Skip to main content

Advertisement

Log in

Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembranous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Due to CNC’s vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-β, Wnt, FGF, Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribution to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory network in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel therapeutic strategies in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

CNC:

Cranial neural crest cells

BMP:

Bone morphogenetic proteins

FGF:

Fibroblast growth factors

Fb:

Frontal bone

Pb:

Parietal bone

PDGF:

Platelet-derived growth factor

TGF-β:

Transforming growth factor-β

Hh:

Hedgehog signaling

References

  1. Debbache J, Parfejevs V, Sommer L (2018) Cre-driver lines used for genetic fate mapping of neural crest cells in the mouse: an overview. Genesis 56:e23105. https://doi.org/10.1002/dvg.23105

    Article  PubMed  PubMed Central  Google Scholar 

  2. Echelard Y, Vassileva G, McMahon AP (1994) Cis-acting regulatory sequences governing Wnt-1 expression in the developing mouse CNS. Development 120:2213–2224

    Article  CAS  Google Scholar 

  3. McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69:581–595

    Article  CAS  Google Scholar 

  4. Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM (2002) Tissue origins and interactions in the mammalian skull vault. Dev Biol 241:106–116. https://doi.org/10.1006/dbio.2001.0487

    Article  CAS  PubMed  Google Scholar 

  5. Jarad G, Miner JH (2009) The Pax3-Cre transgene exhibits a rostrocaudal gradient of expression in the skeletal muscle lineage. Genesis 47:1–6. https://doi.org/10.1002/dvg.20447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gershon TR et al (2009) Enteric neural crest differentiation in ganglioneuromas implicates Hedgehog signaling in peripheral neuroblastic tumor pathogenesis. PLoS ONE 4:e7491. https://doi.org/10.1371/journal.pone.0007491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Q, Kumar S, Mitsios N, Slevin M, Kumar P (2007) Investigation of downstream target genes of PAX3c, PAX3e and PAX3g isoforms in melanocytes by microarray analysis. Int J Cancer 120:1223–1231. https://doi.org/10.1002/ijc.22316

    Article  CAS  PubMed  Google Scholar 

  8. Lee RT et al (2013) Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development 140:4890–4902. https://doi.org/10.1242/dev.094680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simon C, Lickert H, Gotz M, Dimou L (2012) Sox10-iCreERT2: a mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis 50:506–515. https://doi.org/10.1002/dvg.22003

    Article  CAS  PubMed  Google Scholar 

  10. He F, Soriano P (2015) Sox10ER(T2) CreER(T2) mice enable tracing of distinct neural crest cell populations. Dev Dyn 244:1394–1403. https://doi.org/10.1002/dvdy.24320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aoto K et al (2015) Mef2c-F10N enhancer driven beta-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells. Dev Biol 402:3–16. https://doi.org/10.1016/j.ydbio.2015.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang SM, Marsh R, Ratner N, Brackenbury R (1995) Myelin glycoprotein P0 is expressed at early stages of chicken and rat embryogenesis. J Neurosci Res 40:241–250. https://doi.org/10.1002/jnr.490400213

    Article  CAS  PubMed  Google Scholar 

  13. Yamauchi Y et al (1999) A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev Biol 212:191–203. https://doi.org/10.1006/dbio.1999.9323

    Article  CAS  PubMed  Google Scholar 

  14. Wang SK, Komatsu Y, Mishina Y (2011) Potential contribution of neural crest cells to dental enamel formation. Biochem Biophys Res Commun 415:114–119. https://doi.org/10.1016/j.bbrc.2011.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lewis AE, Vasudevan HN, O’Neill AK, Soriano P, Bush JO (2013) The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Dev Biol 379:229–234. https://doi.org/10.1016/j.ydbio.2013.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen G et al (2017) Specific and spatial labeling of P0-Cre versus Wnt1-Cre in cranial neural crest in early mouse embryos. Genesis. https://doi.org/10.1002/dvg.23034

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuratani S (2005) Cephalic neural crest cells and the evolution of craniofacial structures in vertebrates: morphological and embryological significance of the premandibular-mandibular boundary. Zoology 108:13–25. https://doi.org/10.1016/j.zool.2004.12.001

    Article  PubMed  Google Scholar 

  18. Wu T, Chen G, Tian F, Liu HX (2017) Contribution of cranial neural crest cells to mouse skull development. Int J Dev Biol 61:495–503. https://doi.org/10.1387/ijdb.170051gc

    Article  CAS  PubMed  Google Scholar 

  19. Koyabu D, Maier W, Sanchez-Villagra MR (2012) Paleontological and developmental evidence resolve the homology and dual embryonic origin of a mammalian skull bone, the interparietal. Proc Natl Acad Sci U S A 109:14075–14080. https://doi.org/10.1073/pnas.1208693109

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen G et al (2020) BMP signaling in the development and regeneration of cranium bones and maintenance of calvarial stem cells. Front Cell Dev Biol 8:135. https://doi.org/10.3389/fcell.2020.00135

    Article  PubMed  PubMed Central  Google Scholar 

  21. Depew MJ, Bertocchini F (1976) Avenues for investigating the neural crest and its derivatives in non-model (unconventional) vertebrates: a craniofacial skeleton perspective. Methods Mol Biol 207–221:2019. https://doi.org/10.1007/978-1-4939-9412-0_16

    Article  CAS  Google Scholar 

  22. Xu Y, Malladi P, Zhou D, Longaker MT (2007) Molecular and cellular characterization of mouse calvarial osteoblasts derived from neural crest and paraxial mesoderm. Plast Reconstr Surg 120:1783–1795. https://doi.org/10.1097/01.prs.0000279491.48283.51

    Article  CAS  PubMed  Google Scholar 

  23. Doro D, Liu A, Grigoriadis AE, Liu KJ (2019) The osteogenic potential of the neural crest lineage may contribute to craniosynostosis. Mol Syndromol 10:48–57. https://doi.org/10.1159/000493106

    Article  PubMed  Google Scholar 

  24. Senarath-Yapa K, Li S, Meyer NP, Longaker MT, Quarto N (2013) Integration of multiple signaling pathways determines differences in the osteogenic potential and tissue regeneration of neural crest-derived and mesoderm-derived calvarial bones. Int J Mol Sci 14:5978–5997. https://doi.org/10.3390/ijms14035978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Quarto N, Behr B, Li S, Longaker MT (2009) Differential FGF ligands and FGF receptors expression pattern in frontal and parietal calvarial bones. Cells Tissues Organs 190:158–169. https://doi.org/10.1159/000202789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li S, Quarto N, Longaker MT (2010) Activation of FGF signaling mediates proliferative and osteogenic differences between neural crest derived frontal and mesoderm parietal derived bone. PLoS ONE 5:e14033. https://doi.org/10.1371/journal.pone.0014033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kidwai F et al (2020) Lineage-specific differentiation of osteogenic progenitors from pluripotent stem cells reveals the FGF1-RUNX2 association in neural crest-derived osteoprogenitors. Stem Cells 38:1107–1123. https://doi.org/10.1002/stem.3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quarto N et al (2010) Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones. J Bone Miner Res 25:1680–1694. https://doi.org/10.1359/jbmr.091116

    Article  CAS  PubMed  Google Scholar 

  29. Li S et al (2015) Enhanced activation of canonical wnt signaling confers mesoderm-derived parietal bone with similar osteogenic and skeletal healing capacity to neural crest-derived frontal bone. PLoS ONE 10:e0138059. https://doi.org/10.1371/journal.pone.0138059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li S, Meyer NP, Quarto N, Longaker MT (2013) Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts. PLoS ONE 8:e58610. https://doi.org/10.1371/journal.pone.0058610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Menon S, Huber J, Duldulao C, Longaker MT, Quarto N (2021) An evolutionary conserved signaling network between mouse and human underlies the differential osteoskeletal potential of frontal and parietal calvarial bones. Front Physiol 12:747091. https://doi.org/10.3389/fphys.2021.747091

    Article  PubMed  PubMed Central  Google Scholar 

  32. Homayounfar N et al (2015) Transcriptional analysis of human cranial compartments with different embryonic origins. Arch Oral Biol 60:1450–1460. https://doi.org/10.1016/j.archoralbio.2015.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu B et al (2017) Physiological signatures of dual embryonic origins in mouse skull vault. Cell Physiol Biochem 43:2525–2534. https://doi.org/10.1159/000484496

    Article  CAS  PubMed  Google Scholar 

  34. Lumb R, Buckberry S, Secker G, Lawrence D, Schwarz Q (2017) Transcriptome profiling reveals expression signatures of cranial neural crest cells arising from different axial levels. BMC Dev Biol 17:5. https://doi.org/10.1186/s12861-017-0147-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roth DM, Bayona F, Baddam P, Graf D (2021) Craniofacial development: neural crest in molecular embryology. Head Neck Pathol 15:1–15. https://doi.org/10.1007/s12105-021-01301-z

    Article  PubMed  PubMed Central  Google Scholar 

  36. Meulemans D, Bronner-Fraser M (2004) Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7:291–299. https://doi.org/10.1016/j.devcel.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  37. Kanzler B, Foreman RK, Labosky PA, Mallo M (2000) BMP signaling is essential for development of skeletogenic and neurogenic cranial neural crest. Development 127:1095–1104

    Article  CAS  Google Scholar 

  38. Chen Y, Wang Z, Chen Y, Zhang Y (2019) Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice. Cell Tissue Res 376:199–210. https://doi.org/10.1007/s00441-018-2944-5

    Article  CAS  PubMed  Google Scholar 

  39. Bonilla-Claudio M et al (2012) Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development. Development 139:709–719. https://doi.org/10.1242/dev.073197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Solloway MJ, Robertson EJ (1999) Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development 126:1753–1768

    Article  CAS  Google Scholar 

  41. Mimura S et al (2016) Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells. Int J Dev Biol 60:21–28. https://doi.org/10.1387/ijdb.160040mk

    Article  CAS  PubMed  Google Scholar 

  42. Anderson RM, Stottmann RW, Choi M, Klingensmith J (2006) Endogenous bone morphogenetic protein antagonists regulate mammalian neural crest generation and survival. Dev Dyn 235:2507–2520. https://doi.org/10.1002/dvdy.20891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pegge J, Tatsinkam AJ, Rider CC, Bell E (2020) Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction. Dev Biol 460:108–114. https://doi.org/10.1016/j.ydbio.2019.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hackland JOS et al (2017) Top-down inhibition of BMP signaling enables robust induction of hpscs into neural crest in fully defined, Xeno-free Conditions. Stem Cell Reports 9:1043–1052. https://doi.org/10.1016/j.stemcr.2017.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pan H et al (2017) BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development. Dev Biol 429:260–270. https://doi.org/10.1016/j.ydbio.2017.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Komatsu Y et al (2013) Augmentation of Smad-dependent BMP signaling in neural crest cells causes craniosynostosis in mice. J Bone Miner Res 28:1422–1433. https://doi.org/10.1002/jbmr.1857

    Article  CAS  PubMed  Google Scholar 

  47. Kramer K et al (2018) Rapamycin rescues BMP mediated midline craniosynostosis phenotype through reduction of mTOR signaling in a mouse model. Genesis 56:e23220. https://doi.org/10.1002/dvg.23220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang X et al (2019) Distinctive role of ACVR1 in dentin formation: requirement for dentin thickness in molars and prevention of osteodentin formation in incisors of mice. J Mol Histol 50:43–61. https://doi.org/10.1007/s10735-018-9806-z

    Article  CAS  PubMed  Google Scholar 

  49. Yang J et al (2021) Generation of a new mouse line with conditionally activated signaling through the BMP receptor, ACVR1: a tool to characterize pleiotropic roles of BMP functions. Genesis 59:e23419. https://doi.org/10.1002/dvg.23419

    Article  CAS  PubMed  Google Scholar 

  50. Yang J et al (2021) Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic beta-catenin degradation. Sci Signal. https://doi.org/10.1126/scisignal.aaz9368

    Article  PubMed  PubMed Central  Google Scholar 

  51. Maruyama T et al (2021) BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abb4416

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ho TV et al (2015) Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development. Dev Biol 400:180–190. https://doi.org/10.1016/j.ydbio.2015.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ito Y et al (2003) Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 130:5269–5280. https://doi.org/10.1242/dev.00708

    Article  CAS  PubMed  Google Scholar 

  54. Zhao H, Oka K, Bringas P, Kaartinen V, Chai Y (2008) TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner. Dev Biol 320:19–29. https://doi.org/10.1016/j.ydbio.2008.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwata J et al (2010) Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. J Biol Chem 285:4975–4982. https://doi.org/10.1074/jbc.M109.035105

    Article  CAS  PubMed  Google Scholar 

  56. Ko SO et al (2007) Smad4 is required to regulate the fate of cranial neural crest cells. Dev Biol 312:435–447. https://doi.org/10.1016/j.ydbio.2007.09.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hosokawa R et al (2007) TGF-beta mediated Msx2 expression controls occipital somites-derived caudal region of skull development. Dev Biol 310:140–153. https://doi.org/10.1016/j.ydbio.2007.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Iwata J et al (2012) Modulation of noncanonical TGF-beta signaling prevents cleft palate in Tgfbr2 mutant mice. J Clin Invest 122:873–885. https://doi.org/10.1172/JCI61498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lei R et al (2016) Transferrin receptor facilitates TGF-beta and BMP signaling activation to control craniofacial morphogenesis. Cell Death Dis 7:e2282. https://doi.org/10.1038/cddis.2016.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yumoto K et al (2013) TGF-beta-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells. J Biol Chem 288:13467–13480. https://doi.org/10.1074/jbc.M112.431775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cibi DM et al (2019) Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. Elife. https://doi.org/10.7554/eLife.45418

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nusse R, Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999. https://doi.org/10.1016/j.cell.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  63. Ji Y, Hao H, Reynolds K, McMahon M, Zhou CJ (2019) Wnt signaling in neural crest ontogenesis and oncogenesis. Cells. https://doi.org/10.3390/cells8101173

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hari L et al (2012) Temporal control of neural crest lineage generation by Wnt/beta-catenin signaling. Development 139:2107–2117. https://doi.org/10.1242/dev.073064

    Article  CAS  PubMed  Google Scholar 

  65. DiNuoscio G, Atit RP (2019) Wnt/beta-catenin signaling in the mouse embryonic cranial mesenchyme is required to sustain the emerging differentiated meningeal layers. Genesis 57:e23279. https://doi.org/10.1002/dvg.23279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brault V et al (2001) Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128:1253–1264

    Article  CAS  Google Scholar 

  67. Masek J, Machon O, Korinek V, Taketo MM, Kozmik Z (2016) Tcf7l1 protects the anterior neural fold from adopting the neural crest fate. Development 143:2206–2216. https://doi.org/10.1242/dev.132357

    Article  CAS  PubMed  Google Scholar 

  68. Carmona-Fontaine C, Acuna G, Ellwanger K, Niehrs C, Mayor R (2007) Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm. Dev Biol 309:208–221. https://doi.org/10.1016/j.ydbio.2007.07.006

    Article  CAS  PubMed  Google Scholar 

  69. Bikkavilli RK et al (2012) Dishevelled3 is a novel arginine methyl transferase substrate. Sci Rep 2:805. https://doi.org/10.1038/srep00805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jia S et al (2016) Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists. Dev Biol 420:110–119. https://doi.org/10.1016/j.ydbio.2016.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao X, Le TP, Erhardt S, Findley TO, Wang J (2021) Hippo-yap pathway orchestrates neural crest ontogenesis. Front Cell Dev Biol 9:706623. https://doi.org/10.3389/fcell.2021.706623

    Article  PubMed  PubMed Central  Google Scholar 

  72. Akhmametyeva EM et al (2006) Regulation of the neurofibromatosis 2 gene promoter expression during embryonic development. Dev Dyn 235:2771–2785. https://doi.org/10.1002/dvdy.20883

    Article  CAS  PubMed  Google Scholar 

  73. Wang J et al (2016) Yap and Taz play a crucial role in neural crest-derived craniofacial development. Development 143:504–515. https://doi.org/10.1242/dev.126920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bi-Lin KW et al (2021) Critical role of the BAF chromatin remodeling complex during murine neural crest development. PLoS Genet 17:e1009446. https://doi.org/10.1371/journal.pgen.1009446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun Z et al (2018) FoxO6 regulates Hippo signaling and growth of the craniofacial complex. PLoS Genet 14:e1007675. https://doi.org/10.1371/journal.pgen.1007675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sarkar S, Petiot A, Copp A, Ferretti P, Thorogood P (2001) FGF2 promotes skeletogenic differentiation of cranial neural crest cells. Development 128:2143–2152

    Article  CAS  Google Scholar 

  77. Xu J et al (2018) FGF8 signaling alters the osteogenic cell fate in the hard palate. J Dent Res 97:589–596. https://doi.org/10.1177/0022034517750141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kawai M et al (2019) Fgfr1 conditional-knockout in neural crest cells induces heterotopic chondrogenesis and osteogenesis in mouse frontal bones. Med Mol Morphol 52:156–163. https://doi.org/10.1007/s00795-018-0213-z

    Article  CAS  PubMed  Google Scholar 

  79. Wang C et al (2013) Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis. J Biol Chem 288:22174–22183. https://doi.org/10.1074/jbc.M113.463620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heuze Y et al (2014) Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest- or mesoderm-derived tissues. Bone 63:101–109. https://doi.org/10.1016/j.bone.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Holmes G, Basilico C (2012) Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Dev Biol 368:283–293. https://doi.org/10.1016/j.ydbio.2012.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kyrylkova K, Iwaniec UT, Philbrick KA, Leid M (2016) BCL11B regulates sutural patency in the mouse craniofacial skeleton. Dev Biol 415:251–260. https://doi.org/10.1016/j.ydbio.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  83. Deckelbaum RA et al (2012) Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1. Development 139:1346–1358. https://doi.org/10.1242/dev.076729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li Y et al (2017) Robo signaling regulates the production of cranial neural crest cells. Exp Cell Res 361:73–84. https://doi.org/10.1016/j.yexcr.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  85. Cheng X et al (2017) From the cover: usage of dexamethasone increases the risk of cranial neural crest dysplasia in the chick embryo. Toxicol Sci 158:36–47. https://doi.org/10.1093/toxsci/kfx073

    Article  CAS  PubMed  Google Scholar 

  86. Ray AT et al (2020) FGF signaling regulates development by processes beyond canonical pathways. Genes Dev 34:1735–1752. https://doi.org/10.1101/gad.342956.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang J, Andre P, Ye L, Yang YZ (2015) The Hedgehog signalling pathway in bone formation. Int J Oral Sci 7:73–79. https://doi.org/10.1038/ijos.2015.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Amano K, Okuzaki D, Aikawa T, Kogo M (2020) Indian hedgehog in craniofacial neural crest cells links to skeletal malocclusion by regulating associated cartilage formation and gene expression. FASEB J 34:6791–6807. https://doi.org/10.1096/fj.201903269R

    Article  CAS  PubMed  Google Scholar 

  89. Sun MR et al (2020) Sonic hedgehog signaling in cranial neural crest cells regulates microvascular morphogenesis in facial development. Front Cell Dev Biol 8:590539. https://doi.org/10.3389/fcell.2020.590539

    Article  PubMed  PubMed Central  Google Scholar 

  90. Berio A, Piazzi A (2007) Serious cerebral malformations (corpus callosum aplasia, prosencephalic cyst), internal carotid canal and facial malformations due to neural crest abnormalities, associated with choleosteatoma. Minerva Pediatr 59:403–408

    CAS  PubMed  Google Scholar 

  91. Jeong J, Mao J, Tenzen T, Kottmann AH, McMahon AP (2004) Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev 18:937–951. https://doi.org/10.1101/gad.1190304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Swartz ME, Nguyen V, McCarthy NQ, Eberhart JK (2012) Hh signaling regulates patterning and morphogenesis of the pharyngeal arch-derived skeleton. Dev Biol 369:65–75. https://doi.org/10.1016/j.ydbio.2012.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li J et al (2017) Suppressor of Fused restraint of Hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development. J Biol Chem 292:15814–15825. https://doi.org/10.1074/jbc.M117.777532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y (2016) Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A 113:E2589-2597. https://doi.org/10.1073/pnas.1519458113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tian H et al (2017) Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum Mol Genet. https://doi.org/10.1093/hmg/ddx002

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kolpakova-Hart E, Jinnin M, Hou B, Fukai N, Olsen BR (2007) Kinesin-2 controls development and patterning of the vertebrate skeleton by Hedgehog- and Gli3-dependent mechanisms. Dev Biol 309:273–284. https://doi.org/10.1016/j.ydbio.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  97. Khonsari RH et al (2013) Multiple postnatal craniofacial anomalies are characterized by conditional loss of polycystic kidney disease 2 (Pkd2). Hum Mol Genet 22:1873–1885. https://doi.org/10.1093/hmg/ddt041

    Article  CAS  PubMed  Google Scholar 

  98. Badri MK et al (2016) Expression of Evc2 in craniofacial tissues and craniofacial bone defects in Evc2 knockout mouse. Arch Oral Biol 68:142–152. https://doi.org/10.1016/j.archoralbio.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang H et al (2015) Generation of Evc2/Limbin global and conditional KO mice and its roles during mineralized tissue formation. Genesis. https://doi.org/10.1002/dvg.22879

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kulkarni AK et al (2018) A ciliary protein EVC2/LIMBIN plays a critical role in the skull base for mid-facial development. Front Physiol 9:1484. https://doi.org/10.3389/fphys.2018.01484

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gokhman D et al (2021) Human-chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nat Genet 53:467–476. https://doi.org/10.1038/s41588-021-00804-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tabler JM, Rice CP, Liu KJ, Wallingford JB (2016) A novel ciliopathic skull defect arising from excess neural crest. Dev Biol 417:4–10. https://doi.org/10.1016/j.ydbio.2016.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mead TJ, Yutzey KE (2012) Notch pathway regulation of neural crest cell development in vivo. Dev Dyn 241:376–389. https://doi.org/10.1002/dvdy.23717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Humphreys R et al (2012) Cranial neural crest ablation of Jagged1 recapitulates the craniofacial phenotype of Alagille syndrome patients. Hum Mol Genet 21:1374–1383. https://doi.org/10.1093/hmg/ddr575

    Article  CAS  PubMed  Google Scholar 

  105. Kamalakar A et al (2019) A non-canonical JAGGED1 signal to JAK2 mediates osteoblast commitment in cranial neural crest cells. Cell Signal 54:130–138. https://doi.org/10.1016/j.cellsig.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  106. Kamalakar A et al (2021) JAGGED1 stimulates cranial neural crest cell osteoblast commitment pathways and bone regeneration independent of canonical NOTCH signaling. Bone 143:115657. https://doi.org/10.1016/j.bone.2020.115657

    Article  CAS  PubMed  Google Scholar 

  107. Fantauzzo KA, Soriano P (2016) PDGFRbeta regulates craniofacial development through homodimers and functional heterodimers with PDGFRalpha. Genes Dev 30:2443–2458. https://doi.org/10.1101/gad.288746.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Richarte AM, Mead HB, Tallquist MD (2007) Cooperation between the PDGF receptors in cardiac neural crest cell migration. Dev Biol 306:785–796. https://doi.org/10.1016/j.ydbio.2007.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moenning A et al (2009) Sustained platelet-derived growth factor receptor alpha signaling in osteoblasts results in craniosynostosis by overactivating the phospholipase C-gamma pathway. Mol Cell Biol 29:881–891. https://doi.org/10.1128/MCB.00885-08

    Article  CAS  PubMed  Google Scholar 

  110. Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124:2691–2700

    Article  CAS  Google Scholar 

  111. Vasudevan HN, Soriano P (2014) SRF regulates craniofacial development through selective recruitment of MRTF cofactors by PDGF signaling. Dev Cell 31:332–344. https://doi.org/10.1016/j.devcel.2014.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Corsinovi D, Giannetti K, Cericola A, Naef V, Ori M (2019) PDGF-B: the missing piece in the mosaic of PDGF family role in craniofacial development. Dev Dyn 248:603–612. https://doi.org/10.1002/dvdy.47

    Article  CAS  PubMed  Google Scholar 

  113. Mo J, Long R, Fantauzzo KA (2020) Pdgfra and Pdgfrb genetically interact in the murine neural crest cell lineage to regulate migration and proliferation. Front Physiol 11:588901. https://doi.org/10.3389/fphys.2020.588901

    Article  PubMed  PubMed Central  Google Scholar 

  114. Betancur P, Bronner-Fraser M, Sauka-Spengler T (2010) Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest. Proc Natl Acad Sci U S A 107:3570–3575. https://doi.org/10.1073/pnas.0906596107

    Article  PubMed  PubMed Central  Google Scholar 

  115. Jandzik D et al (2015) Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue. Nature 518:534–537. https://doi.org/10.1038/nature14000

    Article  CAS  PubMed  Google Scholar 

  116. Mandalos N et al (2014) Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development. Front Physiol 5:345. https://doi.org/10.3389/fphys.2014.00345

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dash S, Bhatt S, Falcon KT, Sandell LL, Trainor PA (2021) Med23 regulates Sox9 expression during craniofacial development. J Dent Res 100:406–414. https://doi.org/10.1177/0022034520969109

    Article  CAS  PubMed  Google Scholar 

  118. Schorle H, Meier P, Buchert M, Jaenisch R, Mitchell PJ (1996) Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381:235–238. https://doi.org/10.1038/381235a0

    Article  CAS  PubMed  Google Scholar 

  119. Knight RD, Javidan Y, Zhang T, Nelson S, Schilling TF (2005) AP2-dependent signals from the ectoderm regulate craniofacial development in the zebrafish embryo. Development 132:3127–3138. https://doi.org/10.1242/dev.01879

    Article  CAS  PubMed  Google Scholar 

  120. Enkhmandakh B, Bayarsaihan D (2015) Genome-wide chromatin mapping defines AP2alpha in the etiology of craniofacial disorders. Cleft Palate Craniofac J 52:135–142. https://doi.org/10.1597/13-151

    Article  PubMed  Google Scholar 

  121. Machon O, Masek J, Machonova O, Krauss S, Kozmik Z (2015) Meis2 is essential for cranial and cardiac neural crest development. BMC Dev Biol 15:40. https://doi.org/10.1186/s12861-015-0093-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martino VB et al (2016) Conditional deletion of AP-2beta in mouse cranial neural crest results in anterior segment dysgenesis and early-onset glaucoma. Dis Model Mech 9:849–861. https://doi.org/10.1242/dmm.025262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mitchell JM et al (2021) The alx3 gene shapes the zebrafish neurocranium by regulating frontonasal neural crest cell differentiation timing. Development. https://doi.org/10.1242/dev.197483

    Article  PubMed  PubMed Central  Google Scholar 

  124. Winograd J et al (1997) Perinatal lethality and multiple craniofacial malformations in MSX2 transgenic mice. Hum Mol Genet 6:369–379. https://doi.org/10.1093/hmg/6.3.369

    Article  CAS  PubMed  Google Scholar 

  125. Roybal PG et al (2010) Inactivation of Msx1 and Msx2 in neural crest reveals an unexpected role in suppressing heterotopic bone formation in the head. Dev Biol 343:28–39. https://doi.org/10.1016/j.ydbio.2010.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ishii M et al (2005) Combined deficiencies of Msx1 and Msx2 cause impaired patterning and survival of the cranial neural crest. Development 132:4937–4950. https://doi.org/10.1242/dev.02072

    Article  CAS  PubMed  Google Scholar 

  127. Bildsoe H et al (2009) Requirement for Twist1 in frontonasal and skull vault development in the mouse embryo. Dev Biol 331:176–188. https://doi.org/10.1016/j.ydbio.2009.04.034

    Article  CAS  PubMed  Google Scholar 

  128. Bildsoe H et al (2016) Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance. Dev Biol 418:189–203. https://doi.org/10.1016/j.ydbio.2016.08.016

    Article  CAS  PubMed  Google Scholar 

  129. Merrill AE et al (2006) Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis. Hum Mol Genet 15:1319–1328. https://doi.org/10.1093/hmg/ddl052

    Article  CAS  PubMed  Google Scholar 

  130. Ting MC et al (2009) EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development 136:855–864. https://doi.org/10.1242/dev.028605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Quarto N et al (2018) Twist1-haploinsufficiency selectively enhances the osteoskeletal capacity of mesoderm-derived parietal bone through downregulation of Fgf23. Front Physiol 9:1426. https://doi.org/10.3389/fphys.2018.01426

    Article  PubMed  PubMed Central  Google Scholar 

  132. McKeown SJ, Newgreen DF, Farlie PG (2005) Dlx2 over-expression regulates cell adhesion and mesenchymal condensation in ectomesenchyme. Dev Biol 281:22–37. https://doi.org/10.1016/j.ydbio.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  133. Ruest LB et al (2003) dHAND-Cre transgenic mice reveal specific potential functions of dHAND during craniofacial development. Dev Biol 257:263–277. https://doi.org/10.1016/s0012-1606(03)00068-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chung IH, Han J, Iwata J, Chai Y (2010) Msx1 and Dlx5 function synergistically to regulate frontal bone development. Genesis 48:645–655. https://doi.org/10.1002/dvg.20671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mishina Y, Snider TN (2014) Neural crest cell signaling pathways critical to cranial bone development and pathology. Exp Cell Res 325:138–147. https://doi.org/10.1016/j.yexcr.2014.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Takarada T et al (2016) Genetic analysis of Runx2 function during intramembranous ossification. Development 143:211–218. https://doi.org/10.1242/dev.128793

    Article  CAS  PubMed  Google Scholar 

  137. Shirai Y et al (2019) Runx2 function in cells of neural crest origin during intramembranous ossification. Biochem Biophys Res Commun 509:1028–1033. https://doi.org/10.1016/j.bbrc.2019.01.059

    Article  CAS  PubMed  Google Scholar 

  138. Kim HJ, Rice DP, Kettunen PJ, Thesleff I (1998) FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 125:1241–1251

    Article  CAS  Google Scholar 

  139. Li J et al (2011) SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development 138:1977–1989. https://doi.org/10.1242/dev.061341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Alkobtawi M, Pla P, Monsoro-Burq AH (2021) BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. Cell Rep 35:109289. https://doi.org/10.1016/j.celrep.2021.109289

    Article  CAS  PubMed  Google Scholar 

  141. Minoux M et al (2017) Gene bivalency at Polycomb domains regulates cranial neural crest positional identity. Science. https://doi.org/10.1126/science.aal2913

    Article  PubMed  Google Scholar 

  142. Higashihori N et al (2017) Methyltransferase G9A regulates osteogenesis via twist gene repression. J Dent Res 96:1136–1144. https://doi.org/10.1177/0022034517716438

    Article  CAS  PubMed  Google Scholar 

  143. Ideno H et al (2020) G9a is involved in the regulation of cranial bone formation through activation of Runx2 function during development. Bone 137:115332. https://doi.org/10.1016/j.bone.2020.115332

    Article  CAS  PubMed  Google Scholar 

  144. Schwarz D et al (2014) Ezh2 is required for neural crest-derived cartilage and bone formation. Development 141:867–877. https://doi.org/10.1242/dev.094342

    Article  CAS  PubMed  Google Scholar 

  145. Sen R et al (2018) Kat2a and Kat2b acetyltransferase activity regulates craniofacial cartilage and bone differentiation in zebrafish and mice. J Dev Biol. https://doi.org/10.3390/jdb6040027

    Article  PubMed  PubMed Central  Google Scholar 

  146. Pezoa SA, Artinger KB, Niswander LA (2020) GCN5 acetylation is required for craniofacial chondrocyte maturation. Dev Biol 464:24–34. https://doi.org/10.1016/j.ydbio.2020.05.006

    Article  CAS  PubMed  Google Scholar 

  147. Roth DM et al (2021) The chromatin regulator Ankrd11 controls palate and cranial bone development. Front Cell Dev Biol 9:645386. https://doi.org/10.3389/fcell.2021.645386

    Article  PubMed  PubMed Central  Google Scholar 

  148. Haberland M, Mokalled MH, Montgomery RL, Olson EN (2009) Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 23:1625–1630. https://doi.org/10.1101/gad.1809209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Singh N et al (2013) Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression. Dev Biol 377:333–344. https://doi.org/10.1016/j.ydbio.2013.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shao R et al (2016) Cdh1 regulates craniofacial development via APC-dependent ubiquitination and activation of Goosecoid. Cell Res 26:699–712. https://doi.org/10.1038/cr.2016.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wiszniak S, Harvey N, Schwarz Q (2016) Cell autonomous roles of Nedd4 in craniofacial bone formation. Dev Biol 410:98–107. https://doi.org/10.1016/j.ydbio.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  152. Trainor PA (2010) Craniofacial birth defects: the role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. Am J Med Genet A 152A:2984–2994. https://doi.org/10.1002/ajmg.a.33454

    Article  PubMed  Google Scholar 

  153. van Gijn DR, Tucker AS, Cobourne MT (2013) Craniofacial development: current concepts in the molecular basis of Treacher Collins syndrome. Br J Oral Maxillofac Surg 51:384–388. https://doi.org/10.1016/j.bjoms.2012.09.008

    Article  PubMed  Google Scholar 

  154. Wang Q et al (2019) Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate. Dis Model Mech. https://doi.org/10.1242/dmm.040279

    Article  PubMed  PubMed Central  Google Scholar 

  155. Miller EE et al (2017) EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome. Hum Mol Genet 26:2177–2191. https://doi.org/10.1093/hmg/ddx078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu T et al (2019) Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea. Neurobiol Aging 80:210–222. https://doi.org/10.1016/j.neurobiolaging.2019.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pini J et al (2020) ALX1-related frontonasal dysplasia results from defective neural crest cell development and migration. EMBO Mol Med 12:e12013. https://doi.org/10.15252/emmm.202012013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shpargel KB, Mangini CL, Xie G, Ge K, Magnuson T (2020) The KMT2D Kabuki syndrome histone methylase controls neural crest cell differentiation and facial morphology. Development. https://doi.org/10.1242/dev.187997

    Article  PubMed  PubMed Central  Google Scholar 

  159. Yang R et al (2021) Mycn deficiency underlies the development of orofacial clefts in mice and humans. Hum Mol Genet. https://doi.org/10.1093/hmg/ddab288

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zhang M et al (2020) Investigate the odontogenic differentiation and dentin-pulp tissue regeneration potential of neural crest cells. Front Bioeng Biotechnol 8:475. https://doi.org/10.3389/fbioe.2020.00475

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kim HJ et al (2021) Nasal turbinate mesenchymal stromal cells preserve characteristics of their neural crest origin and exert distinct paracrine activity. J Clin Med. https://doi.org/10.3390/jcm10081792

    Article  PubMed  PubMed Central  Google Scholar 

  162. Taihi I, Nassif A, Isaac J, Fournier BP, Ferre F (2019) Head to knee: cranial neural crest-derived cells as promising candidates for human cartilage repair. Stem Cells Int 2019:9310318. https://doi.org/10.1155/2019/9310318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yoshida H et al (2021) Neural crest-derived cells in nasal conchae of adult mice contribute to bone regeneration. Biochem Biophys Res Commun 554:173–178. https://doi.org/10.1016/j.bbrc.2021.03.079

    Article  CAS  PubMed  Google Scholar 

  164. Yu M et al (2021) Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis. Cell 184:243-256.e18. https://doi.org/10.1016/j.cell.2020.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kawano E et al (2017) Induction of neural crest cells from human dental pulp-derived induced pluripotent stem cells. Biomed Res 38:135–147. https://doi.org/10.2220/biomedres.38.135

    Article  CAS  PubMed  Google Scholar 

  166. Hoving AL et al (2021) Between fate choice and self-renewal-heterogeneity of adult neural crest-derived stem cells. Front Cell Dev Biol 9:662754. https://doi.org/10.3389/fcell.2021.662754

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JL, YH, QW, SC, CZ, DW, ZL, XZ: data analysis, literature formation. GC, MW: supervision and grant holder.

Corresponding author

Correspondence to Guiqian Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors agree the current state of the manuscript to be submitted to the journal.

Funding

This work was supported by grants by the Zhejiang Qianjiang Talent Program (21040040-E), a startup grant from Zhejiang SCI-TECH University (18042290-Y; 2021Q031), Department of Sci-Tech of Zhejiang Province (LGF19H140002), National Natural Science Foundation of China (81400489) and Jiaxing Science Technology Foundation (2020AY10001).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Huang, Y., Wang, Q. et al. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development. Cell. Mol. Life Sci. 79, 158 (2022). https://doi.org/10.1007/s00018-022-04208-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04208-2

Keywords

Navigation