Skip to main content

Advertisement

Log in

Agonist-induced extracellular vesicles contribute to the transfer of functional bombesin receptor-subtype 3 to recipient cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are important carriers for biomolecules in the microenvironment that greatly promote intercellular and extracellular communications. However, it is unclear whether bombesin receptor-subtype 3 (BRS-3), an orphan G-protein coupled receptor, can be packed into EVs and functionally transferred to recipient cells. In this study, we applied the synthetic agonist and antagonist to activate and inhibit the BRS-3 in HEK293-BRS-3 cells, whose EVs release was BRS-3 activation dependent. The presence of BRS-3 in harvested EVs was further confirmed by an enhanced green fluorescent protein tag. After recipient cells were co-cultured with these EVs, the presence of BRS-3 in the recipient cells was discovered, whose function was experimentally validated. Quantitative proteomics approach was utilized to decipher the proteome of the EVs derived from HEK293-BRS-3 cells after different stimulations. More than 900 proteins were identified, including 51 systematically dysregulated EVs proteins. The Ingenuity Pathway Analysis (IPA) revealed that RhoA signaling pathway was as an essential player for the secretion of EVs. Selective inhibition of RhoA signaling pathway after BRS-3 activation dramatically reversed the increased secretion of EVs. Our data, collectively, demonstrated that EVs contributed to the transfer of functional BRS-3 to the recipient cells, whose secretion was partially regulated by RhoA signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data and the search data by MaxQuant (version 1.6.1.0) have been deposited to the ProteomeXchange Consortium (http://www.ebi.ac.uk/pride/archive/) via the PRIDE partner repository with the dataset identifier PXD027980.

Code availability

Not applicable.

References

  1. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228. https://doi.org/10.1038/nrm.2017.125

    Article  CAS  PubMed  Google Scholar 

  2. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066

    Article  PubMed  Google Scholar 

  4. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x

    Article  CAS  PubMed  Google Scholar 

  6. Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232. https://doi.org/10.1016/j.cell.2016.01.043

    Article  CAS  PubMed  Google Scholar 

  7. Wu P, Zhang B, Ocansey DKW, Xu W, Qian H (2021) Extracellular vesicles: a bright star of nanomedicine. Biomaterials 269:120467. https://doi.org/10.1016/j.biomaterials.2020.120467

    Article  CAS  PubMed  Google Scholar 

  8. Abhange K, Makler A, Wen Y, Ramnauth N, Mao W et al (2021) Small extracellular vesicles in cancer. Bioact Mater 6:3705–3743. https://doi.org/10.1016/j.bioactmat.2021.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pocsfalvi G, Stanly C, Vilasi A, Fiume I, Capasso G et al (2016) Mass spectrometry of extracellular vesicles. Mass Spectrom Rev 35:3–21. https://doi.org/10.1002/mas.21457

    Article  CAS  PubMed  Google Scholar 

  10. Isola AL, Chen S (2016) Exosomes: the link between GPCR activation and metastatic potential? Front Genet. https://doi.org/10.3389/fgene.2016.00056

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363. https://doi.org/10.1038/nature08144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829–842. https://doi.org/10.1038/nrd.2017.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morri M, Sanchez-Romero I, Tichy AM, Kainrath S, Gerrard EJ et al (2018) Optical functionalization of human Class A orphan G-protein-coupled receptors. Nat Commun 9:1950. https://doi.org/10.1038/s41467-018-04342-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao C, Reitman ML (2016) Bombesin-like receptor 3: physiology of a functional orphan. Trends Endocrinol Metab 27:603–605. https://doi.org/10.1016/j.tem.2016.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fathi Z, Corjay MH, Shapira H, Wada E, Benya R et al (1993) BRS-3: a novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem 268:5979–5984

    Article  CAS  Google Scholar 

  16. Jensen RT, Battey JF, Spindel ER, Benya RV (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60:1–42. https://doi.org/10.1124/pr.107.07108

    Article  CAS  PubMed  Google Scholar 

  17. Weber HC (2009) Regulation and signaling of human bombesin receptors and their biological effects. Curr Opin Endocrinol Diabetes Obes 16:66–71. https://doi.org/10.1097/med.0b013e32831cf5aa

    Article  CAS  PubMed  Google Scholar 

  18. Piñol RA, Zahler SH, Li C, Saha A, Tan BK et al (2018) Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nat Neurosci 21:1530–1540. https://doi.org/10.1038/s41593-018-0249-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li M, Liang P, Liu D, Yuan F, Chen GC et al (2019) Bombesin receptor subtype-3 in human diseases. Arch Med Res 50:463–467. https://doi.org/10.1016/j.arcmed.2019.11.004

    Article  CAS  PubMed  Google Scholar 

  20. Ramos-Alvarez I, Lee L, Mantey SA, Jensen RT (2019) Development and characterization of a novel, high-affinity, specific, radiolabeled ligand for BRS-3 receptors. J Pharmacol Exp Ther 369:454–465. https://doi.org/10.1124/jpet.118.255141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Zastrow M (2003) Mechanisms regulating membrane trafficking of G protein-coupled receptors in the endocytic pathway. Life Sci 74:217–224. https://doi.org/10.1016/j.lfs.2003.09.008

    Article  CAS  Google Scholar 

  22. Sorkin A, Von Zastrow M (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3:600–614. https://doi.org/10.1038/nrm883

    Article  CAS  PubMed  Google Scholar 

  23. Dores MR, Trejo J (2019) Endo-lysosomal sorting of G-protein-coupled receptors by ubiquitin: diverse pathways for G-protein-coupled receptor destruction and beyond. Traffic 20:101–109. https://doi.org/10.1111/tra.12619

    Article  CAS  PubMed  Google Scholar 

  24. Pironti G, Strachan RT, Abraham D, Mon-Wei Yu S, Chen M et al (2015) Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation 131:2120–2130. https://doi.org/10.1161/circulationaha.115.015687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong L, Zhang B, Wu L, Shang Z, Liu S et al (2020) Proteomics analysis of cellular BRS3 receptor activation reveals potential mechanism for signal transduction and cell proliferation. J Proteome Res 19:1513–1521. https://doi.org/10.1021/acs.jproteome.9b00760

    Article  CAS  PubMed  Google Scholar 

  26. Qiao Z, Zhang Y, Ge M, Liu S, Jiang X et al (2019) Cancer cell derived small extracellular vesicles contribute to recipient cell metastasis through promoting HGF/c-met pathway. Mol Cell Proteomics 18:1619–1629. https://doi.org/10.1074/mcp.RA119.001502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun Y, Liu S, Qiao Z, Shang Z, Xia Z et al (2017) Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal Chim Acta 982:84–95. https://doi.org/10.1016/j.aca.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  28. Guan XM, Chen H, Dobbelaar PH, Dong Y, Fong TM et al (2010) Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell Metab 11:101–112. https://doi.org/10.1016/j.cmet.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  29. Moreno P, Mantey SA, Nuche-Berenguer B, Reitman ML, González N et al (2013) Comparative pharmacology of bombesin receptor subtype-3, nonpeptide agonist MK-5046, a universal peptide agonist, and peptide antagonist Bantag-1 for human bombesin receptors. J Pharmacol Exp Ther 347:100–116. https://doi.org/10.1124/jpet.113.206896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Almasabi S, Ahmed AU, Boyd R, Williams BRG (2021) A potential role for integrin-linked kinase in colorectal cancer growth and progression via regulating senescence and immunity. Front Genet 12:638558. https://doi.org/10.3389/fgene.2021.638558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen H, Liu X, Chen H, Cao J, Zhang L et al (2014) Role of SIRT1 and AMPK in mesenchymal stem cells differentiation. Ageing Res Rev 13:55–64. https://doi.org/10.1016/j.arr.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  32. Bebelman MP, Crudden C, Pegtel DM, Smit MJ (2020) The convergence of extracellular vesicle and GPCR biology. Trends Pharmacol Sci 41:627–640. https://doi.org/10.1016/j.tips.2020.07.001

    Article  CAS  PubMed  Google Scholar 

  33. Sedgwick AE, Clancy JW, Olivia Balmert M, D’Souza-Schorey C (2015) Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci Rep 5:14748. https://doi.org/10.1038/srep14748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650. https://doi.org/10.1038/nrm908

    Article  CAS  PubMed  Google Scholar 

  35. González N, Martín-Duce A, Martínez-Arrieta F, Moreno-Villegas Z, Portal-Núñez S et al (2015) Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes. Int J Mol Med 35:925–931. https://doi.org/10.3892/ijmm.2015.2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moreno P, Mantey SA, Lee SH, Ramos-Álvarez I, Moody TW et al (2018) A possible new target in lung-cancer cells: The orphan receptor, bombesin receptor subtype-3. Peptides 101:213–226. https://doi.org/10.1016/j.peptides.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li M, Lu Y, Xu Y, Wang J, Zhang C et al (2018) Horizontal transfer of exosomal CXCR4 promotes murine hepatocarcinoma cell migration, invasion and lymphangiogenesis. Gene 676:101–109. https://doi.org/10.1016/j.gene.2018.07.018

    Article  CAS  PubMed  Google Scholar 

  38. Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT (2016) Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 20:1055–1073. https://doi.org/10.1517/14728222.2016.1164694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng Y, Guan XM, Li J, Metzger JM, Zhu Y et al (2011) Bombesin receptor subtype-3 (BRS-3) regulates glucose-stimulated insulin secretion in pancreatic islets across multiple species. Endocrinology 152:4106–4115. https://doi.org/10.1210/en.2011-1440

    Article  CAS  PubMed  Google Scholar 

  40. Ramos-Álvarez I, Martín-Duce A, Moreno-Villegas Z, Sanz R, Aparicio C et al (2013) Bombesin receptor subtype-3 (BRS-3), a novel candidate as therapeutic molecular target in obesity and diabetes. Mol Cell Endocrinol 367:109–115. https://doi.org/10.1016/j.mce.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  41. González N, Moreno P, Jensen RT (2015) Bombesin receptor subtype 3 as a potential target for obesity and diabetes. Expert Opin Ther Targets 19:1153–1170. https://doi.org/10.1517/14728222.2015.1056154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marcoux G, Laroche A, Hasse S, Bellio M, Mbarik M et al (2021) Platelet EVs contain an active proteasome involved in protein processing for antigen presentation via MHC-I molecules. Blood. https://doi.org/10.1182/blood.2020009957

    Article  PubMed  Google Scholar 

  43. Wu CH, Silvers CR, Messing EM, Lee YF (2019) Bladder cancer extracellular vesicles drive tumorigenesis by inducing the unfolded protein response in endoplasmic reticulum of nonmalignant cells. J Biol Chem 294:3207–3218. https://doi.org/10.1074/jbc.RA118.006682

    Article  CAS  PubMed  Google Scholar 

  44. Alfadda AA, Benabdelkamel H, Masood A, Moustafa A, Sallam R et al (2013) Proteomic analysis of mature adipocytes from obese patients in relation to aging. Exp Gerontol 48:1196–1203. https://doi.org/10.1016/j.exger.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  45. Young LC, Hartig N, Boned Del Río I, Sari S, Ringham-Terry B et al (2018) SHOC2-MRAS-PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. Proc Natl Acad Sci USA 115:10576–10585. https://doi.org/10.1073/pnas.1720352115

    Article  CAS  Google Scholar 

  46. Wang Q, Symes AJ, Kane CA, Freeman A, Nariculam J et al (2010) A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PLoS ONE 5:126–126

    Article  Google Scholar 

  47. Yu OM, Brown JH (2015) GPCR and RhoA-stimulated transcriptional responses mediating inflammation. Differen Cell Prolif Mol Pharmacol 88(1):171–180. https://doi.org/10.1124/mol.115.097857

    Article  CAS  Google Scholar 

  48. Pang MF, Stallings-Mann M, Siedlik MJ, Han S, Nelson CM (2016) ILK as a signaling nexus for induction of breast cancer stem cells in response to tissue stiffness and hypoxia. Eur J Cancer 61:S40–S40

    Article  Google Scholar 

  49. Glebov K, Löchner M, Jabs R, Lau T, Merkel O et al (2015) Serotonin stimulates secretion of exosomes from microglia cells. Glia 63:626–634. https://doi.org/10.1002/glia.22772

    Article  PubMed  Google Scholar 

  50. Islam A, Jones H, Hiroi T, Lam J, Zhang J et al (2008) cAMP-dependent protein kinase A (PKA) signaling induces TNFR1 exosome-like vesicle release via anchoring of PKA regulatory subunit RIIbeta to BIG2. J Biol Chem 283:25364–25371. https://doi.org/10.1074/jbc.M804966200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gan L, Seki A, Shen K, Iyer H, Han K et al (2019) The lysosomal GPCR-like protein GPR137B regulates Rag and mTORC1 localization and activity. Nat Cell Biol 21:614–626. https://doi.org/10.1038/s41556-019-0321-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kajimoto T, Mohamed NNI, Badawy SMM, Matovelo SA, Hirase M et al (2018) Involvement of Gβγ subunits of G(i) protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes. J Biol Chem 293:245–253. https://doi.org/10.1074/jbc.M117.808733

    Article  CAS  PubMed  Google Scholar 

  53. Das K, Prasad R, Singh A, Bhattacharya A, Roy A et al (2018) Protease-activated receptor 2 promotes actomyosin dependent transforming microvesicles generation from human breast cancer. Mol Carcinog 57:1707–1722. https://doi.org/10.1002/mc.22891

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of Shanghai (No. 21ZR1433200, No. 19ZR1427800), the National Key Research and Development Program of China (No. 2017YFC1200204), the National Natural Science Foundation of China (No. 21675110), and the Key Scientific Project of Shanghai Jiao Tong University (No. TMSK-2020–130, No. YG2017MS80).

Author information

Authors and Affiliations

Authors

Contributions

ZYW, LHW, and HYW performed the experiments and analyzed the data. YZ and HX directed the project and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yan Zhang or Hua Xiao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 484 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, L., Wang, H. et al. Agonist-induced extracellular vesicles contribute to the transfer of functional bombesin receptor-subtype 3 to recipient cells. Cell. Mol. Life Sci. 79, 72 (2022). https://doi.org/10.1007/s00018-021-04114-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04114-z

Keywords

Navigation