Skip to main content

Advertisement

Log in

Host glyceraldehyde-3-phosphate dehydrogenase-mediated iron acquisition is hijacked by intraphagosomal Mycobacterium tuberculosis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Availability of iron is a key factor in the survival and multiplication of Mycobacterium tuberculosis (M.tb) within host macrophage phagosomes. Despite host cell iron regulatory machineries attempts to deny supply of this essential micronutrient, intraphagosomal M.tb continues to access extracellular iron. In the current study, we report that intracellular M.tb exploits mammalian secreted Glyceraldehyde 3-phosphate dehydrogenase (sGAPDH) for the delivery of host iron carrier proteins lactoferrin (Lf) and transferrin (Tf). Studying the trafficking of iron carriers in infected cells we observed that sGAPDH along with the iron carrier proteins are preferentially internalized into infected cells and trafficked to M.tb containing phagosomes where they are internalized by resident mycobacteria resulting in iron delivery. Collectively our findings provide a new mechanism of iron acquisition by M.tb involving the hijack of host sGAPDH. This may contribute to its successful pathogenesis and provide an option for targeted therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Tf:

Transferrin

Lf:

Lactoferrin

TfR:

Transferrin receptor

SFM:

Serum free medium

M.tb :

Mycobacterium tuberculosis

LAM:

Lipoarabinomannan

References

  1. Finkelstein RA, Sciortino CV, McIntosh MA (1983) Role of iron in microbe–host interactions. Rev Infect Dis 5(Suppl 4):S759-777

    Article  PubMed  Google Scholar 

  2. Schlesinger LS (1993) Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150(7):2920–2930

    CAS  PubMed  Google Scholar 

  3. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263(5147):678–681

    Article  CAS  PubMed  Google Scholar 

  4. Xu S, Cooper A, Sturgill-Koszycki S, van Heyningen T, Chatterjee D, Orme I, Allen P, Russell DG (1994) Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol 153(6):2568–2578

    CAS  PubMed  Google Scholar 

  5. Clemens DL, Horwitz MA (1995) Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181(1):257–270

    Article  CAS  PubMed  Google Scholar 

  6. Thom RE, Elmore MJ, Williams A, Andrews SC, Drobniewski F, Marsh PD, Tree JA (2012) The expression of ferritin, lactoferrin, transferrin receptor and solute carrier family 11A1 in the host response to BCG-vaccination and Mycobacterium tuberculosis challenge. Vaccine 30(21):3159–3168

    Article  CAS  PubMed  Google Scholar 

  7. Wessling-Resnick M (2015) Nramp1 and other transporters involved in metal withholding during infection. J Biol Chem 290(31):18984–18990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cellier MF, Courville P, Campion C (2007) Nramp1 phagocyte intracellular metal withdrawal defense. Microbes Infect 9(14):1662–1670

    Article  CAS  PubMed  Google Scholar 

  9. Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941

    Article  CAS  PubMed  Google Scholar 

  10. Gobin J, Moore CH, Reeve JR Jr, Wong DK, Gibson BW, Horwitz MA (1995) Iron acquisition by Mycobacterium tuberculosis: isolation and characterization of a family of iron-binding exochelins. Proc Natl Acad Sci U S A 92(11):5189–5193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wagner D, Maser J, Lai B, Cai Z, Barry CE 3rd, Honer Zu Bentrup K, Russell DG, Bermudez LE (2005) Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal system. J Immunol 174(3):1491–1500

    Article  CAS  PubMed  Google Scholar 

  12. De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE 3rd (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97(3):1252–1257

    Article  PubMed  PubMed Central  Google Scholar 

  13. Malhotra H, Patidar A, Boradia VM, Kumar R, Nimbalkar RD, Kumar A, Gani Z, Kaur R, Garg P, Raje M et al (2017) Mycobacterium tuberculosis glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a receptor for human lactoferrin. Front Cell Infect Microbiol 7:245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Boradia VM, Malhotra H, Thakkar JS, Tillu VA, Vuppala B, Patil P, Sheokand N, Sharma P, Chauhan AS, Raje M et al (2014) Mycobacterium tuberculosis acquires iron by cell-surface sequestration and internalization of human holo-transferrin. Nat Commun 5:4730

    Article  CAS  PubMed  Google Scholar 

  15. Rawat P, Kumar S, Sheokand N, Raje CI, Raje M (2012) The multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a novel macrophage lactoferrin receptor. Biochem Cell Biol 90(3):329–338

    Article  CAS  PubMed  Google Scholar 

  16. Kumar S, Sheokand N, Mhadeshwar MA, Raje CI, Raje M (2012) Characterization of glyceraldehyde-3-phosphate dehydrogenase as a novel transferrin receptor. Int J Biochem Cell Biol 44(1):189–199

    Article  CAS  PubMed  Google Scholar 

  17. Raje CI, Kumar S, Harle A, Nanda JS, Raje M (2007) The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem 282(5):3252–3261

    Article  CAS  PubMed  Google Scholar 

  18. Chauhan AS, Rawat P, Malhotra H, Sheokand N, Kumar M, Patidar A, Chaudhary S, Jakhar P, Raje CI, Raje M (2015) Secreted multifunctional glyceraldehyde-3-phosphate dehydrogenase sequesters lactoferrin and iron into cells via a non-canonical pathway. Sci Rep 5:18465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheokand N, Kumar S, Malhotra H, Tillu V, Raje CI, Raje M (2013) Secreted glyceraldehye-3-phosphate dehydrogenase is a multifunctional autocrine transferrin receptor for cellular iron acquisition. Biochim Biophys Acta 1830(6):3816–3827

    Article  CAS  PubMed  Google Scholar 

  20. Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML (2015) Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep 5:18176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Appelberg R, Moreira D, Barreira-Silva P, Borges M, Silva L, Dinis-Oliveira RJ, Resende M, Correia-Neves M, Jordan MB, Ferreira NC et al (2015) The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-gamma. Immunology 145(4):498–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurthkoti K, Amin H, Marakalala MJ, Ghanny S, Subbian S, Sakatos A, Livny J, Fortune SM, Berney M, Rodriguez GM (2017) The capacity of Mycobacterium tuberculosis to survive iron starvation might enable it to persist in iron-deprived microenvironments of human granulomas. MBio 8(4):e01092–17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thompson AB, Bohling T, Payvandi F, Rennard SI (1990) Lower respiratory tract lactoferrin and lysozyme arise primarily in the airways and are elevated in association with chronic bronchitis. J Lab Clin Med 115(2):148–158

    CAS  PubMed  Google Scholar 

  24. Momotani E, Whipple DL, Thiermann AB (1988) The distribution of ferritin, lactoferrin and transferrin in granulomatous lymphadenitis of bovine paratuberculosis. J Comp Pathol 99(2):205–214

    Article  CAS  PubMed  Google Scholar 

  25. Olakanmi O, Schlesinger LS, Ahmed A, Britigan BE (2004) The nature of extracellular iron influences iron acquisition by Mycobacterium tuberculosis residing within human macrophages. Infect Immun 72(4):2022–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olakanmi O, Schlesinger LS, Ahmed A, Britigan BE (2002) Intraphagosomal Mycobacterium tuberculosis acquires iron from both extracellular transferrin and intracellular iron pools. Impact of interferon-gamma and hemochromatosis. J Biol Chem 277(51):49727–49734

    Article  CAS  PubMed  Google Scholar 

  27. Olakanmi O, Kesavalu B, Abdalla MY, Britigan BE (2013) Iron acquisition by Mycobacterium tuberculosis residing within myeloid dendritic cells. Microb Pathog 65:21–28

    Article  CAS  PubMed  Google Scholar 

  28. Zhong W, Lafuse WP, Zwilling BS (2001) Infection with Mycobacterium avium differentially regulates the expression of iron transport protein mRNA in murine peritoneal macrophages. Infect Immun 69(11):6618–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nairz M, Haschka D, Demetz E, Weiss G (2014) Iron at the interface of immunity and infection. Front Pharmacol 5:152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Oexle H, Kaser A, Most J, Bellmann-Weiler R, Werner ER, Werner-Felmayer G, Weiss G (2003) Pathways for the regulation of interferon-gamma-inducible genes by iron in human monocytic cells. J Leukoc Biol 74(2):287–294

    Article  CAS  PubMed  Google Scholar 

  31. Weiss G, Werner-Felmayer G, Werner ER, Grunewald K, Wachter H, Hentze MW (1994) Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 180(3):969–976

    Article  CAS  PubMed  Google Scholar 

  32. Byrd TF, Horwitz MA (1993) Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Coordinate upregulation by iron transferrin and downregulation by interferon gamma. J Clin Investig 91(3):969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ortalo-Magne A, Lemassu A, Laneelle MA, Bardou F, Silve G, Gounon P, Marchal G, Daffe M (1996) Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 178(2):456–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. Curr Protoc Immunol (Chapter 14, Unit 14 11) 83(1):14–1

  35. Trouplin V, Boucherit N, Gorvel L, Conti F, Mottola G, Ghigo E (2013) Bone marrow-derived macrophage production. J Vis Exp 81:e50966

    Google Scholar 

  36. Lindsay JA, Riley TV, Mee BJ (1995) Staphylococcus aureus but not Staphylococcus epidermidis can acquire iron from transferrin. Microbiology 141(Pt 1):197–203

    Article  CAS  PubMed  Google Scholar 

  37. Mukherjee K, Siddiqi SA, Hashim S, Raje M, Basu SK, Mukhopadhyay A (2000) Live Salmonella recruits N-ethylmaleimide-sensitive fusion protein on phagosomal membrane and promotes fusion with early endosome. J Cell Biol 148(4):741–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Das A, Nag S, Mason AB, Barroso MM (2016) Endosome-mitochondria interactions are modulated by iron release from transferrin. J Cell Biol 214(7):831–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Munnik T, Wierzchowiecka M (2013) Lipid-binding analysis using a fat blot assay. Methods Mol Biol 1009:253–259

    Article  CAS  PubMed  Google Scholar 

  40. Boradia VM, Raje M, Raje CI (2017) Mycobacterium tuberculosis cell-surface GAPDH functions as a transferrin receptor. In: Henderson B (ed) Moonlighting proteins novel virulence factors in bacterial infections. Hoboken, Wiley Blackwell, pp 205–224

    Google Scholar 

  41. Welin A, Winberg ME, Abdalla H, Särndahl E, Rasmusson B, Stendahl O, Lerm M (2008) Incorporation of Mycobacterium tuberculosis lipoarabinomannan into macrophage membrane rafts is a prerequisite for the phagosomal maturation block. Infect Immun 76(7):2882–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Russell DG (2011) Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev 240(1):252–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weiss G, Schaible UE (2015) Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264(1):182–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6(8):e1000949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Banerjee S, Farhana A, Ehtesham NZ, Hasnain SE (2011) Iron acquisition, assimilation and regulation in mycobacteria. Infect Genet Evol 11(5):825–838

    Article  CAS  PubMed  Google Scholar 

  46. Ratledge C (2004) Iron, Mycobacteria and tuberculosis. Tuberculosis (Edinb) 84(1–2):110–130

    Article  Google Scholar 

  47. Luo M, Fadeev EA, Groves JT (2005) Mycobactin-mediated iron acquisition within macrophages. Nat Chem Biol 1(3):149–153

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Hendrickson R, Meikle V, Lefkowitz EJ, Ioerger TR, Niederweis M (2020) Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. PLoS Pathog 16(2):1008337

    Article  CAS  Google Scholar 

  49. Tullius MV, Harmston CA, Owens CP, Chim N, Morse RP, McMath LM, Iniguez A, Kimmey JM, Sawaya MR, Whitelegge JP et al (2011) Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci USA 108(12):5051–5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leon-Sicairos N, Reyes-Cortes R, Guadron-Llanos AM, Maduena-Molina J, Leon-Sicairos C, Canizalez-Roman A (2015) Strategies of intracellular pathogens for obtaining iron from the environment. Biomed Res Int 2015:476534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hutchens TW, Lönnerdal B, Rumball SV (eds) (2012) Lactoferrin: structure and function. Springer, New York

    Google Scholar 

  52. Donovan A, Roy CN, Andrews NC (2006) The ins and outs of iron homeostasis. Physiology 21(2):115–123

    Article  CAS  PubMed  Google Scholar 

  53. Boradia V, Raje M, Raje C (2014) Protein moonlighting in iron metabolism: glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem Soc Trans 42(6):1796–1801

    Article  CAS  PubMed  Google Scholar 

  54. Reddy VP, Chinta KC, Saini V, Glasgow JN, Hull TD, Traylor A, Rey-Stolle F, Soares MP, Madansein R, Rahman MA et al (2018) Ferritin H deficiency in myeloid compartments dysregulates host energy metabolism and increases susceptibility to Mycobacterium tuberculosis infection. Front Immunol 9:860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Abreu R, Essler L, Giri P, Quinn F (2020) Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication. PLoS ONE 15(12):e0240949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Biadglegne F, König B, Rodloff AC, Dorhoi A, Sack U (2021) Composition and clinical significance of exosomes in tuberculosis: a systematic literature review. J Clin Med 10(1):145

    Article  CAS  PubMed Central  Google Scholar 

  57. Athman JJ, Wang Y, McDonald DJ, Boom WH, Harding CV, Wearsch PA (2015) Bacterial membrane vesicles mediate the release of mycobacterium tuberculosis lipoglycans and lipoproteins from infected macrophages. J Immunol 195(3):1044–1053

    Article  CAS  PubMed  Google Scholar 

  58. Malhotra H, Sheokand N, Kumar S, Chauhan AS, Kumar M, Jakhar P, Boradia VM, Raje CI, Raje M (2016) Exosomes: tunable nano vehicles for macromolecular delivery of transferrin and lactoferrin to specific intracellular compartment. J Biomed Nanotechnol 12(5):1101–1114

    Article  CAS  PubMed  Google Scholar 

  59. Soares MP, Hamza I (2016) Macrophages and iron metabolism. Immunity 44(3):492–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rao Muvva J, Parasa VR, Lerm M, Svensson M, Brighenti S (2020) Polarization of human monocyte-derived cells with vitamin D promotes control of mycobacterium tuberculosis infection. Front Immunol 10:3157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. DesJardin LE, Kaufman TM, Potts B, Kutzbach B, Yi H, Schlesinger LS (2002) Mycobacterium tuberculosis-infected human macrophages exhibit enhanced cellular adhesion with increased expression of LFA-1 and ICAM-1 and reduced expression and/or function of complement receptors FcγRII and the mannose receptor. Microbiology 148(10):3161–3171

    Article  CAS  PubMed  Google Scholar 

  62. Chao A, Sieminski PJ, Owens CP, Goulding CW (2019) Iron acquisition in Mycobacterium tuberculosis. Chem Rev 119(2):1193–1220

    Article  CAS  PubMed  Google Scholar 

  63. Huang Y, Zhang P, Yang Z, Wang P, Li H, Gao Z (2017) Interaction of glyceraldehyde-3-phosphate dehydrogenase and heme: the relevance of its biological function. Arch Biochem Biophys 619:54–61

    Article  CAS  PubMed  Google Scholar 

  64. Mitra A, Speer A, Lin K, Ehrt S, Niederweis M (2017) PPE surface proteins are required for heme utilization by Mycobacterium tuberculosis. J Med Sci 8(1):e01720-16

    Google Scholar 

  65. Sweeny EA, Singh AB, Chakravarti R, Martinez-Guzman O, Saini A, Haque MM, Garee G, Dans PD, Hannibal L, Reddi AR et al (2018) Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells. J Biol Chem 293(37):14557–14568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hanna DA, Harvey RM, Martinez-Guzman O, Yuan X, Chandrasekharan B, Raju G, Outten FW, Hamza I, Reddi AR (2016) Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proc Natl Acad Sci 113(27):7539–7544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Modun B, Williams P (1999) The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 67(3):1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Mr. Anil Theophilus & Mr. Randeep Sharma are acknowledged for technical assistance. This is IMTECH communication No. 035/2021.

Funding

S.C. and R.S.M. received fellowships from University Grants Commission India, A.D., A. P., G.K.C. and S.T. from Department of Biotechnology, India and R.D. was supported by a fellowship of the Indian Council of Medical Research. Partial Financial support was received from CSIR, DBT (Project no's. BT/PR13469/BRB/10/1395/2015 and BT/PR14292/NNT/28/853/2015), ICMR and DST (Project no. EMR/2016/001898).

Author information

Authors and Affiliations

Authors

Contributions

CIR and MR conceptualized and planned the research work. AP, HM AD, SC, RD, GKC, ST and RSM all carried out the experiments in the manuscript and compiled the preliminary data, AP, HM, CIR and MR analyzed the data and compiled the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manoj Raje.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1261 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patidar, A., Malhotra, H., Chaudhary, S. et al. Host glyceraldehyde-3-phosphate dehydrogenase-mediated iron acquisition is hijacked by intraphagosomal Mycobacterium tuberculosis. Cell. Mol. Life Sci. 79, 62 (2022). https://doi.org/10.1007/s00018-021-04110-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04110-3

Keywords

Navigation