPID:

Predicted percentage of intrinsic disorder

PTB:

Phosphotyrosine binding domain

PTM:

Posttranslational modification

RLR:

RIG-I like receptor

ROS:

Reactive oxygen species

SAPK:

Stress activated protein kinase

SLiM:

Short linear motif

TLR:

Toll-like receptor

TF:

Transcription factor

TNF-R:

Tumor necrosis factor receptor

TRAF:

Tumor necrosis factor receptor (TNF-R) associated factor

Txn:

Thioredoxin

References

  1. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252. https://doi.org/10.1016/S0092-8674(00)00116-1

    Article  CAS  PubMed  Google Scholar 

  2. Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12:14–21. https://doi.org/10.1016/S0959-437X(01)00258-1

    Article  CAS  PubMed  Google Scholar 

  3. Cui J, Zhang M, Zhang YQ, Xu ZH (2007) JNK pathway: diseases and therapeutic potential. Acta Pharmacol Sin 28:601–608. https://doi.org/10.1111/j.1745-7254.2007.00579.x

    Article  CAS  PubMed  Google Scholar 

  4. Zeke A, Misheva M, Reményi A, Bogoyevitch MA, Signaling JNK (2016) Regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev 80:793–835. https://doi.org/10.1128/mmbr.00043-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Willoughby EA, Perkins GR, Collins MK, Whitmarsh AJ (2003) The JNK-interacting protein-1 scaffold protein targets MAPK phosphatase-7 to dephosphorylate JNK. J Biol Chem 278:10731–10736. https://doi.org/10.1074/jbc.M207324200

    Article  CAS  PubMed  Google Scholar 

  6. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR (1991) Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670–674. https://doi.org/10.1038/353670a0

    Article  CAS  PubMed  Google Scholar 

  7. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251. https://doi.org/10.1038/onc.2008.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xia Y, Makris C, Su B, Li E, Yang J, Nemerow GR, Karin M (2000) MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc Natl Acad Sci USA 97:5243–5248. https://doi.org/10.1073/pnas.97.10.5243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidatives stress. Nat Rev Drug Discov 3:205–214. https://doi.org/10.1038/nrd1330

    Article  CAS  PubMed  Google Scholar 

  10. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390. https://doi.org/10.1016/j.arr.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  11. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427. https://doi.org/10.1042/bj1910421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180. https://doi.org/10.1007/s00204-013-1034-4

    Article  CAS  PubMed  Google Scholar 

  13. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh O, Shillings A, Craggs P, Wall I, Rowland P, Skarzynski T, Hobbs CI, Hardwick P, Tanner R, Blunt M, Witty DR, Smith KJ (2013) Crystal structures of ASK1-inhibtor complexes provide a platform for structure-based drug design. Protein Sci 22:1071–1077. https://doi.org/10.1002/pro.2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yasuda J, Whitmarsh AJ, Cavanagh J, Sharma M, Davis RJ (1999) The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol 19:7245–7254. https://doi.org/10.1128/mcb.19.10.7245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037. https://doi.org/10.1016/0092-8674(94)90380-8

    Article  PubMed  Google Scholar 

  17. Gupta S, Campbell D, Dérijard B, Davis RJ (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science (80-) 267:389–393. https://doi.org/10.1126/science.7824938

    Article  CAS  Google Scholar 

  18. Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19:142–149. https://doi.org/10.1016/j.ceb.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  19. Van Der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631. https://doi.org/10.1021/cr400525m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chouard T (2011) Structural biology: breaking the protein rules. Nature 471:151–153. https://doi.org/10.1038/471151a

    Article  CAS  PubMed  Google Scholar 

  21. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331. https://doi.org/10.1006/jmbi.1999.3110

    Article  CAS  PubMed  Google Scholar 

  22. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29. https://doi.org/10.1038/nrm3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Katuwawala A, Peng Z, Yang J, Kurgan L (2019) Computational prediction of MoRFs, short disorder-to-order transitioning protein binding regions. Comput Struct Biotechnol J 17:454–462. https://doi.org/10.1016/j.csbj.2019.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D 2 concept. Annu Rev Biophys 37:215–246. https://doi.org/10.1146/annurev.biophys.37.032807.125924

    Article  CAS  PubMed  Google Scholar 

  25. Bateman A et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  26. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins. DOI:https://doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3

  27. Kang P, Predrag R, Slobodan V, Keith DA Zoran O (2006) Length-dependent prediction of protein intrinsic disorder, BMC Bioinform. https://pubmed.ncbi.nlm.nih.gov/16618368/. Accessed 22 June 2020

  28. Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3:35–60. https://doi.org/10.1142/S0219720005000886

    Article  CAS  PubMed  Google Scholar 

  29. Dosztányi Zsuzsanna SI, Veronika C, Peter T (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics. https://pubmed.ncbi.nlm.nih.gov/15955779/. Accessed 22 June 2020

  30. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (1804) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta - Proteins Proteomics 2010:996–1010. https://doi.org/10.1016/j.bbapap.2010.01.011

    Article  CAS  Google Scholar 

  31. Oates ME, Pedro R, Takashi I, Mohamed G, Mizianty MJ, Bin X, Zsuzsanna D, Uversky VN, Zoran O, Lukasz K, Keith DA, Julian G (2013) D2P2: database of disordered protein predictions. Nucleic Acids Res. https://pubmed.ncbi.nlm.nih.gov/23203878/. Accessed 23 June 2020

  32. Gouw M, Sámano-Sánchez H, Van Roey K, Diella F, Gibson TJ, Dinkel H (2017) Exploring short linear motifs using the ELM database and tools. Curr Protoc Bioinform 2017:8221–82235. https://doi.org/10.1002/cpbi.26

    Article  Google Scholar 

  33. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C, Von Mering C (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://pubmed.ncbi.nlm.nih.gov/30476243/. Accessed 23 June 2020

  34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  35. Asaoka Y, Nishina H (2010) Diverse physiological functions of MKK4 and MKK7 during early embryogenesis. J Biochem 148:393–401. https://doi.org/10.1093/jb/mvq098

    Article  CAS  PubMed  Google Scholar 

  36. Fujisawa T, Takeda K, Ichijo H (2007) ASK family proteins in stress response and disease. Mol Biotechnol. https://doi.org/10.1007/s12033-007-0053-x

    Article  PubMed  Google Scholar 

  37. Takeda K, Shimozono R, Noguchi T, Umeda T, Morimoto Y, Naguro I, Tobiume K, Saitoh M, Matsuzawa A, Ichijo H (2007) Apoptosis signal-regulating kinase (ASK) 2 functions as a mitogen-activated protein kinase kinase kinase in a heteromeric complex with ASK1. J Biol Chem 282:7522–7531. https://doi.org/10.1074/jbc.M607177200

    Article  CAS  PubMed  Google Scholar 

  38. Liu H, Nishitoh H, Ichijo H, Kyriakis JM (2000) Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20:2198–2208. https://doi.org/10.1128/mcb.20.6.2198-2208.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cockrell LM, Puckett MC, Goldman EH, Khuri FR, Fu H (2010) Dual engagement of 14–3-3 proteins controls signal relay from ASK2 to the ASK1 signalosome. Oncogene 29:822–830. https://doi.org/10.1038/onc.2009.382

    Article  CAS  PubMed  Google Scholar 

  40. Noguchi T, Takeda K, Matsuzawa A, Saegusa K, Nakano H, Gohda J, Inoue JI, Ichijo H (2005) Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death. J Biol Chem 280:37033–37040. https://doi.org/10.1074/jbc.M506771200

    Article  CAS  PubMed  Google Scholar 

  41. Fujino G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, Ichijo H (2007) Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol Cell Biol 27:8152–8163. https://doi.org/10.1128/mcb.00227-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ (2001) MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 15:1419–1426. https://doi.org/10.1101/gad.888501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15:36–42. https://doi.org/10.1038/sj.cr.7290262

    Article  PubMed  Google Scholar 

  44. Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ (1998) A mammalian scaffold complex that selectively mediates MAP kinase activation. Science (80-) 281:1671–1674. https://doi.org/10.1126/science.281.5383.1671

    Article  CAS  Google Scholar 

  45. Bermudez O, Pagès G, Gimond C (2010) The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am J Physiol-Cell Physiol. https://doi.org/10.1152/ajpcell.00347.2009

    Article  PubMed  Google Scholar 

  46. Meng Q, Xia Y (2011) c-Jun, at the crossroad of the signaling network. Protein Cell 2:889–898. https://doi.org/10.1007/s13238-011-1113-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rajagopalan K, Mooney SM, Parekh N, Getzenberg RH, Kulkarni P (2011) A majority of the cancer/testis antigens are intrinsically disordered proteins. J Cell Biochem 112:3256–3267. https://doi.org/10.1002/jcb.23252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gadhave K, Gehi BR, Kumar P, Xue B, Uversky VN, Giri R (2020) The dark side of Alzheimer’s disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03414-9

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dosztányi Z, Mészáros B, Simon I (2009) ANCHOR: Web server for predicting protein binding regions in disordered proteins. Bioinformatics 25:2745–2746. https://doi.org/10.1093/bioinformatics/btp518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shiizaki S, Naguro I, Ichijo H (2013) Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling. Adv Biol Regul 53:135–144. https://doi.org/10.1016/j.jbior.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  51. Bunkoczi G, Salah E, Filippakopoulos P, Fedorov O, Müller S, Sobott F, Parker SA, Zhang H, Min W, Turk BE, Knapp S (2007) Structural and functional characterization of the human protein kinase ASK1. Structure 15:1215–1226. https://doi.org/10.1016/j.str.2007.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ichijo H, Nishida E, Irie K, Ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science (80-) 275:90–94. https://doi.org/10.1126/science.275.5296.90

    Article  CAS  Google Scholar 

  53. Chen YR, Wang X, Templeton D, Davis RJ, Tan TH (1996) The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and γ radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 271:31929–31936. https://doi.org/10.1074/jbc.271.50.31929

    Article  CAS  PubMed  Google Scholar 

  54. McDonald PH (2000) beta -Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science (80-) 290:1574–1577. https://doi.org/10.1126/science.290.5496.1574

    Article  CAS  Google Scholar 

  55. Liu Y, Min W (2002) Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res 90:1259–1266. https://doi.org/10.1161/01.RES.0000022160.64355.62

    Article  CAS  PubMed  Google Scholar 

  56. Tobiume K, Saitoh M, Ichijo H (2002) Activation of apoptosis signal-regulating Kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J Cell Physiol 191:95–104. https://doi.org/10.1002/jcp.10080

    Article  CAS  PubMed  Google Scholar 

  57. Hashimoto Y, Niikura T, Chiba T, Tsukamoto E, Kadowaki H, Nishitoh H, Yamagishi Y, Ishizaka M, Yamada M, Nawa M, Terashita K, Aiso S, Ichijo H, Nishimoto I (2003) The cytoplasmic domain of Alzheimer’s amyloid-β protein precursor causes sustained apoptosis signal-regulating kinase 1/c-Jun NH 2-terminal kinase-mediated neurotoxic signal via dimerization. J Pharmacol Exp Ther 306:889–902. https://doi.org/10.1124/jpet.103.051383

    Article  CAS  PubMed  Google Scholar 

  58. Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, Masutani H, Yodoi J, Urano Y, Nagano T, Ichijo H (2005) Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ 12:19–24. https://doi.org/10.1038/sj.cdd.4401528

    Article  CAS  PubMed  Google Scholar 

  59. Zhang J, Park ES, Park HJ, Yan R, Grudniewska M, Zhang X, Oh S, Yang X, Baum J, Mouradian MM (2020) Apoptosis signal regulating kinase 1 deletion mitigates α-synuclein pre-formed fibril propagation in mice. Neurobiol Aging 85:49–57. https://doi.org/10.1016/j.neurobiolaging.2019.09.012

    Article  CAS  PubMed  Google Scholar 

  60. Weijman JF, Kumar A, Jamieson SA, King CM, Caradoc-Davies TT, Ledgerwood EC, Murphy JM, Mace PD (2017) Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Proc Natl Acad Sci USA 114:E2096–E2105. https://doi.org/10.1073/pnas.1620813114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Petrvalska O, Kosek D, Kukacka Z, Tosner Z, Man P, Vecer J, Herman P, Obsilova V, Obsil T (2016) Structural insight into the 14–3-3 protein-dependent inhibition of protein kinase ASK1 (apoptosis signal-regulating kinase 1). J Biol Chem 291:20753–20765. https://doi.org/10.1074/jbc.M116.724310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ortner E, Moelling K (2007) Heteromeric complex formation of ASK2 and ASK1 regulates stress-induced signaling. Biochem Biophys Res Commun 362:454–459. https://doi.org/10.1016/j.bbrc.2007.08.006

    Article  CAS  PubMed  Google Scholar 

  63. Iriyama T, Takeda K, Nakamura H, Morimoto Y, Kuroiwa T, Mizukami J, Umeda T, Noguchi T, Naguro I, Nishitoh H, Saegusa K, Tobiume K, Homma T, Shimada Y, Tsuda H, Aiko S, Imoto I, Inazawa J, Chida K, Kamei Y, Kozuma S, Taketani Y, Matsuzawa A, Ichijo H (2009) ASK1 and ASK2 differentially regulate the counteracting roles of apoptosis and inflammation in tumorigenesis. EMBO J 28:843–853. https://doi.org/10.1038/emboj.2009.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fritz-Wolf K, Kehr S, Stumpf M, Rahlfs S, Becker K (2011) Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat Commun. https://doi.org/10.1038/ncomms1382

    Article  PubMed  Google Scholar 

  65. Spyrou G, Enmark E, Miranda-Vizuete A, Gustafsson JÅ (1997) Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 272:2936–2941. https://doi.org/10.1074/jbc.272.5.2936

    Article  CAS  PubMed  Google Scholar 

  66. Zhang R, Al-Lamki R, Bai L, Streb JW, Miano JM, Bradley J, Min W (2004) Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res 94:1483–1491. https://doi.org/10.1161/01.RES.0000130525.37646.a7

    Article  CAS  PubMed  Google Scholar 

  67. Tonissen KF, Wells JRE (1991) Isolation and characterization of human thioredoxin-encoding genes. Gene 102:221–228. https://doi.org/10.1016/0378-1119(91)90081-L

    Article  CAS  PubMed  Google Scholar 

  68. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271. https://doi.org/10.1146/annurev.bi.54.070185.001321

    Article  CAS  PubMed  Google Scholar 

  69. Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30:421–455. https://doi.org/10.1146/annurev.biophys.30.1.421

    Article  CAS  PubMed  Google Scholar 

  70. Fu H, Subramanian RR, Masters SC (2000) 14–3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647. https://doi.org/10.1146/annurev.pharmtox.40.1.617

    Article  CAS  PubMed  Google Scholar 

  71. Pennington K, Chan T, Torres M, Andersen J (2018) The dynamic and stress-adaptive signaling hub of 14–3-3: emerging mechanisms of regulation and context-dependent protein–protein interactions. Oncogene 37:5587–5604. https://doi.org/10.1038/s41388-018-0348-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goldman EH, Chen L, Fu H (2004) Activation of Apoptosis Signal-Regulating Kinase 1 by reactive oxygen species through dephosphorylation at serine 967 and 14–3-3 dissociation. J Biol Chem 279:10442–10449. https://doi.org/10.1074/jbc.M311129200

    Article  CAS  PubMed  Google Scholar 

  73. Kaneko K, Hachiya NS (2006) The alternative role of 14–3-3 zeta as a sweeper of misfolded proteins in disease conditions. Med Hypotheses 67:169–171. https://doi.org/10.1016/j.mehy.2006.01.019

    Article  CAS  PubMed  Google Scholar 

  74. Foote Molly ZY (2012) 14–3–3 proteins in neurological disorders. Int J Biochem Mol Biol 3:152–164. www.ijbmb.org. Accessed 23 June 2020

  75. Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB (1999) Structural analysis of 14–3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14–3-3 in ligand binding. Mol Cell 4:153–166. https://doi.org/10.1016/S1097-2765(00)80363-9

    Article  CAS  PubMed  Google Scholar 

  76. Xie P (2013) TRAF molecules in cell signaling and in human diseases. J Mol Signal. https://doi.org/10.1186/1750-2187-8-7

    Article  PubMed  PubMed Central  Google Scholar 

  77. Park HH (2018) Structure of TRAF family: current understanding of receptor recognition. Front Immunol 9:1999. https://doi.org/10.3389/fimmu.2018.01999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bradley JR, Pober JS (2001) Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20:6482–6491. https://doi.org/10.1038/sj.onc.1204788

    Article  CAS  PubMed  Google Scholar 

  79. Yin Q, Lamothe B, Darnay BG, Wu H (2009) Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry 48:10558–10567. https://doi.org/10.1021/bi901462e

    Article  CAS  PubMed  Google Scholar 

  80. McWhirter SM, Pullen SS, Holton JM, Crute JJ, Kehry MR, Alber T (1999) Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc Natl Acad Sci USA 96:8408–8413. https://doi.org/10.1073/pnas.96.15.8408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H (2010) Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 38:101–113. https://doi.org/10.1016/j.molcel.2010.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yin Q, Lin SC, Lamothe B, Lu M, Lo YC, Hura G, Zheng L, Rich RL, Campos AD, Myszka DG, Lenardo MJ, Darnay BG, Wu H (2009) E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol 16:658–666. https://doi.org/10.1038/nsmb.1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gadhave K, Kumar P, Kapuganti SK, Uversky VN, Giri R (2020) Unstructured biology of proteins from ubiquitin-proteasome system: roles in cancer and neurodegenerative diseases. Biomolecules 10:796. https://doi.org/10.3390/biom10050796

    Article  CAS  PubMed Central  Google Scholar 

  84. Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M, Du K, Singh S, Pike JW, Darnay BG, Choi Y, Wu H (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418:443–447. https://doi.org/10.1038/nature00888

    Article  CAS  PubMed  Google Scholar 

  85. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180. https://doi.org/10.1152/physrev.1999.79.1.143

    Article  CAS  PubMed  Google Scholar 

  86. Wang X, Destrument A, Tournier C (2007) Physiological roles of MKK4 and MKK7: Insights from animal models. Biochim Biophys Acta - Mol Cell Res 1773:1349–1357. https://doi.org/10.1016/j.bbamcr.2006.10.016

    Article  CAS  Google Scholar 

  87. Park JG, Aziz N, Cho JY (2019) MKK7, the essential regulator of JNK signaling involved in cancer cell survival: a newly emerging anticancer therapeutic target. Ther Adv Med Oncol. https://doi.org/10.1177/1758835919875574

    Article  PubMed  PubMed Central  Google Scholar 

  88. Matsumoto T, Kinoshita T, Kirii Y, Yokota K, Hamada K, Tada T (2010) Crystal structures of MKK4 kinase domain reveal that substrate peptide binds to an allosteric site and induces an auto-inhibition state. Biochem Biophys Res Commun 400:369–373. https://doi.org/10.1016/j.bbrc.2010.08.071

    Article  CAS  PubMed  Google Scholar 

  89. Sogabe Y, Hashimoto T, Matsumoto T, Kirii Y, Sawa M, Kinoshita T (2016) A crucial role of Cys218 in configuring an unprecedented auto-inhibition form of MAP2K7. Biochem Biophys Res Commun 473:476–481. https://doi.org/10.1016/j.bbrc.2016.03.036

    Article  CAS  PubMed  Google Scholar 

  90. Estaña A, Sibille N, Delaforge E, Vaisset M, Cortés J, Bernadó P (2019) Realistic ensemble models of intrinsically disordered proteins using a structure-encoding coil database. Structure 27:381-391.e2. https://doi.org/10.1016/j.str.2018.10.016

    Article  CAS  PubMed  Google Scholar 

  91. Resnick L, Fennell M (2004) Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov Today 9:932–939. https://doi.org/10.1016/S1359-6446(04)03251-9

    Article  CAS  PubMed  Google Scholar 

  92. Raciti M, Lotti LV, Valia S, Pulcinelli FM, Di Renzo L (2012) JNK2 is activated during ER stress and promotes cell survival. Cell Death Dis. https://doi.org/10.1038/cddis.2012.167

    Article  PubMed  PubMed Central  Google Scholar 

  93. Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275:9047–9054. https://doi.org/10.1074/jbc.275.12.9047

    Article  CAS  PubMed  Google Scholar 

  94. Jaeschke A, Czech MP, Davis RJ (2004) An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev 18:1976–1980. https://doi.org/10.1101/gad.1216504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jaeschke A, Rincón M, Doran B, Reilly J, Neuberg D, Greiner DL, Shultz LD, Rossini AA, Flavell RA, Davis RJ (2005) Disruption of the Jnk2 (Mapk9) gene reduces destructive insulitis and diabetes in a mouse model of type 1 diabetes. Proc Natl Acad Sci USA 102:6931–6935. https://doi.org/10.1073/pnas.0502143102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M, Kajimoto Y, Ichijo H, Yamasaki Y, Hori M (2004) Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med 10:1128–1132. https://doi.org/10.1038/nm1111

    Article  CAS  PubMed  Google Scholar 

  97. Garai Á, Zeke A, Gógl G, Töro I, Fördos F, Blankenburg H, Bárkai T, Varga J, Alexa A, Emig D, Albrecht M, Reményi A (2012) Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Sci Signal. https://doi.org/10.1126/scisignal.2003004

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shaw D, Wang SM, Villaseñor AG, Tsing S, Walter D, Browner MF, Barnett J, Kuglstatter A (2008) The crystal structure of JNK2 reveals conformational flexibility in the MAP kinase insert and indicates its involvement in the regulation of catalytic activity. J Mol Biol 383:885–893. https://doi.org/10.1016/j.jmb.2008.08.086

    Article  CAS  PubMed  Google Scholar 

  99. Krenitsky VP, Delgado M, Nadolny L, Sahasrabudhe K, Ayala L, Clareen SS, Hilgraf R, Albers R, Kois A, Hughes K, Wright J, Nowakowski J, Sudbeck E, Ghosh S, Bahmanyar S, Chamberlain P, Muir J, Cathers BE, Giegel D, Xu L, Celeridad M, Moghaddam M, Khatsenko O, Omholt P, Katz J, Pai S, Fan R, Tang Y, Shirley MA, Benish B, Blease K, Raymon H, Bhagwat S, Henderson I, Cole AG, Bennett B, Satoh Y (2012) Aminopurine based JNK inhibitors for the prevention of ischemia reperfusion injury. Bioorganic Med Chem Lett 22:1427–1432. https://doi.org/10.1016/j.bmcl.2011.12.028

    Article  CAS  Google Scholar 

  100. Laughlin JD, Nwachukwu JC, Figuera-Losada M, Cherry L, Nettles KW, Lograsso PV (2012) Structural mechanisms of allostery and autoinhibition in JNK family kinases. Structure 20:2174–2184. https://doi.org/10.1016/j.str.2012.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pernigo S, Chegkazi MS, Yip YY, Treacy C, Glorani G, Hansen K, Politis A, Bui S, Dodding MP, Steiner RA (2018) Structural basis for isoform-specific kinesin-1 recognition of Y-acidic cargo adaptors. Elife. https://doi.org/10.7554/eLife.38362

    Article  PubMed  PubMed Central  Google Scholar 

  102. Whitmarsh AJ, Kuan CY, Kennedy NJ, Kelkar N, Haydar TF, Mordes JP, Appel M, Rossini AA, Jones SN, Flavell RA, Rakic P, Davis RJ (2001) Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev 15:2421–2432. https://doi.org/10.1101/gad.922801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Meyer D, Liu A, Margolis B (1999) Interaction of c-Jun amino-terminal kinase interacting protein-1 with p190 rhoGEF and its localization in differentiated neurons. J Biol Chem 274:35113–35118. https://doi.org/10.1074/jbc.274.49.35113

    Article  CAS  PubMed  Google Scholar 

  104. Stockinger W, Brandes C, Fasching D, Hermann M, Gotthardt M, Herz J, Schneider WJ, Nimpf J (2000) The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2. J Biol Chem 275:25625–25632. https://doi.org/10.1074/jbc.M004119200

    Article  CAS  PubMed  Google Scholar 

  105. Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J, Richardson JA, Stockinger W, Nimpf J, Herz J (2000) Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem 275:25616–25624. https://doi.org/10.1074/jbc.M000955200

    Article  CAS  PubMed  Google Scholar 

  106. Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, Margolis B (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 152:959–970. https://doi.org/10.1083/jcb.152.5.959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fu MM, Holzbaur ELF (2013) JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J Cell Biol 202:495–508. https://doi.org/10.1083/jcb.201302078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Whitmarsh AJ (2006) The JIP family of MAPK scaffold proteins. Biochem Soc Trans 34:828–832. https://doi.org/10.1042/BST0340828

    Article  CAS  PubMed  Google Scholar 

  109. Taru H, Iijima KI, Hase M, Kirino Y, Yagi Y, Suzuki T (2002) Interaction of Alzheimer’s β-amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade. J Biol Chem 277:20070–20078. https://doi.org/10.1074/jbc.M108372200

    Article  CAS  PubMed  Google Scholar 

  110. Kelkar N, Gupta S, Dickens M, Davis RJ (2000) Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol 20:1030–1043. https://doi.org/10.1128/mcb.20.3.1030-1043.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sun T, Yu N, Zhai LK, Li N, Zhang C, Zhou L, Huang Z, Jiang XY, Shen Y, Chen ZY (2013) C-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) regulates neuronal axon elongation in a kinesin- And JNK-dependent manner. J Biol Chem 288:14531–14543. https://doi.org/10.1074/jbc.M113.464453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Llinas P, Chenon M, Nguyen TQ, Moreira C, De Régibus A, Coquard A, Ramos MJ, Guérois R, Fernandes PA, Ménétrey J (2016) Structure of a truncated form of leucine zipper II of JIP3 reveals an unexpected antiparallel coiled-coil arrangement. Acta Crystallogr Sect Struct Biol Commun 72:198–206. https://doi.org/10.1107/S2053230X16001576

    Article  CAS  Google Scholar 

  113. Owens DM, Keyse SM (2007) Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26:3203–3213. https://doi.org/10.1038/sj.onc.1210412

    Article  CAS  PubMed  Google Scholar 

  114. Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489. https://doi.org/10.1042/BJ20082234

    Article  CAS  PubMed  Google Scholar 

  115. Liu X, Zhang CS, Lu C, Lin SC, Wu JW, Wang ZX (2016) A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Nat Commun. https://doi.org/10.1038/ncomms10879

    Article  PubMed  PubMed Central  Google Scholar 

  116. Son Y, Cheong Y-K, Kim N-H, Chung H-T, Kang DG, Pae H-O (2011) Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J Signal Transduct. https://doi.org/10.1155/2011/792639

    Article  PubMed  PubMed Central  Google Scholar 

  117. Teng CH, Huang WN, Meng TC (2007) Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J Biol Chem 282:28395–28407. https://doi.org/10.1074/jbc.M705142200

    Article  CAS  PubMed  Google Scholar 

  118. Zhou JY, Liu Y, Gen SW (2006) The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Res 66:4888–4894. https://doi.org/10.1158/0008-5472.CAN-05-4229

    Article  CAS  PubMed  Google Scholar 

  119. Gumpena R, Lountos GT, Waugh DS (2018) MBP-binding DARPins facilitate the crystallization of an MBP fusion protein. Acta Crystallogr Sect F Struct Biol Commun 74:549–557. https://doi.org/10.1107/S2053230X18009901

    Article  CAS  Google Scholar 

  120. Tao X, Tong L (2007) Crystal structure of the MAP kinase binding domain and the catalytic domain of human MKP5. Protein Sci 16:880–886. https://doi.org/10.1110/ps.062712807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta - Rev Cancer 1072:129–157. https://doi.org/10.1016/0304-419X(91)90011-9

    Article  CAS  Google Scholar 

  122. Hai T, Liu F, Allegretto EA, Karin M, Green MR (1988) A family of immunologically related transcription factors that includes multiple forms of ATF and AP-1. Genes Dev 2:1216–1226. https://doi.org/10.1101/GAD.2.10.1216

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

RG is grateful for the IYBA Award (Grant Number: BT/11/IYBA/2018/06) from the Department of Biotechnology (DBT), India; MHRD-SPARC (SPARC/2018–2019/P37/SL), Science and Engineering Research Board (SERB), India (Grant number: CRG/2019/005603), and Indian Council of Medical Research (Grant numbers: 58/6/2020/PHA/BMS, 52/04/2020/BIO/BMS). Department of Biotechnology, Ministry of Science and Technology (Grant number: BT/PR16871/NER/95/329/2015).

Author information

Authors and Affiliations

Authors

Contributions

RG and VNU: conception and design, interpretation of data, writing, and review of the manuscript, and study supervision. BRG: acquisition and interpretation of data. BRG and KG: writing and review of the manuscript.

Corresponding authors

Correspondence to Vladimir N. Uversky or Rajanish Giri.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 831 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gehi, B.R., Gadhave, K., Uversky, V.N. et al. Intrinsic disorder in proteins associated with oxidative stress-induced JNK signaling. Cell. Mol. Life Sci. 79, 202 (2022). https://doi.org/10.1007/s00018-022-04230-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04230-4

Keywords

Navigation