Skip to main content

Advertisement

Log in

Molecular regulation of hematopoietic stem cell quiescence

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hematopoietic stem cells (HSCs) are primarily dormant in a cell-cycle quiescence state to preserve their self-renewal capacity and long-term maintenance, which is essential for the homeostasis of hematopoietic system. Dysregulation of quiescence causes HSC dysfunction and may result in aberrant hematopoiesis (e.g., myelodysplastic syndrome and bone marrow failure syndromes) and leukemia transformation. Accumulating evidence indicates that both intrinsic molecular networks and extrinsic signals regulate HSC quiescence, including cell-cycle regulators, transcription factors, epigenetic factors, and niche factors. Further, the transition between quiescence and activation of HSCs is a continuous developmental path driven by cell metabolism (e.g., protein synthesis, glycolysis, oxidative phosphorylation, and autophagy). Elucidating the complex regulatory networks of HSC quiescence will expand the knowledge of HSC hemostasis and benefit for clinical HSC use. Here, we review the current understanding and progression on the molecular and metabolic regulation of HSC quiescence, providing a more complete picture regarding the mechanisms of HSC quiescence maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. McGrath KE, Frame JM, Fromm GJ et al (2011) A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian embryo. Blood 117:4600–4608. https://doi.org/10.1182/blood-2010-12-325357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Dharampuriya PR, Scapin G, Wong C, John Wagner K, Cillis JL, Shah DI (2017) Tracking the origin, development, and differentiation of hematopoietic stem cells. Curr Opin Cell Biol 49:108–115. https://doi.org/10.1016/j.ceb.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  3. Bigas A, Waskow C (2016) Blood stem cells: from beginning to end. Development 143:3429–3433. https://doi.org/10.1242/dev.142828

    Article  CAS  PubMed  Google Scholar 

  4. Dzierzak E, Bigas A (2018) Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22:639–651. https://doi.org/10.1016/j.stem.2018.04.015

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura-Ishizu A, Takizawa H, Suda T (2014) The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 141:4656–4666. https://doi.org/10.1242/dev.106575

    Article  CAS  PubMed  Google Scholar 

  6. O’Reilly E, Zeinabad HA, Szegezdi E (2021) Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Rev. https://doi.org/10.1016/j.blre.2021.100850

    Article  PubMed  Google Scholar 

  7. Wilson A, Laurenti E, Oser G et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:1118–1129. https://doi.org/10.1016/j.cell.2008.10.048

    Article  CAS  PubMed  Google Scholar 

  8. Laurenti E, Frelin C, Xie S et al (2015) CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16:302–313. https://doi.org/10.1016/j.stem.2015.01.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Calvi LM, Link DC (2015) The hematopoietic stem cell niche in homeostasis and disease. Blood 126:2443–2451. https://doi.org/10.1182/blood-2015-07-533588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yamashita M, Dellorusso PV, Olson OC, Passegué E (2020) Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer 20:365–382. https://doi.org/10.1038/s41568-020-0260-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Singh S, Jakubison B, Keller JR (2020) Protection of hematopoietic stem cells from stress-induced exhaustion and aging. Curr Opin Hematol 27:225–231. https://doi.org/10.1097/MOH.0000000000000586

    Article  PubMed  Google Scholar 

  12. Chu SH, Heiser D, Li L et al (2012) FLT3-ITD knockin impairs hematopoietic stem cell quiescence/homeostasis, leading to myeloproliferative neoplasm. Cell Stem Cell 11:346–358. https://doi.org/10.1016/j.stem.2012.05.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhang H, Kozono DE, O’Connor KW et al (2016) TGF-β inhibition rescues hematopoietic stem cell defects and bone marrow failure in fanconi anemia. Cell Stem Cell 18:668–681. https://doi.org/10.1016/j.stem.2016.03.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ceccaldi R, Parmar K, Mouly E et al (2012) Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 11:36–49. https://doi.org/10.1016/j.stem.2012.05.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Göttgens B (2015) Regulatory network control of blood stem cells. Blood 125:2614–2620. https://doi.org/10.1182/blood-2014-08-570226

    Article  CAS  PubMed  Google Scholar 

  16. Hu M, Wang J (2019) Mitochondrial metabolism and the maintenance of hematopoietic stem cell quiescence. Curr Opin Hematol 26:228–234. https://doi.org/10.1097/MOH.0000000000000507

    Article  PubMed  Google Scholar 

  17. Ito K, Ito K (2018) Hematopoietic stem cell fate through metabolic control. Exp Hematol 64:1–11. https://doi.org/10.1016/j.exphem.2018.05.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yang Z, Jiang H (2020) A chromatin perspective on metabolic and genotoxic impacts on hematopoietic stem and progenitor cells. Cell Mol Life Sci 77:4031–4047. https://doi.org/10.1007/s00018-020-03522-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806. https://doi.org/10.1084/jem.183.4.1797

    Article  CAS  PubMed  Google Scholar 

  20. Gothot A, Pyatt R, McMahel J, Rice S, Srour EF (1997) Functional heterogeneity of human CD34(+) cells isolated in subcompartments of the G0 /G1 phase of the cell cycle. Blood 90:4384–4393

    Article  CAS  PubMed  Google Scholar 

  21. Passegué E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 202:1599–1611. https://doi.org/10.1084/jem.20050967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Cheshier SH, Morrison SJ, Liao X, Weissman IL (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 96:3120–3125. https://doi.org/10.1073/pnas.96.6.3120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wilkinson AC, Ishida R, Kikuchi M et al (2019) Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature 571:117–121. https://doi.org/10.1038/s41586-019-1244-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chen Z, Huo D, Li L et al (2021) Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis. J Exp Med 218:e20201974. https://doi.org/10.1084/jem.20201974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sheng Y, Ma R, Yu C et al (2021) Role of c-Myc haploinsufficiency in the maintenance of HSCs in mice. Blood 137:610–623. https://doi.org/10.1182/blood.2019004688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rumman M, Dhawan J, Kassem M (2015) Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells 33:2903–2912. https://doi.org/10.1002/stem.2056

    Article  PubMed  Google Scholar 

  27. Gerdes J, Li L, Schlueter C et al (1991) Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol 138(4):867–873

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Wang H, Diao D, Shi Z et al (2016) SIRT6 Controls Hematopoietic stem cell homeostasis through epigenetic regulation of wnt signaling. Cell Stem Cell 18:495–507. https://doi.org/10.1016/j.stem.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  29. Lu Z, Hong CC, Kong G et al (2018) Polycomb group protein YY1 is an essential regulator of hematopoietic stem cell quiescence. Cell Rep 22:1545–1559. https://doi.org/10.1016/j.celrep.2018.01.026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Grinenko T, Eugster A, Thielecke L et al (2018) Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice. Nat Commun 9:1898. https://doi.org/10.1038/s41467-018-04188-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121. https://doi.org/10.1016/j.cell.2005.05.026

    Article  CAS  PubMed  Google Scholar 

  32. Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13:102–116. https://doi.org/10.1016/j.stem.2013.05.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hu M, Lu Y, Wang S et al (2021) CD63 acts as a functional marker in maintaining hematopoietic stem cell quiescence through supporting TGFβ signaling in mice. Cell Death Differ. https://doi.org/10.1038/s41418-021-00848-2

    Article  PubMed Central  PubMed  Google Scholar 

  34. Hur J, Choi JI, Lee H et al (2016) CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell 18:508–521. https://doi.org/10.1016/j.stem.2016.01.013

    Article  CAS  PubMed  Google Scholar 

  35. Pessoa Rodrigues C, Akhtar A (2021) Differential H4K16ac levels ensure a balance between quiescence and activation in hematopoietic stem cells. Sci Adv 7:abi5987. https://doi.org/10.1126/sciadv.abi5987

    Article  CAS  Google Scholar 

  36. Foudi A, Hochedlinger K, Van Buren D et al (2009) Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat Biotechnol 27:84–90. https://doi.org/10.1038/nbt.1517

    Article  CAS  PubMed  Google Scholar 

  37. Liang R, Arif T, Kalmykova S et al (2020) Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. Cell Stem Cell 26:359–376. https://doi.org/10.1016/j.stem.2020.01.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063. https://doi.org/10.1182/blood-2007-05-087759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kowalczyk MS, Tirosh I, Heckl D et al (2015) Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res 25:1860–1872. https://doi.org/10.1101/gr.192237.115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rodriguez-Fraticelli AE, Weinreb C, Wang SW et al (2020) Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 583:585–589. https://doi.org/10.1038/s41586-020-2503-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166. https://doi.org/10.1038/nrc2602

    Article  CAS  PubMed  Google Scholar 

  42. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140:3079–3093. https://doi.org/10.1242/dev.091744

    Article  CAS  PubMed  Google Scholar 

  43. Kalaszczynska I, Geng Y, Iino T et al (2009) Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell 138:352–365. https://doi.org/10.1016/j.cell.2009.04.062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kozar K, Ciemerych MA, Rebel VI et al (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491. https://doi.org/10.1016/j.cell.2004.07.025

    Article  CAS  PubMed  Google Scholar 

  45. Mende N, Kuchen EE, Lesche M et al (2015) CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. J Exp Med 212:1171–1183. https://doi.org/10.1084/jem.20150308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Malumbres M, Sotillo R, Santamaría D et al (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118:493–504. https://doi.org/10.1016/j.cell.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  47. Cheng T, Rodrigues N, Shen H et al (2000) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287:1804–1808. https://doi.org/10.1126/science.287.5459.1804

    Article  CAS  PubMed  Google Scholar 

  48. Matsumoto A, Takeishi S, Kanie T et al (2011) p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 9:262–271. https://doi.org/10.1016/j.stem.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  49. Yu H, Yuan Y, Shen H, Cheng T (2006) Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21 Cip1/Waf1 in opposite manners. Blood 107:1200–1206. https://doi.org/10.1182/blood-2005-02-0685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zou P, Yoshihara H, Hosokawa K et al (2011) p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell 9:247–261. https://doi.org/10.1016/j.stem.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  51. Yamada T, Park CS, Burns A, Nakada D, Lacorazza HD (2012) The cytosolic protein G0S2 maintains quiescence in hematopoietic stem cells. PLoS One 7:e38280. https://doi.org/10.1371/journal.pone.0038280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Haberle V, Stark A (2018) Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 19:621–637. https://doi.org/10.1038/s41580-018-0028-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hao S, Chen C, Cheng T (2016) Cell cycle regulation of hematopoietic stem or progenitor cells. Int J Hematol 103:487–497. https://doi.org/10.1007/s12185-016-1984-4

    Article  CAS  PubMed  Google Scholar 

  54. Parrales A, Iwakuma T (2015) Targeting oncogenic mutant p53 for cancer therapy. Front Oncol 5:288. https://doi.org/10.3389/fonc.2015.00288

    Article  PubMed Central  PubMed  Google Scholar 

  55. Liu Y, Elf SE, Miyata Y et al (2009) p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4:37–48. https://doi.org/10.1016/j.stem.2008.11.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hock H, Hamblen MJ, Rooke HM et al (2004) Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431:1002–1007. https://doi.org/10.1038/nature02994

    Article  CAS  PubMed  Google Scholar 

  57. Hu B, Wang S, Zhang Y, Feghali CA, Dingman JR, Wright TM (2003) A nuclear target for interleukin-1alpha: interaction with the growth suppressor necdin modulates proliferation and collagen expression. Proc Natl Acad Sci USA 100:10008–10013. https://doi.org/10.1073/pnas.1737765100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Asai T, Liu Y, Di Giandomenico S et al (2012) Necdin, a p53 target gene, regulates the quiescence and response to genotoxic stress of hematopoietic stem/progenitor cells. Blood 120:1601–1612. https://doi.org/10.1182/blood-2011-11-393983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Chen H, Liu H, Qing G (2018) Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther 3:5. https://doi.org/10.1038/s41392-018-0008-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Laurenti E, Varnum-Finney B, Wilson A et al (2008) Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 3:611–624. https://doi.org/10.1016/j.stem.2008.09.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lieu YK, Reddy EP (2009) Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. Proc Natl Acad Sci USA 106:21689–21694. https://doi.org/10.1073/pnas.0907623106

    Article  PubMed Central  PubMed  Google Scholar 

  62. Komorowska K, Doyle A, Wahlestedt M et al (2017) Hepatic leukemia factor maintains quiescence of hematopoietic stem cells and protects the stem cell pool during regeneration. Cell Rep 21:3514–3523. https://doi.org/10.1016/j.celrep.2017.11.084

    Article  CAS  PubMed  Google Scholar 

  63. Ficara F, Murphy MJ, Lin M, Cleary ML (2008) Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2:484–496. https://doi.org/10.1016/j.stem.2008.03.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Goyama S, Yamamoto G, Shimabe M et al (2008) Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3:207–220. https://doi.org/10.1016/j.stem.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  65. Sirin O, Lukov GL, Mao R, Conneely OM, Goodell MA (2010) The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells. Nat Cell Biol 12:1213–1219. https://doi.org/10.1038/ncb2125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Tsai JJ, Dudakov JA, Takahashi K et al (2013) Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol 15:309–316. https://doi.org/10.1038/ncb2699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Ye M, Zhang H, Amabile G et al (2013) C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat Cell Biol 15:385–394. https://doi.org/10.1038/ncb2698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Staber PB, Zhang P, Ye M et al (2013) Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells. Mol Cell 49:934–946. https://doi.org/10.1016/j.molcel.2013.01.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Chavez JS, Rabe JL, Loeffler D et al (2021) PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. J Exp Med 218:e20201169. https://doi.org/10.1084/jem.20201169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Hou Y, Wang X, Li L et al (2015) FHL2 regulates hematopoietic stem cell functions under stress conditions. Leukemia 29:615–624. https://doi.org/10.1038/leu.2014.254

    Article  CAS  PubMed  Google Scholar 

  71. Lacorazza HD, Yamada T, Liu Y et al (2006) The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 9:175–187. https://doi.org/10.1016/j.ccr.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  72. Singh SK, Singh S, Gadomski S et al (2018) Id1 ablation protects hematopoietic stem cells from stress-induced exhaustion and aging. Cell Stem Cell 23:252-265.e8. https://doi.org/10.1016/j.stem.2018.06.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Yu M, Zhan J, Zhang H (2020) HOX family transcription factors: Related signaling pathways and post-translational modifications in cancer. Cell Signal 66:109469. https://doi.org/10.1016/j.cellsig.2019.109469

    Article  CAS  PubMed  Google Scholar 

  74. Björnsson JM, Larsson N, Brun AC et al (2003) Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol 23:3872–3883. https://doi.org/10.1128/MCB.23.11.3872-3883.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Antonchuk J, Sauvageau G, Humphries RK (2001) HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol 29:1125–1134. https://doi.org/10.1016/s0301-472x(01)00681-6

    Article  CAS  PubMed  Google Scholar 

  76. Carè A, Valtieri M, Mattia G et al (1999) Enforced expression of HOXB7 promotes hematopoietic stem cell proliferation and myeloid-restricted progenitor differentiation. Oncogene 18:1993–2001. https://doi.org/10.1038/sj.onc.1202498

    Article  PubMed  Google Scholar 

  77. Chen JY, Miyanishi M, Wang SK et al (2016) Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530:223–227. https://doi.org/10.1038/nature16943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Tipping AJ, Pina C, Castor A et al (2009) High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 113:2661–2672. https://doi.org/10.1182/blood-2008-06-161117

    Article  CAS  PubMed  Google Scholar 

  79. Ku CJ, Hosoya T, Maillard I, Engel JD (2012) GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry. Blood 119:2242–2251. https://doi.org/10.1182/blood-2011-07-366070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Golson ML, Kaestner KH (2016) Fox transcription factors: from development to disease. Development 143:4558–4570. https://doi.org/10.1242/dev.112672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Hou Y, Li W, Sheng Y et al (2015) The transcription factor Foxm1 is essential for the quiescence and maintenance of hematopoietic stem cells. Nat Immunol 16:810–818. https://doi.org/10.1038/ni.3204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Tothova Z, Kollipara R, Huntly BJ et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339. https://doi.org/10.1016/j.cell.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  83. Miyamoto K, Araki KY, Naka K et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1:101–112. https://doi.org/10.1016/j.stem.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  84. Warr MR, Binnewies M, Flach J et al (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494:323–327. https://doi.org/10.1038/nature11895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Cai X, Gao L, Teng L et al (2015) Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell 17:165–177. https://doi.org/10.1016/j.stem.2015.06.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Challen GA, Sun D, Jeong M et al (2011) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44:23–31. https://doi.org/10.1038/ng.1009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Qin Y, Li L, Luo E et al (2020) Role of m6A RNA methylation in cardiovascular disease (review). Int J Mol Med 46:1958–1972. https://doi.org/10.3892/ijmm.2020.4746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Cheng Y, Luo H, Izzo F et al (2019) m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep 28:1703–1716. https://doi.org/10.1016/j.celrep.2019.07.032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E et al (2014) Immunogenetics. Chromatin state dynamics during blood formation. Science 345:943–949. https://doi.org/10.1126/science.1256271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Takayama N, Murison A, Takayanagi SI et al (2021) The transition from quiescent to activated states in human hematopoietic stem cells is governed by dynamic 3D genome reorganization. Cell Stem Cell 28:488–501. https://doi.org/10.1016/j.stem.2020.11.001

    Article  CAS  PubMed  Google Scholar 

  91. Beerman I, Rossi DJ (2015) Epigenetic control of stem cell potential during homeostasis, aging, and disease. Cell Stem Cell 16:613–625. https://doi.org/10.1016/j.stem.2015.05.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Zhou Y, Yan X, Feng X et al (2018) Setd2 regulates quiescence and differentiation of adult hematopoietic stem cells by restricting RNA polymerase II elongation. Haematologica 103:1110–1123. https://doi.org/10.3324/haematol.2018.187708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. McMahon KA, Hiew SY, Hadjur S et al (2007) Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1:338–345. https://doi.org/10.1016/j.stem.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  94. Jones M, Chase J, Brinkmeier M et al (2015) Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells. J Clin Invest 125:2007–2020. https://doi.org/10.1172/JCI78124

    Article  PubMed Central  PubMed  Google Scholar 

  95. Wan X, Liu L, Zhou P et al (2019) The nuclear receptor corepressor NCoR1 regulates hematopoiesis and leukemogenesis in vivo. Blood Adv 3:644–657. https://doi.org/10.1182/bloodadvances.2018022756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Valerio DG, Xu H, Eisold ME, Woolthuis CM, Pandita TK, Armstrong SA (2017) Histone acetyltransferase activity of MOF is required for adult but not early fetal hematopoiesis in mice. Blood 129:48–59. https://doi.org/10.1182/blood-2016-05-714568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Venkatraman A, He XC, Thorvaldsen JL et al (2013) Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500:345–349. https://doi.org/10.1038/nature12303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Qian P, He XC, Paulson A et al (2016) The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell 18:214–228. https://doi.org/10.1016/j.stem.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  99. Shi Y, Wang Q, Song R, Kong Y, Zhang Z (2021) Non-coding RNAs in depression: Promising diagnostic and therapeutic biomarkers. EBio Med 71:103569. https://doi.org/10.1016/j.ebiom.2021.103569

    Article  CAS  Google Scholar 

  100. Keniry A, Oxley D, Monnier P et al (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665. https://doi.org/10.1038/ncb2521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Lechman ER, Gentner B, van Galen P et al (2012) Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 11:799–811. https://doi.org/10.1016/j.stem.2012.09.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Hu M, Lu Y, Zeng H et al (2021) MicroRNA-21 maintains hematopoietic stem cell homeostasis through sustaining the NF-κB signaling pathway in mice. Haematologica 106:412–423. https://doi.org/10.3324/haematol.2019.236927

    Article  CAS  PubMed  Google Scholar 

  103. Hu W, Dooley J, Chung SS et al (2015) miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood 125:2206–2216. https://doi.org/10.1182/blood-2014-06-585273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Pohl C, Dikic I (2019) Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366:818–822. https://doi.org/10.1126/science.aax3769

    Article  CAS  PubMed  Google Scholar 

  105. Sinha S, Dwivedi TR, Yengkhom R et al (2019) Asrij/OCIAD1 suppresses CSN5-mediated p53 degradation and maintains mouse hematopoietic stem cell quiescence. Blood 133:2385–2400. https://doi.org/10.1182/blood.2019000530

    Article  CAS  PubMed  Google Scholar 

  106. Iriuchishima H, Takubo K, Matsuoka S et al (2011) Ex vivo maintenance of hematopoietic stem cells by quiescence induction through Fbxw7α overexpression. Blood 117:2373–2377. https://doi.org/10.1182/blood-2010-07-294801

    Article  CAS  PubMed  Google Scholar 

  107. Thompson BJ, Jankovic V, Gao J et al (2008) Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med 205:1395–1408. https://doi.org/10.1084/jem.20080277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. King B, Boccalatte F, Moran-Crusio K et al (2016) The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nat Immunol 17:1312–1321. https://doi.org/10.1038/ni.3559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Wang J, Han F, Wu J et al (2011) The role of Skp2 in hematopoietic stem cell quiescence, pool size, and self-renewal. Blood 118:5429–5438. https://doi.org/10.1182/blood-2010-10-312785

    Article  PubMed Central  PubMed  Google Scholar 

  110. Kleppe M, Spitzer MH, Li S et al (2017) Jak1 integrates cytokine sensing to regulate hematopoietic stem cell function and stress hematopoiesis. Cell Stem Cell 21:489–501. https://doi.org/10.1016/j.stem.2017.08.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Maryanovich M, Oberkovitz G, Niv H et al (2012) The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells. Nat Cell Biol 14:535–541. https://doi.org/10.1038/ncb2468

    Article  CAS  PubMed  Google Scholar 

  112. Fortin J, Bassi C, Ramachandran P et al (2021) Concerted roles of PTEN and ATM in controlling hematopoietic stem cell fitness and dormancy. J Clin Invest 131:e131698. https://doi.org/10.1172/JCI131698

    Article  CAS  PubMed Central  Google Scholar 

  113. Ni F, Yu WM, Wang X et al (2019) Ptpn21 controls hematopoietic stem cell homeostasis and biomechanics. Cell Stem Cell 24:608–620. https://doi.org/10.1016/j.stem.2019.02.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Vadlakonda L, Dash A, Pasupuleti M, Anil Kumar K, Reddanna P (2013) The paradox of Akt-mTOR interactions. Front Oncol 3:165. https://doi.org/10.3389/fonc.2013.00165

    Article  PubMed Central  PubMed  Google Scholar 

  115. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405. https://doi.org/10.1016/j.cell.2017.04.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Chen C, Liu Y, Liu R et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205:2397–2408. https://doi.org/10.1084/jem.20081297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Kharas MG, Okabe R, Ganis JJ et al (2010) Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115:1406–1415. https://doi.org/10.1182/blood-2009-06-229443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115:4030–4038. https://doi.org/10.1182/blood-2009-09-241000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Hemmati S, Sinclair T, Tong M et al (2019) PI3 kinase alpha and delta promote hematopoietic stem cell activation. JCI Insight 5:e125832. https://doi.org/10.1172/jci.insight.125832

    Article  Google Scholar 

  120. Yilmaz OH, Valdez R, Theisen BK et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482. https://doi.org/10.1038/nature04703

    Article  CAS  PubMed  Google Scholar 

  121. Zhang J, Grindley JC, Yin T et al (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441:518–522. https://doi.org/10.1038/nature04747

    Article  CAS  PubMed  Google Scholar 

  122. Kim I, Kim YJ, Métais JY, Dunbar CE, Larochelle A (2012) Transient silencing of PTEN in human CD34(+) cells enhances their proliferative potential and ability to engraft immunodeficient mice. Exp Hematol 40:84–91. https://doi.org/10.1016/j.exphem.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  123. Carling D (2017) AMPK signalling in health and disease. Curr Opin Cell Biol 45:31–37. https://doi.org/10.1016/j.ceb.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  124. Nakada D, Saunders TL, Morrison SJ (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468:653–658. https://doi.org/10.1038/nature09571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Drosten M, Barbacid M (2020) Targeting the MAPK pathway in KRAS-driven tumors. Cancer Cell 37:543–550. https://doi.org/10.1016/j.ccell.2020.03.013

    Article  CAS  PubMed  Google Scholar 

  126. Karigane D, Kobayashi H, Morikawa T et al (2016) p38α activates purine metabolism to initiate hematopoietic stem/progenitor cell cycling in response to stress. Cell Stem Cell 19:192–204. https://doi.org/10.1016/j.stem.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  127. Staser K, Park SJ, Rhodes SD et al (2013) Normal hematopoiesis and neurofibromin-deficient myeloproliferative disease require Erk. J Clin Invest 123:329–334. https://doi.org/10.1172/JCI66167

    Article  CAS  PubMed  Google Scholar 

  128. Baumgartner C, Toifl S, Farlik M et al (2018) An ERK-dependent feedback mechanism prevents hematopoietic stem cell exhaustion. Cell Stem Cell 22:879–892. https://doi.org/10.1016/j.stem.2018.05.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Cabezas-Wallscheid N, Buettner F, Sommerkamp P et al (2017) Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169:807–823. https://doi.org/10.1016/j.cell.2017.04.018

    Article  CAS  PubMed  Google Scholar 

  130. Nakamura-Ishizu A, Ito K, Suda T (2020) Hematopoietic stem cell metabolism during development and aging. Dev Cell 54:239–255. https://doi.org/10.1016/j.devcel.2020.06.029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Rabinowitz JD, Enerbäck S (2020) Lactate: the ugly duckling of energy metabolism. Nat Metab 2:566–571. https://doi.org/10.1038/s42255-020-0243-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Yellen G (2018) Fueling thought: management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol 217:2235–2246. https://doi.org/10.1083/jcb.201803152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418. https://doi.org/10.1111/j.1742-4658.2007.05686.x

    Article  CAS  PubMed  Google Scholar 

  134. du Plessis SS, Agarwal A, Mohanty G, van der Linde M (2015) Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl 17:230–235. https://doi.org/10.4103/1008-682X.135123

    Article  CAS  PubMed  Google Scholar 

  135. Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227(2):421–430. https://doi.org/10.1002/jcp.22764

    Article  CAS  PubMed  Google Scholar 

  136. Chandel NS, Jasper H, Ho TT, Passegué E (2016) Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat Cell Biol 18:823–832. https://doi.org/10.1038/ncb3385

    Article  CAS  PubMed  Google Scholar 

  137. Ito K, Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15:243–256. https://doi.org/10.1038/nrm3772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Snoeck HW (2017) Mitochondrial regulation of hematopoietic stem cells. Curr Opin Cell Biol 49:91–98. https://doi.org/10.1016/j.ceb.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  139. Klimmeck D, Hansson J, Raffel S, Vakhrushev SY, Trumpp A, Krijgsveld J (2012) Proteomic cornerstones of hematopoietic stem cell differentiation: distinct signatures of multipotent progenitors and myeloid committed cells. Mol Cell Proteom 11:286–302. https://doi.org/10.1074/mcp.M111.016790

    Article  CAS  Google Scholar 

  140. Zhang CC, Sadek HA (2014) Hypoxia and metabolic properties of hematopoietic stem cells. Antioxid Redox Signal 20:1891–1901. https://doi.org/10.1089/ars.2012.5019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Halvarsson C, Eliasson P, Jönsson JI (2017) Pyruvate dehydrogenase kinase 1 is essential for transplantable mouse bone marrow hematopoietic stem cell and progenitor function. PLoS One 12:e0171714. https://doi.org/10.1371/journal.pone.0171714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Takubo K, Nagamatsu G, Kobayashi CI et al (2013) Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12:49–61. https://doi.org/10.1016/j.stem.2012.10.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science 352:175–180. https://doi.org/10.1126/science.aaf4405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Chow DC, Wenning LA, Miller WM, Papoutsakis ET (2001) Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I Krogh’s model Biophys J 81:675–684. https://doi.org/10.1016/S0006-3495(01)75732-3

    Article  CAS  PubMed  Google Scholar 

  145. Simsek T, Kocabas F, Zheng J et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390. https://doi.org/10.1016/j.stem.2010.07.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Takubo K, Goda N, Yamada W et al (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7:391–402. https://doi.org/10.1016/j.stem.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  147. Verovskaya EV, Dellorusso PV, Passegué E (2019) Losing sense of self and surroundings: hematopoietic stem cell aging and leukemic transformation. Trends Mol Med 25:494–515. https://doi.org/10.1016/j.molmed.2019.04.006

    Article  PubMed Central  PubMed  Google Scholar 

  148. Ansó E, Weinberg SE, Diebold LP et al (2017) The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol 19:614–625. https://doi.org/10.1038/ncb3529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Vannini N, Girotra M, Naveiras O et al (2016) Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat Commun 7:13125. https://doi.org/10.1038/ncomms13125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. De Almeida MJ, Luchsinger LL, Corrigan DJ, Williams LJ, Snoeck HW (2017) Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells. Cell Stem Cell 21:725–729. https://doi.org/10.1016/j.stem.2017.11.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Bonora M, Ito K, Morganti C, Pinton P, Ito K (2018) Membrane-potential compensation reveals mitochondrial volume expansion during HSC commitment. Exp Hematol 68:30–37. https://doi.org/10.1016/j.exphem.2018.10.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Umemoto T, Hashimoto M, Matsumura T, Nakamura-Ishizu A, Suda T (2018) Ca2+-mitochondria axis drives cell division in hematopoietic stem cells. J Exp Med 215:2097–2113. https://doi.org/10.1084/jem.20180421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Maryanovich M, Zaltsman Y, Ruggiero A et al (2015) An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun 6:7901. https://doi.org/10.1038/ncomms8901

    Article  CAS  PubMed  Google Scholar 

  154. Mantel CR, O’Leary HA, Chitteti BR et al (2015) Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161:1553–1565. https://doi.org/10.1016/j.cell.2015.04.054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Rimmelé P, Liang R, Bigarella CL et al (2015) Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep 16:1164–1176. https://doi.org/10.15252/embr.201439704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Katsumoto T, Yoshida N, Kitabayashi I (2008) Roles of the histone acetyltransferase monocytic leukemia zinc finger protein in normal and malignant hematopoiesis. Cancer Sci 99:1523–1527. https://doi.org/10.1111/j.1349-7006.2008.00865.x

    Article  CAS  PubMed  Google Scholar 

  157. Cabal-Hierro L, van Galen P, Prado MA et al (2020) Chromatin accessibility promotes hematopoietic and leukemia stem cell activity. Nat Commun 11:1406. https://doi.org/10.1038/s41467-020-15221-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Yu WM, Liu X, Shen J et al (2013) Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12:62–74. https://doi.org/10.1016/j.stem.2012.11.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Pelletier J, Thomas G, Volarević S (2018) Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat Rev Cancer 18:51–63. https://doi.org/10.1038/nrc.2017.104

    Article  CAS  PubMed  Google Scholar 

  160. Cai P, Mao X, Zhao J, Luo L (2018) Ribosome biogenesis protein Urb2 regulates hematopoietic stem cells development via P53 pathway in zebrafish. Biochem Biophys Res Commun 497:776–782. https://doi.org/10.1016/j.bbrc.2018.02.153

    Article  CAS  PubMed  Google Scholar 

  161. Le Goff S, Boussaid I, Floquet C et al (2021) p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood 137:89–102. https://doi.org/10.1182/blood.2019003439

    Article  CAS  PubMed  Google Scholar 

  162. Signer RA, Magee JA, Salic A, Morrison SJ (2014) Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509:49–54. https://doi.org/10.1038/nature13035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Schneider RK, Schenone M, Ferreira MV et al (2016) Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nat Med 22:288–297. https://doi.org/10.1038/nm.4047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Le Bouteiller M, Souilhol C, Beck-Cormier S et al (2013) Notchless-dependent ribosome synthesis is required for the maintenance of adult hematopoietic stem cells. J Exp Med 210:2351–2369. https://doi.org/10.1084/jem.20122019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73:79–94. https://doi.org/10.1007/s00018-015-2052-6

    Article  CAS  PubMed  Google Scholar 

  166. Guzel E, Arlier S, Guzeloglu-Kayisli O et al (2017) Endoplasmic reticulum stress and homeostasis in reproductive physiology and pathology. Int J Mol Sci 18:792. https://doi.org/10.3390/ijms18040792

    Article  CAS  PubMed Central  Google Scholar 

  167. Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529:326–335. https://doi.org/10.1038/nature17041

    Article  CAS  PubMed  Google Scholar 

  168. Luo B, Lam BS, Lee SH et al (2011) The endoplasmic reticulum chaperone protein GRP94 is required for maintaining hematopoietic stem cell interactions with the adult bone marrow niche. PLoS One 6:e20364. https://doi.org/10.1371/journal.pone.0020364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. van Galen P, Kreso A, Mbong N et al (2014) The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature 510:268–272. https://doi.org/10.1038/nature13228

    Article  CAS  PubMed  Google Scholar 

  170. Miharada K, Sigurdsson V, Karlsson S (2014) Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress. Cell Rep 7:1381–1392. https://doi.org/10.1016/j.celrep.2014.04.056

    Article  CAS  PubMed  Google Scholar 

  171. Liu L, Inoki A, Fan K et al (2020) ER-associated degradation preserves hematopoietic stem cell quiescence and self-renewal by restricting mTOR activity. Blood 136:2975–2986. https://doi.org/10.1182/blood.2020007975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Xu L, Liu X, Peng F et al (2020) Protein quality control through endoplasmic reticulum-associated degradation maintains haematopoietic stem cell identity and niche interactions. Nat Cell Biol 22:1162–1169. https://doi.org/10.1038/s41556-020-00581-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  174. Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17:528–542. https://doi.org/10.1038/nrc.2017.53

    Article  CAS  PubMed  Google Scholar 

  175. Liu F, Lee JY, Wei H et al (2010) FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116:4806–4814. https://doi.org/10.1182/blood-2010-06-288589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Mortensen M, Soilleux EJ, Djordjevic G et al (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208:455–467. https://doi.org/10.1084/jem.20101145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Hashimoto M, Umemoto T, Nakamura-Ishizu A et al (2021) Autophagy is dispensable for the maintenance of hematopoietic stem cells in neonates. Blood Adv 5:1594–1604. https://doi.org/10.1182/bloodadvances.2020002410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Jung HE, Shim YR, Oh JE, Oh DS, Lee HK (2019) The autophagy protein Atg5 plays a crucial role in the maintenance and reconstitution ability of hematopoietic stem cells. Immune Netw 19:e12. https://doi.org/10.4110/in.2019.19.e12

    Article  PubMed Central  PubMed  Google Scholar 

  179. Ho TT, Warr MR, Adelman ER et al (2017) Autophagy maintains the metabolism and function of young and old stem cells. Nature 543:205–210. https://doi.org/10.1038/nature21388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Ito K, Turcotte R, Cui J et al (2016) Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354:1156–1160. https://doi.org/10.1126/science.aaf5530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Murakami K, Kurotaki D, Kawase W et al (2021) OGT regulates hematopoietic stem cell maintenance via PINK1-dependent mitophagy. Cell Rep 34:108579. https://doi.org/10.1016/j.celrep.2020.108579

    Article  CAS  PubMed  Google Scholar 

  182. Dong S, Wang Q, Kao YR et al (2021) Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature 591:117–123. https://doi.org/10.1038/s41586-020-03129-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Saftig P, Haas A (2016) Turn up the lysosome. Nat Cell Biol 18:1025–1027. https://doi.org/10.1038/ncb3409

    Article  CAS  PubMed  Google Scholar 

  184. Taya Y, Ota Y, Wilkinson AC et al (2016) Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354:1152–1155. https://doi.org/10.1126/science.aag3145

    Article  CAS  PubMed  Google Scholar 

  185. Liu X, Zhang F, Zhang Y et al (2018) PPM1K regulates hematopoiesis and leukemogenesis through CDC20-mediated ubiquitination of MEIS1 and p21. Cell Rep 23:1461–1475. https://doi.org/10.1016/j.celrep.2018.03.140

    Article  CAS  PubMed  Google Scholar 

  186. Ito K, Carracedo A, Weiss D et al (2012) A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 18:1350–1358. https://doi.org/10.1038/nm.2882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Yu VW, Scadden DT (2016) Hematopoietic stem cell and its bone marrow niche. Curr Top Dev Biol 118:21–44. https://doi.org/10.1016/bs.ctdb.2016.01.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  PubMed  Google Scholar 

  189. Crane GM, Jeffery E, Morrison SJ (2017) Adult haematopoietic stem cell niches. Nat Rev Immunol 17:573–590. https://doi.org/10.1038/nri.2017.53

    Article  CAS  PubMed  Google Scholar 

  190. Gao X, Xu C, Asada N, Frenette PS (2018) The hematopoietic stem cell niche: from embryo to adult. Development 145:dev139691. https://doi.org/10.1242/dev.139691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z (2020) Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 11:5120. https://doi.org/10.1038/s41467-020-18794-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Choi JS, Harley BA (2012) The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials 33:4460–4468. https://doi.org/10.1016/j.biomaterials.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  194. Li D, Chiu G, Lipe B et al (2019) Decellularized Wharton jelly matrix: a biomimetic scaffold for ex vivo hematopoietic stem cell culture. Blood Adv 3:1011–1026. https://doi.org/10.1182/bloodadvances.2018019315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. Choi JS, Harley BA (2017) Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells. Sci Adv 3:e1600455. https://doi.org/10.1126/sciadv.1600455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Saw S, Weiss A, Khokha R, Waterhouse PD (2019) Metalloproteases: on the watch in the hematopoietic niche. Trends Immunol 40:1053–1070. https://doi.org/10.1016/j.it.2019.09.006

    Article  CAS  PubMed  Google Scholar 

  197. Gvaramia D, Müller E, Müller K et al (2017) Combined influence of biophysical and biochemical cues on maintenance and proliferation of hematopoietic stem cells. Biomaterials 138:108–117. https://doi.org/10.1016/j.biomaterials.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  198. Ikeda K, Ueda T, Yamasaki N et al (2016) Maintenance of the functional integrity of mouse hematopoiesis by EED and promotion of leukemogenesis by EED haploinsufficiency. Sci Rep 6:29454. https://doi.org/10.1038/srep29454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Bruns I, Czibere A, Fischer JC et al (2009) The hematopoietic stem cell in chronic phase CML is characterized by a transcriptional profile resembling normal myeloid progenitor cells and reflecting loss of quiescence. Leukemia 23:892–899. https://doi.org/10.1038/leu.2008.392

    Article  CAS  PubMed  Google Scholar 

  200. Rossi L, Ergen AV, Goodell MA (2011) TIMP-1 deficiency subverts cell-cycle dynamics in murine long-term HSCs. Blood 117:6479–6488. https://doi.org/10.1182/blood-2009-10-248955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Uckelmann H, Blaszkiewicz S, Nicolae C et al (2016) Extracellular matrix protein Matrilin-4 regulates stress-induced HSC proliferation via CXCR4. J Exp Med 213:1961–1971. https://doi.org/10.1084/jem.20151713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. Mitroulis I, Chen LS, Singh RP et al (2017) Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche. J Clin Invest 127:3624–3639. https://doi.org/10.1172/JCI92571

    Article  PubMed Central  PubMed  Google Scholar 

  203. Avigdor A, Goichberg P, Shivtiel S et al (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103:2981–2989. https://doi.org/10.1182/blood-2003-10-3611

    Article  CAS  PubMed  Google Scholar 

  204. Khurana S, Schouteden S, Manesia JK et al (2016) Outside-in integrin signalling regulates haematopoietic stem cell function via Periostin-Itgav axis. Nat Commun 7:13500. https://doi.org/10.1038/ncomms13500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  205. Arai F, Hosokawa K, Toyama H, Matsumoto Y, Suda T (2012) Role of N-cadherin in the regulation of hematopoietic stem cells in the bone marrow niche. Ann N Y Acad Sci 1266:72–77. https://doi.org/10.1111/j.1749-6632.2012.06576.x

    Article  CAS  PubMed  Google Scholar 

  206. Winkler IG, Barbier V, Nowlan B et al (2012) Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 18:1651–1657. https://doi.org/10.1038/nm.2969

    Article  CAS  PubMed  Google Scholar 

  207. Sinclair A, Park L, Shah M et al (2016) CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood 128:371–383. https://doi.org/10.1182/blood-2015-08-661785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Asada N, Kunisaki Y, Pierce H et al (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19:214–223. https://doi.org/10.1038/ncb3475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Nie Y, Han YC, Zou YR (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205:777–783. https://doi.org/10.1084/jem.20072513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  210. Bruns I, Lucas D, Pinho S et al (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20:1315–1320. https://doi.org/10.1038/nm.3707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. Zhao M, Perry JM, Marshall H et al (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20:1321–1326. https://doi.org/10.1038/nm.3706

    Article  CAS  PubMed  Google Scholar 

  212. Yamazaki S, Ema H, Karlsson G et al (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158. https://doi.org/10.1016/j.cell.2011.09.053

    Article  CAS  PubMed  Google Scholar 

  213. Qian H, Buza-Vidas N, Hyland CD et al (2007) Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1:671–684. https://doi.org/10.1016/j.stem.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  214. Yoshihara H, Arai F, Hosokawa K et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–697. https://doi.org/10.1016/j.stem.2007.10.020

    Article  CAS  PubMed  Google Scholar 

  215. Nilsson SK, Johnston HM, Whitty GA et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239. https://doi.org/10.1182/blood-2004-11-4422

    Article  CAS  PubMed  Google Scholar 

  216. Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161. https://doi.org/10.1016/j.cell.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  217. Ludin A, Itkin T, Gur-Cohen S et al (2012) Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol 13:1072–1082. https://doi.org/10.1038/ni.2408

    Article  CAS  PubMed  Google Scholar 

  218. Goncalves KA, Silberstein L, Li S et al (2016) Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell 166:894–906. https://doi.org/10.1016/j.cell.2016.06.042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  219. Chen X, Deng H, Churchill MJ et al (2017) Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell 21:747–760. https://doi.org/10.1016/j.stem.2017.11.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Goloviznina NA, Verghese SC, Yoon YM, Taratula O, Marks DL, Kurre P (2017) Mesenchymal stromal cell-derived extracellular vesicles promote myeloid-biased multipotent hematopoietic progenitor expansion via Toll-like receptor engagement. J Biol Chem 292:3541. https://doi.org/10.1074/jbc.A116.745653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Kfoury YS, Ji F, Mazzola M et al (2021) tiRNA signaling via stress-regulated vesicle transfer in the hematopoietic niche. Cell Stem Cell 28:2090-2103.e9. https://doi.org/10.1016/j.stem.2021.08.014

    Article  CAS  PubMed  Google Scholar 

  222. Nitsche A, Junghahn I, Thulke S et al (2003) Interleukin-3 promotes proliferation and differentiation of human hematopoietic stem cells but reduces their repopulation potential in NOD/SCID mice. Stem Cells 21:236–244. https://doi.org/10.1634/stemcells.21-2-236

    Article  CAS  PubMed  Google Scholar 

  223. Ye H, Qian L, Zhu S et al (2019) IL-1Ra protects hematopoietic cells from chemotoxicity through p53-induced quiescence. FASEB J 33:12135–12145. https://doi.org/10.1096/fj.201900788RR

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  224. Florez MA, Matatall KA, Jeong Y et al (2020) Interferon gamma mediates hematopoietic stem cell activation and niche relocalization through BST2. Cell Rep 33:108530. https://doi.org/10.1016/j.celrep.2020.108530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Masamoto Y, Arai S, Sato T et al (2017) Adiponectin enhances quiescence exit of murine hematopoietic stem cells and hematopoietic recovery through mTORC1 potentiation. Stem Cells 35:1835–1848. https://doi.org/10.1002/stem.2640

    Article  CAS  PubMed  Google Scholar 

  226. Itkin T, Ludin A, Gradus B et al (2012) FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood 120:1843–1855. https://doi.org/10.1182/blood-2011-11-394692

    Article  CAS  PubMed  Google Scholar 

  227. Frodermann V, Rohde D, Courties G et al (2019) Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat Med 25:1761–1771. https://doi.org/10.1038/s41591-019-0633-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Young K, Eudy E, Bell R et al (2021) Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell 28:1473-1482.e7. https://doi.org/10.1016/j.stem.2021.03.017

    Article  CAS  PubMed  Google Scholar 

  229. Méndez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (2017YFA0106700) and the National Science Foundation of China (82170115).

Funding

National Key R&D Program of China, 2017YFA0106700, Yu Hou, National Science Foundation of China, 82170115, Yu Hou

Author information

Authors and Affiliations

Authors

Contributions

ZC and QG wrote the manuscript. GBS and YH designed and revised the manuscript. All authors have approved this version of the article.

Corresponding authors

Correspondence to Guanbin Song or Yu Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yu Hou: Lead contact.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Guo, Q., Song, G. et al. Molecular regulation of hematopoietic stem cell quiescence. Cell. Mol. Life Sci. 79, 218 (2022). https://doi.org/10.1007/s00018-022-04200-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04200-w

Keywords

Navigation