Skip to main content

Advertisement

Log in

Secretogranin III stringently regulates pathological but not physiological angiogenesis in oxygen-induced retinopathy

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Conventional angiogenic factors, such as vascular endothelial growth factor (VEGF), regulate both pathological and physiological angiogenesis indiscriminately, and their inhibitors may elicit adverse side effects. Secretogranin III (Scg3) was recently reported to be a diabetes-restricted VEGF-independent angiogenic factor, but the disease selectivity of Scg3 in retinopathy of prematurity (ROP), a retinal disease in preterm infants with concurrent pathological and physiological angiogenesis, was not defined. Here, using oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, we quantified an exclusive binding of Scg3 to diseased versus healthy developing neovessels that contrasted sharply with the ubiquitous binding of VEGF. Functional immunohistochemistry visualized Scg3 binding exclusively to disease-related disorganized retinal neovessels and neovascular tufts, whereas VEGF bound to both disorganized and well-organized neovessels. Homozygous deletion of the Scg3 gene showed undetectable effects on physiological retinal neovascularization but markedly reduced the severity of OIR-induced pathological angiogenesis. Furthermore, anti-Scg3 humanized antibody Fab (hFab) inhibited pathological angiogenesis with similar efficacy to anti-VEGF aflibercept. Aflibercept dose-dependently blocked physiological angiogenesis in neonatal retinas, whereas anti-Scg3 hFab was without adverse effects at any dose and supported a therapeutic window at least 10X wider than that of aflibercept. Therefore, Scg3 stringently regulates pathological but not physiological angiogenesis, and anti-Scg3 hFab satisfies essential criteria for development as a safe and effective disease-targeted anti-angiogenic therapy for ROP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data are included in this article and its supplementary files.

Abbreviations

AF488-IB4:

Alexa Fluor 488-isolectin B4

CNV:

Choroidal neovascularization

DR:

Diabetic retinopathy

EC:

Endothelial cell

ERG:

Electroretinography

FA:

Fluorescein angiography

hAb:

Humanized antibody

hFab:

Humanized or human antibody Fab fragment

HRMVEC:

Human retinal microvascular endothelial cell

IHC:

Immunohistochemistry

OCT:

Optical coherence tomography

OCTC:

Optimal cutting temperature compound

OIR:

Oxygen-induced retinopathy

RNV:

Retinal neovascularization

ROP:

Retinopathy of prematurity

Scg3:

Secretogranin III

Scg3R:

Secretogranin III receptor

VEGF:

Vascular endothelial growth factor

References

  1. Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584. https://doi.org/10.1146/annurev-cellbio-092910-154002

    Article  CAS  PubMed  Google Scholar 

  2. Shimizu T, Hoshino Y, Miyazaki H, Sato E (2012) Angiogenesis and microvasculature in the female reproductive organs: physiological and pathological implications. Curr Pharm Des 18:303–309. https://doi.org/10.2174/138161212799040367

    Article  CAS  PubMed  Google Scholar 

  3. Patel-Hett S, D’Amore PA (2011) Signal transduction in vasculogenesis and developmental angiogenesis. Int J Dev Biol 55:353–363. https://doi.org/10.1387/ijdb.103213sp

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A et al (2019) Contribution of Angiogenesis to Inflammation and Cancer. Front Oncol 9:1399. https://doi.org/10.3389/fonc.2019.01399

    Article  PubMed  PubMed Central  Google Scholar 

  5. Campochiaro PA (2015) Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res 49:67–81. https://doi.org/10.1016/j.preteyeres.2015.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee P, Wang CC, Adamis AP (1998) Ocular neovascularization: an epidemiologic review. Surv Ophthalmol 43:245–269. https://doi.org/10.1016/s0039-6257(98)00035-6

    Article  CAS  PubMed  Google Scholar 

  7. Yang Y, Zhang Y, Cao Z et al (2013) Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proc Natl Acad Sci USA 110:12018–12023. https://doi.org/10.1073/pnas.1301331110

    Article  PubMed  PubMed Central  Google Scholar 

  8. Taugourdeau-Raymond S, Rouby F, Default A et al (2012) Bevacizumab-induced serious side-effects: a review of the French pharmacovigilance database. Eur J Clin Pharmacol 68:1103–1107. https://doi.org/10.1007/s00228-012-1232-7

    Article  CAS  PubMed  Google Scholar 

  9. Tanabe K, Wada J, Sato Y (2020) Targeting angiogenesis and lymphangiogenesis in kidney disease. Nat Rev Nephrol 16:289–303. https://doi.org/10.1038/s41581-020-0260-2

    Article  CAS  PubMed  Google Scholar 

  10. Hellström A, Smith LEH, Dammann O (2013) Retinopathy of prematurity. Lancet 382:1445–1457. https://doi.org/10.1016/S0140-6736(13)60178-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai C, Webster KA, Bhatt A et al (2021) Concurrent physiological and pathological angiogenesis in retinopathy of prematurity and emerging therapies. Int J Mol Sci. https://doi.org/10.3390/ijms22094809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. LeBlanc ME, Wang W, Chen X et al (2017) Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy. J Exp Med 214:1029–1047. https://doi.org/10.1084/jem.20161802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rong X, Tian H, Yang L, Li W (2019) Function-first ligandomics for ocular vascular research and drug target discovery. Exp Eye Res 182:57–64. https://doi.org/10.1016/j.exer.2019.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. LeBlanc ME, Wang W, Ji Y et al (2019) Secretogranin III as a novel target for the therapy of choroidal neovascularization. Exp Eye Res 181:120–126. https://doi.org/10.1016/j.exer.2019.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang F, LeBlanc ME, Wang W et al (2019) Anti-secretogranin III therapy of oxygen-induced retinopathy with optimal safety. Angiogenesis 22:369–382. https://doi.org/10.1007/s10456-019-09662-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ji L, Waduge P, Hao L et al (2022) Selectively targeting disease-restricted secretogranin III to alleviate choroidal neovascularization. FASEB J 36:e22106. https://doi.org/10.1096/fj.202101085RR

    Article  CAS  PubMed  Google Scholar 

  17. Stahl A, Chen J, Sapieha P et al (2010) Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. Am J Pathol 177:2715–2723. https://doi.org/10.2353/ajpath.2010.100526

    Article  PubMed  PubMed Central  Google Scholar 

  18. Connor KM, Krah NM, Dennison RJ et al (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4:1565–1573. https://doi.org/10.1038/nprot.2009.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caberoy NB, Zhou Y, Jiang X et al (2010) Efficient identification of tubby-binding proteins by an improved system of T7 phage display. J Mol Recognit 23:74–83. https://doi.org/10.1002/jmr.983

    Article  CAS  PubMed  Google Scholar 

  20. Li W, Webster KA, LeBlanc ME, Tian H (2018) Secretogranin III: a diabetic retinopathy-selective angiogenic factor. Cell Mol Life Sci 75:635–647. https://doi.org/10.1007/s00018-017-2635-5

    Article  CAS  PubMed  Google Scholar 

  21. Hosaka M, Watanabe T (2010) Secretogranin III: a bridge between core hormone aggregates and the secretory granule membrane. Endocr J 57:275–286. https://doi.org/10.1507/endocrj.k10e-038

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Pang I-H, Pacheco MTF, Tian H (2018) Ligandomics: a paradigm shift in biological drug discovery. Drug Discov Today 23:636–643. https://doi.org/10.1016/j.drudis.2018.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pierce EA, Avery RL, Foley ED et al (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92:905–909. https://doi.org/10.1073/pnas.92.3.905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kline JE, Illapani VSP, He L et al (2019) Retinopathy of prematurity and bronchopulmonary dysplasia are independent antecedents of cortical maturational abnormalities in very preterm infants. Sci Rep 9:19679. https://doi.org/10.1038/s41598-019-56298-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Froger N, Matonti F, Roubeix C et al (2020) VEGF is an autocrine/paracrine neuroprotective factor for injured retinal ganglion neurons. Sci Rep 10:12409. https://doi.org/10.1038/s41598-020-68488-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kingsley DM, Rinchik EM, Russell LB et al (1990) Genetic ablation of a mouse gene expressed specifically in brain. EMBO J 9:395–399

    Article  CAS  Google Scholar 

  27. Sapieha P (2012) Eyeing central neurons in vascular growth and reparative angiogenesis. Blood 120:2182–2194. https://doi.org/10.1182/blood-2012-04-396846

    Article  CAS  PubMed  Google Scholar 

  28. Tokunaga CC, Mitton KP, Dailey W et al (2014) Effects of anti-VEGF treatment on the recovery of the developing retina following oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 55:1884–1892. https://doi.org/10.1167/iovs.13-13397

    Article  CAS  PubMed  Google Scholar 

  29. Liets LC, Eliasieh K, van der List DA, Chalupa LM (2006) Dendrites of rod bipolar cells sprout in normal aging retina. Proc Natl Acad Sci USA 103:12156–12160. https://doi.org/10.1073/pnas.0605211103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnstone C, Rich SE (2018) Bleeding in cancer patients and its treatment: a review. Ann Palliat Med 7:265–273

    Article  Google Scholar 

  31. Laude A, Cackett PD, Vithana EN et al (2010) Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res 29:19–29. https://doi.org/10.1016/j.preteyeres.2009.10.001

    Article  PubMed  Google Scholar 

  32. Zhou R, Zhang S, Gu X et al (2018) Adenosine A2A receptor antagonists act at the hyperoxic phase to confer protection against retinopathy. Mol Med 24:41. https://doi.org/10.1186/s10020-018-0038-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu H, Mei FC, Yang W et al (2020) Epac1 inhibition ameliorates pathological angiogenesis through coordinated activation of Notch and suppression of VEGF signaling. Sci Adv. https://doi.org/10.1126/sciadv.aay3566

    Article  PubMed  PubMed Central  Google Scholar 

  34. Murinello S, Usui Y, Sakimoto S et al (2019) miR-30a-5p inhibition promotes interaction of Fas+ endothelial cells and FasL+ microglia to decrease pathological neovascularization and promote physiological angiogenesis. Glia 67:332–344. https://doi.org/10.1002/glia.23543

    Article  PubMed  Google Scholar 

  35. Phung TL, Ziv K, Dabydeen D et al (2006) Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10:159–170. https://doi.org/10.1016/j.ccr.2006.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chaudhary A, Hilton MB, Seaman S et al (2012) TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 21:212–226. https://doi.org/10.1016/j.ccr.2012.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miyoshi T, Hirohata S, Ogawa H et al (2006) Tumor-specific expression of the RGD-alpha3(IV)NC1 domain suppresses endothelial tube formation and tumor growth in mice. FASEB J 20:1904–1906. https://doi.org/10.1096/fj.05-5565fje

    Article  CAS  PubMed  Google Scholar 

  38. Takeda A, Baffi JZ, Kleinman ME et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460:225–230. https://doi.org/10.1038/nature08151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lam JD, Oh DJ, Wong LL et al (2017) Identification of RUNX1 as a mediator of aberrant retinal angiogenesis. Diabetes 66:1950–1956. https://doi.org/10.2337/db16-1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Al-Hilal TA, Chung SW, Choi JU et al (2016) Targeting prion-like protein doppel selectively suppresses tumor angiogenesis. J Clin Invest 126:1251–1266. https://doi.org/10.1172/JCI83427

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ridiandries A, Tan JTM, Ravindran D et al (2017) CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis. FASEB J 31:1179–1192. https://doi.org/10.1096/fj.201600540R

    Article  CAS  PubMed  Google Scholar 

  42. Ferrara N, Carver-Moore K, Chen H et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442. https://doi.org/10.1038/380439a0

    Article  CAS  PubMed  Google Scholar 

  43. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70. https://doi.org/10.1038/376066a0

    Article  CAS  PubMed  Google Scholar 

  44. Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66. https://doi.org/10.1038/376062a0

    Article  CAS  PubMed  Google Scholar 

  45. Lutty GA, McLeod DS, Bhutto I, Wiegand SJ (2011) Effect of VEGF trap on normal retinal vascular development and oxygen-induced retinopathy in the dog. Invest Ophthalmol Vis Sci 52:4039–4047. https://doi.org/10.1167/iovs.10-6798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vogel RN, Strampe M, Fagbemi OE et al (2018) Foveal development in infants treated with bevacizumab or laser photocoagulation for retinopathy of prematurity. Ophthalmology 125:444–452. https://doi.org/10.1016/j.ophtha.2017.09.020

    Article  PubMed  Google Scholar 

  47. Morin J, Luu TM, Superstein R et al (2016) Neurodevelopmental outcomes following bevacizumab injections for retinopathy of prematurity. Pediatrics. https://doi.org/10.1542/peds.2015-3218

    Article  PubMed  Google Scholar 

  48. Sato T, Kusaka S, Shimojo H, Fujikado T (2009) Vitreous levels of erythropoietin and vascular endothelial growth factor in eyes with retinopathy of prematurity. Ophthalmology 116:1599–1603. https://doi.org/10.1016/j.ophtha.2008.12.023

    Article  PubMed  Google Scholar 

  49. Aiello LP, Avery RL, Arrigg PG et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487. https://doi.org/10.1056/NEJM199412013312203

    Article  CAS  PubMed  Google Scholar 

  50. Wallace DK, Kylstra JA, Greenman DB, Freedman SF (1998) Significance of isolated neovascular tufts (“popcorn”) in retinopathy of prematurity. J AAPOS 2:52–56. https://doi.org/10.1016/s1091-8531(98)90111-2

    Article  CAS  PubMed  Google Scholar 

  51. Gitay-Goren H, Cohen T, Tessler S et al (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem 271:5519–5523. https://doi.org/10.1074/jbc.271.10.5519

    Article  CAS  PubMed  Google Scholar 

  52. Cooper ME, Vranes D, Youssef S et al (1999) Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 48:2229–2239. https://doi.org/10.2337/diabetes.48.11.2229

    Article  CAS  PubMed  Google Scholar 

  53. Egawa G, Nakamizo S, Natsuaki Y et al (2013) Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep 3:1932. https://doi.org/10.1038/srep01932

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pino RM, Essner E (1981) Permeability of rat choriocapillaris to hemeproteins. Restriction of tracers by a fenestrated endothelium. J Histochem Cytochem 29:281–290. https://doi.org/10.1177/29.2.7252121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Yingbin Fu and Philp Rosenfeld for scientific discussion and Dr. Yuqin Wang for technical support. Ralph Nichols for TEM at the Imaging Core Facility, Cullen Eye Institute, Baylor College of Medicine.

Funding

This work was supported by NIH R01EY027749 (WL), R24EY028764 (WL and KAW), R24EY028764-01A1S1 (WL and KAW), R43EY031238 (HT, KAW and WL), R43EY031643 (HT), R41EY027665 (WL and HT), American Diabetes Association 1-18-IBS-172 (WL), NIH P30EY002520, Knights Templar Eye Foundation Endowment in Ophthalmology (WL) and an unrestricted institutional grant from Research to Prevent Blindness (RPB) to Department of Ophthalmology, Baylor College of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

CD, PW, LJ and CH designed and performed experiments and data analyses. YH and EZ provided technical support. HT provided reagents and technical support. AB, IP, GS and KW provided scientific support. WL conceived and supervised the project and experiments and analyzed data. CD and WL wrote and revised manuscript. KW revised manuscript.

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Conflict of interest

HT and WL are shareholders of Everglades Biopharma, LLC and LigandomicsRx, LLC. The remaining authors declare no competing financial interests.

Ethical approval

All animal studies were approved by the Institutional Animal Care and Use Committee at University of Miami and Baylor College of Medicine.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3094 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Waduge, P., Ji, L. et al. Secretogranin III stringently regulates pathological but not physiological angiogenesis in oxygen-induced retinopathy. Cell. Mol. Life Sci. 79, 63 (2022). https://doi.org/10.1007/s00018-021-04111-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04111-2

Keywords

Navigation