Skip to main content

Advertisement

Log in

Competitive blocking of LRP4–sclerostin binding interface strongly promotes bone anabolic functions

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Induction of bone formation by Wnt ligands is inhibited when sclerostin (Scl), an osteocyte-produced antagonist, binds to its receptors, the low-density lipoprotein receptor-related proteins 5 or 6 (LRP5/6). Recently, it was shown that enhanced inhibition is achieved by Scl binding to the co-receptor LRP4. However, it is not clear if the binding of Scl to LRP4 facilitates Scl binding to LRP5/6 or inhibits the Wnt pathway in an LRP5/6-independent manner. Here, using the yeast display system, we demonstrate that Scl exhibits a stronger binding affinity for LRP4 than for LRP6. Moreover, we found stronger Scl binding to LRP6 in the presence of LRP4. We further show that a Scl mutant (SclN93A), which tightly binds LRP4 but not LRP6, does not inhibit the Wnt pathway on its own. We demonstrate that SclN93A competes with Scl for a common binding site on LRP4 and antagonizes Scl inhibition of the Wnt signaling pathway in osteoblasts in vitro. Finally, we demonstrate that 2 weeks of bi-weekly subcutaneous injections of SclN93A fused to the fragment crystallizable (Fc) domain of immunoglobulin (SclN93AFc), which retains the antagonistic activity of the mutant, significantly increases bone formation rate and enhances trabecular volumetric bone fraction, trabecular number, and bone length in developing mice. Our data show that LRP4 serves as an anchor that facilitates Scl–LRP6 binding and that inhibition of the Wnt pathway by Scl depends on its prior binding to LRP4. We further provide evidence that compounds that inhibit Scl–LRP4 interactions offer a potential strategy to promote anabolic bone functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

Data availability

Data will be made available on reasonable request.

References

  1. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem. https://doi.org/10.1074/jbc.R109.041087

    Article  PubMed  PubMed Central  Google Scholar 

  2. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. https://doi.org/10.1146/annurev.bioeng.8.061505.095721

    Article  PubMed  Google Scholar 

  3. National Institutes of Health (NIH) (2001) National Institutes of Health (NIH) consensus development panel on osteoporosis prevention, diagnosis, and therapy. JAMA

  4. Zeng X et al (2008) Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development. https://doi.org/10.1242/dev.013540

    Article  PubMed  Google Scholar 

  5. Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Investig. https://doi.org/10.1172/JCI33612

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weivoda MM et al (2016) Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res. https://doi.org/10.1002/jbmr.2599

    Article  PubMed  Google Scholar 

  7. Mani A et al (2007) LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science. https://doi.org/10.1126/science.1136370

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kokubu C et al (2004) Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Development. https://doi.org/10.1242/dev.01405

    Article  PubMed  Google Scholar 

  9. Holmen SL et al (2004) Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res. https://doi.org/10.1359/JBMR.040907

    Article  PubMed  Google Scholar 

  10. Keupp K et al (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet. https://doi.org/10.1016/j.ajhg.2013.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pyott SM et al (2013) WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet. https://doi.org/10.1016/j.ajhg.2013.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lu Y et al (2018) Novel WNT1 mutations in children with osteogenesis imperfecta: clinical and functional characterization. Bone. https://doi.org/10.1016/j.bone.2018.06.018

    Article  PubMed  Google Scholar 

  13. Zheng HF et al (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002745

    Article  PubMed  PubMed Central  Google Scholar 

  14. Medina-Gomez C et al (2012) Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002718

    Article  PubMed  PubMed Central  Google Scholar 

  15. García-Ibarbia C et al (2013) Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos Int. https://doi.org/10.1007/s00198-013-2302-0

    Article  PubMed  Google Scholar 

  16. Takada I et al (2007) A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation. Nat Cell Biol. https://doi.org/10.1038/ncb1647

    Article  PubMed  Google Scholar 

  17. Zhou H et al (2009) Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Development. https://doi.org/10.1242/dev.027706

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsukamoto M et al (2019) Findings as a starting point to unravel the underlying mechanisms of in vivo interactions involving Wnt10a in bone, fat and muscle. Bone. https://doi.org/10.1016/j.bone.2018.10.009

    Article  PubMed  Google Scholar 

  19. Laine CM et al (2011) Novel mutations affecting LRP5 splicing in patients with osteoporosis-pseudoglioma syndrome (OPPG). Eur J Hum Genet. https://doi.org/10.1038/ejhg.2011.42

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gong Y et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell

  21. Hartikka H et al (2005) Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res. https://doi.org/10.1359/JBMR.050101

    Article  PubMed  Google Scholar 

  22. Korvala J et al (2012) Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet. https://doi.org/10.1186/1471-2350-13-26

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boyden LM et al (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. https://doi.org/10.1056/NEJMoa013444

    Article  PubMed  Google Scholar 

  24. Roetzer KM et al (2018) Novel familial mutation of LRP5 causing high bone mass: genetic analysis, clinical presentation, and characterization of bone matrix mineralization. Bone. https://doi.org/10.1016/j.bone.2017.12.002

    Article  PubMed  Google Scholar 

  25. Whyte MP et al (2019) New explanation for autosomal dominant high bone mass: mutation of low-density lipoprotein receptor-related protein 6. Bone. https://doi.org/10.1016/j.bone.2019.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Winkler DG et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. https://doi.org/10.1093/emboj/cdg599

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brunkow ME et al (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. https://doi.org/10.1086/318811

    Article  PubMed  PubMed Central  Google Scholar 

  28. Balemans W et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. https://doi.org/10.1093/hmg/10.5.537

    Article  PubMed  Google Scholar 

  29. Balemans W et al (2002) Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. https://doi.org/10.1136/jmg.39.2.91

    Article  PubMed  PubMed Central  Google Scholar 

  30. Semënov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. https://doi.org/10.1074/jbc.M504308200

    Article  PubMed  Google Scholar 

  31. Li X et al (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. https://doi.org/10.1074/jbc.M413274200

    Article  PubMed  Google Scholar 

  32. Leupin O et al (2011) Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. https://doi.org/10.1074/jbc.M110.190330

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fijalkowski I et al (2016) A novel domain-specific mutation in a sclerosteosis patient suggests a role of LRP4 as an anchor for sclerostin in human bone. J Bone Miner Res. https://doi.org/10.1002/jbmr.2782

    Article  PubMed  Google Scholar 

  34. Boudin E et al (2017) The Lrp4R1170Q homozygous knock-in mouse recapitulates the bone phenotype of sclerosteosis in humans. J Bone Miner Res. https://doi.org/10.1002/jbmr.3160

    Article  PubMed  Google Scholar 

  35. Bullock WA et al (2019) Lrp4 mediates bone homeostasis and mechanotransduction through interaction with sclerostin in vivo. iScience. https://doi.org/10.1016/j.isci.2019.09.023

    Article  PubMed  PubMed Central  Google Scholar 

  36. Strickland DK, Gonias SL, Argraves WS (2002) Diverse roles for the LDL receptor family. Trends Endocrinol Metab. https://doi.org/10.1016/S1043-2760(01)00526-4

    Article  PubMed  Google Scholar 

  37. Bourhis E et al (2011) Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. Structure. https://doi.org/10.1016/j.str.2011.07.005

    Article  PubMed  Google Scholar 

  38. Kim J et al (2020) Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains. Nat Commun. https://doi.org/10.1038/s41467-020-19155-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Veverka V et al (2009) Characterization of the structural features and interactions of sclerostin. Molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem. https://doi.org/10.1074/jbc.M807994200

    Article  PubMed  PubMed Central  Google Scholar 

  40. Holdsworth G et al (2012) Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of wnt co-receptors. J Biol Chem. https://doi.org/10.1074/jbc.M112.350108

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boschert V et al (2013) Mutational analysis of sclerostin shows importance of the flexible loop and the cystine-knot for Wnt-signaling inhibition. PLoS ONE. https://doi.org/10.1371/journal.pone.0081710

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jarmoskaite I, Alsadhan I, Vaidyanathan PP, Herschlag D (2020) How to measure and evaluate binding affinities. Elife 9:1–34. https://doi.org/10.7554/ELIFE.57264

    Article  Google Scholar 

  43. Van Deventer JA, Kelly RL, Rajan S, Wittrup KD, Sidhu SS (2015) A switchable yeast display/secretion system. Protein Eng Des Sel 28(10):317–325. https://doi.org/10.1093/PROTEIN/GZV043

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zahradník J et al (2021) SARS-CoV-2 RBD in vitro evolution follows contagious mutation spread, yet generates an able infection inhibitor. BioRxiv. https://doi.org/10.1101/2021.01.06.425392

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bowen J, Schneible J, Bacon K, Labar C, Menegatti S, Rao BM (2021) Screening of yeast display libraries of enzymatically treated peptides to discover macrocyclic peptide ligands. Int J Mol Sci 22:1634. https://doi.org/10.3390/IJMS22041634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goel S, Chin EN, Fakhraldeen SA, Berry SM, Beebe DJ, Alexander CM (2012) Both LRP5 and LRP6 receptors are required to respond to physiological Wnt ligands in mammary epithelial cells and fibroblasts. J Biol Chem. https://doi.org/10.1074/jbc.M112.362137

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cejka D et al (2014) Renal elimination of sclerostin increases with declining kidney function. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2013-2786

    Article  PubMed  Google Scholar 

  48. Strohl WR (2015) Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs. https://doi.org/10.1007/s40259-015-0133-6

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tu X et al (2012) Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. https://doi.org/10.1016/j.bone.2011.10.025

    Article  PubMed  Google Scholar 

  50. Chang MK et al (2014) Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1413828111

    Article  PubMed  PubMed Central  Google Scholar 

  51. Krause C et al (2010) Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J Biol Chem. https://doi.org/10.1074/jbc.M110.153890

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc. https://doi.org/10.1038/nprot.2006.94

    Article  PubMed  Google Scholar 

  53. Lipovšek D et al (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol. https://doi.org/10.1016/j.jmb.2007.02.029

    Article  PubMed  Google Scholar 

  54. Xiong L et al (2015) Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogenesis and bone resorption. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1419714112

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wehrli M et al (2000) Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407(6803):527–530. https://doi.org/10.1038/35035110

    Article  CAS  PubMed  Google Scholar 

  56. Li X et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. https://doi.org/10.1359/jbmr.080216

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lin C et al (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/β-catenin signaling. J Bone Miner Res. https://doi.org/10.1359/jbmr.090411

    Article  PubMed  Google Scholar 

  58. Weatherbee SD, Anderson KV, Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133(24):4993–5000. https://doi.org/10.1242/dev.02696

    Article  CAS  PubMed  Google Scholar 

  59. Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L (2008) LRP4 serves as a coreceptor of agrin. Neuron 60(2):285–297. https://doi.org/10.1016/j.neuron.2008.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barik A et al (2014) LRP4 is critical for neuromuscular junction maintenance. J Neurosci 34(42):13892–13905. https://doi.org/10.1523/JNEUROSCI.1733-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gautam M, Noakes P, Moscoso L (2021) F. R.-cell, and undefined 1996, Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Elsevier, New York. https://www.sciencedirect.com/science/article/pii/S0092867400812532. Accessed 27 Jun 2021

  62. Holdsworth G et al (2018) Dampening of the bone formation response following repeat dosing with sclerostin antibody in mice is associated with up-regulation of Wnt antagonists. Bone. https://doi.org/10.1016/j.bone.2017.11.003

    Article  PubMed  Google Scholar 

  63. Chan BY et al (2011) Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2011.04.014

    Article  Google Scholar 

  64. Bouaziz W, Funck-Brentano T, Lin H, Marty C, Hay E, Cohen-Solal M (2014) Lack of sclerostin promotes osteoarthritis by activating canonical and non-canonical WNT pathways. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2014.02.629

    Article  Google Scholar 

  65. Chang JC et al (2018) SOST/sclerostin improves posttraumatic osteoarthritis and inhibits MMP2/3 expression after injury. J Bone Miner Res. https://doi.org/10.1002/jbmr.3397

    Article  PubMed  Google Scholar 

  66. Li J et al (2019) SOST deficiency aggravates osteoarthritis in mice by promoting sclerosis of subchondral bone. Biomed Res Int. https://doi.org/10.1155/2019/7623562

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hudson BD et al (2015) SOST inhibits prostate cancer invasion. PLoS ONE. https://doi.org/10.1371/journal.pone.0142058

    Article  PubMed  PubMed Central  Google Scholar 

  68. Desjardins L et al (2014) Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol Ther. https://doi.org/10.1016/j.nephro.2014.04.002

    Article  PubMed  Google Scholar 

  69. Novo-Rodríguez C et al (2018) Circulating levels of sclerostin are associated with cardiovascular mortality. PLoS ONE. https://doi.org/10.1371/journal.pone.0199504

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kanbay M et al (2014) Serum sclerostin and adverse outcomes in nondialyzed chronic kidney disease patients. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2014-2042

    Article  PubMed  Google Scholar 

  71. Viaene L et al (2013) Sclerostin: another bone-related protein related to all-cause mortality in haemodialysis? Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gft039

    Article  PubMed  Google Scholar 

  72. Brandenburg VM et al (2013) Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study. BMC Nephrol. https://doi.org/10.1186/1471-2369-14-219

    Article  PubMed  PubMed Central  Google Scholar 

  73. Drechsler C et al (2015) High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: results from the NECOSAD study. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfu301

    Article  PubMed  Google Scholar 

  74. Rosenfeld L, Shirian J, Zur Y, Levaot N, Shifman JM, Papo N (2015) Combinatorial and computational approaches to identify interactions of macrophage colony-stimulating factor (M-CSF) and its receptor c-FMS. J Biol Chem. https://doi.org/10.1074/jbc.M115.671271

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rueden CT et al (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  76. Dyment NA et al (2016) High-throughput, multi-image cryohistology of mineralized tissues. J Vis Exp 2016(115):54468. https://doi.org/10.3791/54468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the ISRAEL SCIENCE FOUNDATION no. 357/18 (NL) and no. 1615/19 (NP).

Funding

This work was supported by grants from the ISRAEL SCIENCE FOUNDATION no. 357/18 (NL) and no. 1615/19 (NP).

Author information

Authors and Affiliations

Authors

Contributions

SK, conceptualization, data curation, investigation, methodology, validation, visualization, writing—original draft, writing—review and editing. BC, methodology. CA-D, methodology. NP, conceptualization, formal analysis, funding acquisition, investigation, methodology, resources, supervision, validation, visualization, writing—original draft, writing—review and editing. NL, conceptualization, formal analysis, funding acquisition, investigation, methodology, resources, supervision, validation, visualization, writing—original draft, writing—review and editing.

Corresponding authors

Correspondence to Niv Papo or Noam Levaot.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

All mouse studies were carried out according to protocols approved by the Ben-Gurion University Committee for the Ethical Care and Use of Animals in Experiments (permit number: IL-04-01-2019(D)).

Consent to participate

Not applicable.

Consent for publication

All authors agree with the submission, and the work has not been published or submitted for publication elsewhere either completely or in part, or in another form or language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1192 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katchkovsky, S., Chatterjee, B., Abramovitch-Dahan, CV. et al. Competitive blocking of LRP4–sclerostin binding interface strongly promotes bone anabolic functions. Cell. Mol. Life Sci. 79, 113 (2022). https://doi.org/10.1007/s00018-022-04127-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04127-2

Keywords

Navigation