Skip to main content

Advertisement

Log in

RTL8 promotes nuclear localization of UBQLN2 to subnuclear compartments associated with protein quality control

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The brain-expressed ubiquilins (UBQLNs) 1, 2 and 4 are a family of ubiquitin adaptor proteins that participate broadly in protein quality control (PQC) pathways, including the ubiquitin proteasome system (UPS). One family member, UBQLN2, has been implicated in numerous neurodegenerative diseases including ALS/FTD. UBQLN2 typically resides in the cytoplasm but in disease can translocate to the nucleus, as in Huntington’s disease where it promotes the clearance of mutant Huntingtin. How UBQLN2 translocates to the nucleus and clears aberrant nuclear proteins, however, is not well understood. In a mass spectrometry screen to discover UBQLN2 interactors, we identified a family of small (13 kDa), highly homologous uncharacterized proteins, RTL8, and confirmed the interaction between UBQLN2 and RTL8 both in vitro using recombinant proteins and in vivo using mouse brain tissue. Under endogenous and overexpressed conditions, RTL8 localizes to nucleoli. When co-expressed with UBQLN2, RTL8 promotes nuclear translocation of UBQLN2. RTL8 also facilitates UBQLN2’s nuclear translocation during heat shock. UBQLN2 and RTL8 colocalize within ubiquitin-enriched subnuclear structures containing PQC components. The robust effect of RTL8 on the nuclear translocation and subnuclear localization of UBQLN2 does not extend to the other brain-expressed ubiquilins, UBQLN1 and UBQLN4. Moreover, compared to UBQLN1 and UBQLN4, UBQLN2 preferentially stabilizes RTL8 levels in human cell lines and in mouse brain, supporting functional heterogeneity among UBQLNs. As a novel UBQLN2 interactor that recruits UBQLN2 to specific nuclear compartments, RTL8 may regulate UBQLN2 function in nuclear protein quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings in this are available within the article, at repository links provided within the article, and within its supplementary files. The authors agree to share reagents, cell lines and animal models used in this study upon request.

Code availability

Not applicable.

References

  1. Saeki Y, Saitoh A, Toh-e A, Yokosawa H (2002) Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. Biochem Biophys Res Commun 293(3):986–992. https://doi.org/10.1016/S0006-291X(02)00340-6

    Article  CAS  PubMed  Google Scholar 

  2. Massey LK, Mah AL, Ford DL, Miller J, Liang J, Doong H et al (2004) Overexpression of ubiquilin decreases ubiquitination and degradation of presenilin proteins. J Alzheimers Dis 6:79–92. https://doi.org/10.3233/JAD-2004-6109

    Article  CAS  PubMed  Google Scholar 

  3. Seok Ko H, Uehara T, Tsuruma K, Nomura Y (2004) Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Lett 566(1–3):110–114. https://doi.org/10.1016/j.febslet.2004.04.031

    Article  CAS  Google Scholar 

  4. Kaye FJ, Modi S, Ivanovska I, Koonin EV, Thress K, Kubo A et al (2000) A family of ubiquitin-like proteins binds the ATPase domain of Hsp70-like Stch. FEBS Lett 467(2–3):348–355. https://doi.org/10.1016/S0014-5793(00)01135-2

    Article  CAS  PubMed  Google Scholar 

  5. N’Diaye EN, Kajihara KK, Hsieh I, Morisaki H, Debnath J, Brown EJ (2009) PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep 10(2):173–179. https://doi.org/10.1038/embor.2008.238

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rothenberg C, Srinivasan D, Mah L, Kaushik S, Peterhoff CM, Ugolino J et al (2010) Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum Mol Genet 19(16):3219–3232. https://doi.org/10.1093/hmg/ddq231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alexander EJ, Ghanbari Niaki A, Zhang T, Sarkar J, Liu Y, Nirujogi RS et al (2018) Ubiquilin 2 modulates ALS/FTD-linked FUS-RNA complex dynamics and stress granule formation. Proc Natl Acad Sci USA 115(49):E11485–E11494. https://doi.org/10.1073/pnas.1811997115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang D, Raasi S, Fushman D (2008) Affinity makes the difference: nonselective interaction of the UBA domain of ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. J Mol Biol 377(1):162–180. https://doi.org/10.1016/j.jmb.2007.12.029

    Article  CAS  PubMed  Google Scholar 

  9. Dao TP, Kolaitis RM, Kim HJ, O’Donovan K, Martyniak B, Colicino E et al (2018) Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol Cell 69(6):965e6-978. https://doi.org/10.1016/j.molcel.2018.02.004

    Article  CAS  Google Scholar 

  10. Dao TP, Castaneda CA (2020) Ubiquitin-modulated phase separation of shuttle proteins: does condensate formation promote protein degradation? BioEssays. https://doi.org/10.1002/bies.202000036

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brettschneider J, Van Deerlin VM, Robinson JL, Kwong L, Lee EB, Ali YO et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123(6):825–839. https://doi.org/10.1007/s00401-012-0970-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mori F, Tanji K, Odagiri S, Toyoshima Y, Yoshida M, Ikeda T et al (2012) Ubiquilin immunoreactivity in cytoplasmic and nuclear inclusions in synucleinopathies, polyglutamine diseases and intranuclear inclusion body disease. Acta Neuropathol 124(1):149–151. https://doi.org/10.1007/s00401-012-0999-z

    Article  PubMed  Google Scholar 

  13. Zeng L, Wang B, Merillat SA, Minakawa EN, Perkins MD, Ramani B et al (2015) Differential recruitment of UBQLN2 to nuclear inclusions in the polyglutamine diseases HD and SCA3. Neurobiol Dis 82:281–288. https://doi.org/10.1016/j.nbd.2015.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang H, Yue H-W, He W-T, Hong J-Y, Jiang L-L, Hu H-Y (2018) PolyQ-expanded huntingtin and ataxin-3 sequester ubiquitin adaptors hHR23B and UBQLN2 into aggregates via conjugated ubiquitin. FASEB J 32(6):2923–2933. https://doi.org/10.1096/fj.201700801RR

    Article  CAS  PubMed  Google Scholar 

  15. Gerson JE, Safren N, Fischer S, Patel R, Crowley EV, Welday JP et al (2020) Ubiquilin-2 differentially regulates polyglutamine disease proteins. Hum Mol Genet. https://doi.org/10.1093/hmg/ddaa152

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477(7363):211–215. https://doi.org/10.1038/nature10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Le NT, Chang L, Kovlyagina I, Georgiou P, Safren N, Braunstein KE et al (2016) Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS-FTD-linked UBQLN2 mutations. Proc Natl Acad Sci USA 113(47):E7580–E7589. https://doi.org/10.1073/pnas.1608432113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Picher-Martel V, Renaud L, Bareil C, Julien JP (2019) Neuronal expression of UBQLN2(P497H) exacerbates TDP-43 pathology in TDP-43(G348C) mice through interaction with ubiquitin. Mol Neurobiol 56(7):4680–4696. https://doi.org/10.1007/s12035-018-1411-3

    Article  CAS  PubMed  Google Scholar 

  19. Hjerpe R, Bett JS, Keuss MJ, Solovyova A, McWilliams TG, Johnson C et al (2016) UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell 166(4):935–949. https://doi.org/10.1016/j.cell.2016.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Itakura E, Zavodszky E, Shao S, Wohlever ML, Keenan RJ, Hegde RS (2016) Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol Cell 63(1):21–33. https://doi.org/10.1016/j.molcel.2016.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen T, Huang B, Shi X, Gao L, Huang C (2018) Mutant UBQLN2(P497H) in motor neurons leads to ALS-like phenotypes and defective autophagy in rats. Acta Neuropathol Commun 6(1):122. https://doi.org/10.1186/s40478-018-0627-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharkey LM, Sandoval-Pistorius SS, Moore SJ, Gerson JE, Komlo R, Fischer S et al (2020) Modeling UBQLN2-mediated neurodegenerative disease in mice: shared and divergent properties of wild type and mutant UBQLN2 in phase separation, subcellular localization, altered proteostasis pathways, and selective cytotoxicity. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2020.105016

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chang L, Monteiro MJ (2015) Defective proteasome delivery of polyubiquitinated proteins by ubiquilin-2 proteins containing ALS mutations. PLoS ONE 10(6):e0130162. https://doi.org/10.1371/journal.pone.0130162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Osaka M, Ito D, Suzuki N (2016) Disturbance of proteasomal and autophagic protein degradation pathways by amyotrophic lateral sclerosis-linked mutations in ubiquilin 2. Biochem Biophys Res Commun 472(2):324–331. https://doi.org/10.1016/j.bbrc.2016.02.107

    Article  CAS  PubMed  Google Scholar 

  25. Sharkey LM, Safren N, Pithadia AS, Gerson JE, Dulchavsky M, Fischer S et al (2018) Mutant UBQLN2 promotes toxicity by modulating intrinsic self-assembly. Proc Natl Acad Sci 115(44):E10495–E10504. https://doi.org/10.1073/pnas.1810522115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halloran M, Ragagnin AMG, Vidal M, Parakh S, Yang S, Heng B et al (2019) Amyotrophic lateral sclerosis-linked UBQLN2 mutants inhibit endoplasmic reticulum to Golgi transport, leading to Golgi fragmentation and ER stress. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03394-w

    Article  PubMed  Google Scholar 

  27. Wu JJ, Cai A, Greenslade JE, Higgins NR, Fan C, Le NTT et al (2020) ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1917371117

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rutherford NJ, Lewis J, Clippinger AK, Thomas MA, Adamson J, Cruz PE et al (2013) Unbiased screen reveals ubiquilin-1 and -2 highly associated with huntingtin inclusions. Brain Res 1524:62–73. https://doi.org/10.1016/j.brainres.2013.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frottin F, Schueder F, Tiwary S, Gupta R, Korner R, Schlichthaerle T et al (2019) The nucleolus functions as a phase-separated protein quality control compartment. Science 365(6451):342–347. https://doi.org/10.1126/science.aaw9157

    Article  CAS  PubMed  Google Scholar 

  30. Mediani L, Guillén-Boixet J, Vinet J, Franzmann TM, Bigi I, Mateju D et al (2019) Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J 38(15):e101341. https://doi.org/10.15252/embj.2018101341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Latonen L, Moore HM, Bai B, Jäämaa S, Laiho M (2011) Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene 30(7):790–805. https://doi.org/10.1038/onc.2010.469

    Article  CAS  PubMed  Google Scholar 

  32. Gallardo P, Real-Calderón P, Flor-Parra I, Salas-Pino S, Daga RR (2020) Acute heat stress leads to reversible aggregation of nuclear proteins into nucleolar rings in fission yeast. Cell Rep. https://doi.org/10.1016/j.celrep.2020.108377

    Article  PubMed  PubMed Central  Google Scholar 

  33. Frattini A, Faranda S, Zucchi I, Vezzoni P (1997) A low-copy repeat in Xq26 represents a novel putatively prenylated protein gene (CXX1) and its pseudogenes (DXS9914, DXS9915, and DXS9916). Genomics 46(1):167–169. https://doi.org/10.1006/geno.1997.5006

    Article  CAS  PubMed  Google Scholar 

  34. Brandt J, Veith AM, Volff JN (2005) A family of neofunctionalized Ty3/gypsy retrotransposon genes in mammalian genomes. Cytogenet Genome Res 110(1–4):307–317. https://doi.org/10.1159/000084963

    Article  CAS  PubMed  Google Scholar 

  35. Boot A, Oosting J, van Eendenburg JDH, Kuppen PJK, Morreau H, van Wezel T (2017) Methylation associated transcriptional repression of ELOVL5 in novel colorectal cancer cell lines. PLoS ONE 12(9):e0184900. https://doi.org/10.1371/journal.pone.0184900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Whiteley AM, Prado MA, de Poot SAH, Paulo JA, Ashton M, Dominguez S et al (2020) Global proteomics of Ubqln2-based murine models of ALS. J Biol Chem. https://doi.org/10.1074/jbc.RA120.015960

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zheng W, Li Y, Zhang C, Pearce R, Mortuza SM, Zhang Y (2019) Deep-learning contact-map guided protein structure prediction in CASP13. Proteins 87(12):1149–1164. https://doi.org/10.1002/prot.25792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang C, Lane L, Omenn GS, Zhang Y (2019) Blinded testing of function annotation for uPE1 proteins by I-TASSER/COFACTOR pipeline using the 2018–2019 additions to neXtProt and the CAFA3 challenge. J Proteome Res 18(12):4154–4166

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu J, Zhang Y (2010) How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26(7):889–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ashley J, Cordy B, Lucia D, Fradkin LG, Budnik V, Thomson T (2018) Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172(1–2):262–74.e11. https://doi.org/10.1016/j.cell.2017.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klima JC, Doyle LA, Lee JD, Rappleye M, Gagnon LA, Lee MY et al (2021) Incorporation of sensing modalities into de novo designed fluorescence-activating proteins. Nat Commun 12(1):856. https://doi.org/10.1038/s41467-020-18911-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM et al (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165(7):1686–1697. https://doi.org/10.1016/j.cell.2016.04.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Welch WJ, Feramisco JR (1984) Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 259(7):4501–4513

    Article  CAS  PubMed  Google Scholar 

  44. Lewis MJ, Pelham HR (1985) Involvement of ATP in the nuclear and nucleolar functions of the 70 kD heat shock protein. Embo J 4(12):3137–3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pankiv S, Lamark T, Bruun J-A, Øvervatn A, Bjørkøy G, Johansen T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285(8):5941–5953. https://doi.org/10.1074/jbc.M109.039925

    Article  CAS  PubMed  Google Scholar 

  46. Pikkarainen M, Hartikainen P, Soininen H, Alafuzoff I (2011) Distribution and pattern of pathology in subjects with familial or sporadic late-onset cerebellar ataxia as assessed by p62/sequestosome immunohistochemistry. Cerebellum 10(4):720–731. https://doi.org/10.1007/s12311-011-0281-2

    Article  CAS  PubMed  Google Scholar 

  47. Baloh RH (2011) TDP-43: the relationship between protein aggregation and neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. FEBS J 278(19):3539–3549. https://doi.org/10.1111/j.1742-4658.2011.08256.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Udan-Johns M, Bengoechea R, Bell S, Shao J, Diamond MI, True HL et al (2014) Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones. Hum Mol Genet 23(1):157–170. https://doi.org/10.1093/hmg/ddt408

    Article  CAS  PubMed  Google Scholar 

  49. Kang Y, Zhang N, Koepp DM, Walters KJ (2007) Ubiquitin receptor proteins hHR23a and hPLIC2 interact. J Mol Biol 365(4):1093–1101. https://doi.org/10.1016/j.jmb.2006.10.056

    Article  CAS  PubMed  Google Scholar 

  50. Marín I (2014) The ubiquilin gene family: evolutionary patterns and functional insights. BMC Evol Biol 14(1):63. https://doi.org/10.1186/1471-2148-14-63

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zheng T, Yang Y, Castaneda CA (2020) Structure, dynamics and functions of UBQLNs: at the crossroads of protein quality control machinery. Biochem J 477(18):3471–3497. https://doi.org/10.1042/BCJ20190497

    Article  CAS  PubMed  Google Scholar 

  52. Samant RS, Livingston CM, Sontag EM, Frydman J (2018) Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control. Nature 563(7731):407–411. https://doi.org/10.1038/s41586-018-0678-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jachimowicz RD, Beleggia F, Isensee J, Velpula BB, Goergens J, Bustos MA et al (2019) UBQLN4 represses homologous recombination and is overexpressed in aggressive tumors. Cell 176(3):505–19.e22. https://doi.org/10.1016/j.cell.2018.11.024

    Article  CAS  PubMed  Google Scholar 

  54. Carmo-Fonseca M, Mendes-Soares L, Campos I (2000) To be or not to be in the nucleolus. Nat Cell Biol 2(6):E107–E112. https://doi.org/10.1038/35014078

    Article  CAS  PubMed  Google Scholar 

  55. Boisvert F-M, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8(7):574–585. https://doi.org/10.1038/nrm2184

    Article  CAS  PubMed  Google Scholar 

  56. Latonen L (2019) Phase-to-phase with nucleoli—stress responses, protein aggregation and novel roles of RNA. Front Cell Neurosci. https://doi.org/10.3389/fncel.2019.00151

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hernandez-Verdun D (2006) The nucleolus: a model for the organization of nuclear functions. Histochem Cell Biol 126(2):135. https://doi.org/10.1007/s00418-006-0212-3

    Article  CAS  PubMed  Google Scholar 

  58. Fu A, Cohen-Kaplan V, Avni N, Livneh I, Ciechanover A (2021) p62-containing, proteolytically active nuclear condensates, increase the efficiency of the ubiquitin–proteasome system. Proc Natl Acad Sci 118(33):e2107321118. https://doi.org/10.1073/pnas.2107321118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng T, Galagedera SKK, Castañeda CA (2021) Previously uncharacterized interactions between the folded and intrinsically disordered domains impart asymmetric effects on UBQLN2 phase separation. Protein Sci 30(7):1467–1481. https://doi.org/10.1002/pro.4128

    Article  CAS  PubMed  Google Scholar 

  60. Dao TP, Martyniak B, Canning AJ, Lei Y, Colicino EG, Cosgrove MS et al (2019) ALS-linked mutations affect UBQLN2 oligomerization and phase separation in a position- and amino acid-dependent manner. Structure 27(6):937–51.e5. https://doi.org/10.1016/j.str.2019.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gerson JE, Linton H, Xing J, Sutter AB, Kakos FS, Ryou J et al (2021) Shared and divergent phase separation and aggregation properties of brain-expressed ubiquilins. Sci Rep 11(1):287. https://doi.org/10.1038/s41598-020-78775-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Paolantoni C, Ricciardi S, De Paolis V, Okenwa C, Catalanotto C, Ciotti MT et al (2018) Arc 3′ UTR splicing leads to dual and antagonistic effects in fine-tuning arc expression upon BDNF signaling. Front Mol Neurosci 11:145. https://doi.org/10.3389/fnmol.2018.00145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moran DM, Shen H, Maki CG (2009) Puromycin-based vectors promote a ROS-dependent recruitment of PML to nuclear inclusions enriched with HSP70 and proteasomes. BMC Cell Biol 10:32. https://doi.org/10.1186/1471-2121-10-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guo L, Giasson BI, Glavis-Bloom A, Brewer MD, Shorter J, Gitler AD et al (2014) A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol Cell 55(1):15–30. https://doi.org/10.1016/j.molcel.2014.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lamoliatte F, McManus FP, Maarifi G, Chelbi-Alix MK, Thibault P (2017) Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat Commun 8:14109. https://doi.org/10.1038/ncomms14109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rott R, Szargel R, Shani V, Hamza H, Savyon M, Abd Elghani F et al (2017) SUMOylation and ubiquitination reciprocally regulate α-synuclein degradation and pathological aggregation. Proc Natl Acad Sci USA 114(50):13176–13181. https://doi.org/10.1073/pnas.1704351114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jin J (2019) Interplay between ubiquitylation and SUMOylation: empowered by phase separation. J Biol Chem 294(42):15235–15236. https://doi.org/10.1074/jbc.H119.011037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285(8):5941–5953. https://doi.org/10.1074/jbc.M109.039925

    Article  CAS  PubMed  Google Scholar 

  69. Beauclair G, Bridier-Nahmias A, Zagury J-F, Saïb A, Zamborlini A (2015) JASSA: a comprehensive tool for prediction of SUMOylation sites and SIMs. Bioinformatics 31(21):3483–3491. https://doi.org/10.1093/bioinformatics/btv403

    Article  CAS  PubMed  Google Scholar 

  70. Flores BN, Li X, Malik AM, Martinez J, Beg AA, Barmada SJ (2019) An intramolecular salt bridge linking TDP43 RNA binding, protein stability, and TDP43-dependent neurodegeneration. Cell Rep 27(4):1133–50.e8. https://doi.org/10.1016/j.celrep.2019.03.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seyfried NT, Gozal YM, Dammer EB, Xia Q, Duong DM, Cheng D et al (2010) Multiplex SILAC analysis of a cellular TDP-43 proteinopathy model reveals protein inclusions associated with SUMOylation and diverse polyubiquitin chains. Mol Cell Proteomics 9(4):705–718. https://doi.org/10.1074/mcp.M800390-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dangoumau A, Veyrat-Durebex C, Blasco H, Praline J, Corcia P, Andres CR et al (2013) Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. Int J Neurosci 123(6):366–374. https://doi.org/10.3109/00207454.2012.761984

    Article  CAS  PubMed  Google Scholar 

  73. Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res 5(9):2339–2347. https://doi.org/10.1021/pr060161n

    Article  CAS  PubMed  Google Scholar 

  74. Wickham H (2009) ggplot2: elegant graphics for data analysis. Use R. https://doi.org/10.1007/978-0-387-98141-3

    Article  Google Scholar 

  75. Kleijnen MF, Shih AH, Zhou P, Kumar S, Soccio RE, Kedersha NL et al (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6(2):409–419. https://doi.org/10.1016/S1097-2765(00)00040-X

    Article  CAS  PubMed  Google Scholar 

  76. Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual J-F et al (2006) A protein–protein interaction network for human inherited ataxias and disorders of purkinje cell degeneration. Cell 125(4):801–814. https://doi.org/10.1016/j.cell.2006.03.032

    Article  CAS  PubMed  Google Scholar 

  77. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(Pt 3):213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

  78. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O et al (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100. https://doi.org/10.1186/gb-2006-7-10-r100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(W1):W320–W324. https://doi.org/10.1093/nar/gku316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Peter Howley and Huda Zoghbi for providing constructs, Huda Zoghbi for providing the UBQLN4 -/- mouse line and Ramanujan Hegde for providing the ubiquilin triple knockout cell line. We also thank Magdalena Ivanova and Sami Barmada for their helpful suggestions and critical feedback.

Funding

This work was supported by NIH 9R01NS096785-06, 1P30AG053760-01, The Amyotrophic Lateral Sclerosis Foundation and the UM Protein Folding Disease Initiative.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HM, AP, HP, LS. Methodology: HM, AP, HT, CZ, XZ, NS, VB, LS. Investigation: HM, AP, HT, CZ, XZ, EC, RP, NS, LS, BT. Writing: HM, HP, LS. Funding Acquisition: LS, HP. Resources: LS, YZ, HP. Supervision: HP, YZ, LS.

Corresponding authors

Correspondence to Henry L. Paulson or Lisa M. Sharkey.

Ethics declarations

Conflict of interest

None declared.

Ethics approval

All animal experiments were conducted under the approval of The University of Michigan Institutional Animal Care & Use Committee, protocol number PRO00010103.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1967 KB)

Supplementary file2 (XLSX 0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, H.M., Trzeciakiewicz, H., Pithadia, A. et al. RTL8 promotes nuclear localization of UBQLN2 to subnuclear compartments associated with protein quality control. Cell. Mol. Life Sci. 79, 176 (2022). https://doi.org/10.1007/s00018-022-04170-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04170-z

Keywords

Navigation