Skip to main content

Advertisement

Log in

The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Parthanatos is a form of regulated cell death involved in the pathogenesis of many diseases, particularly neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington’s disease, and amyotrophic lateral sclerosis. Parthanatos is a multistep cell death pathway cascade that involves poly (ADP-ribose) polymerase 1 (PARP-1) overactivation, PAR accumulation, PAR binding to apoptosis-inducing factor (AIF), AIF release from the mitochondria, nuclear translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and MIF-mediated large-scale DNA fragmentation. All the key players in the parthanatos pathway are pleiotropic proteins with diverse functions. An in-depth understanding of the structure-based activity of the key factors, and the biochemical mechanisms of parthanatos, is crucial for the development of drugs and therapeutic strategies. In this review, we delve into the key players of the parthanatos pathway and reveal the multiple levels of therapeutic opportunities for treating parthanatos-based pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Wang X, Ge P (2020) Parthanatos in the pathogenesis of nervous system diseases. Neuroscience 449:241–250. https://doi.org/10.1016/j.neuroscience.2020.09.049

    Article  CAS  PubMed  Google Scholar 

  2. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263. https://doi.org/10.1126/science.1072221

    Article  CAS  PubMed  Google Scholar 

  3. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 103(48):18314–18319. https://doi.org/10.1073/pnas.0606528103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC et al (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103(48):18308–18313. https://doi.org/10.1073/pnas.0606526103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S et al (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 19(1):107–120. https://doi.org/10.1038/cdd.2011.96

    Article  CAS  PubMed  Google Scholar 

  6. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016. https://doi.org/10.1111/bph.12416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pacher P, Szabo C (2008) Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol 173(1):2–13. https://doi.org/10.2353/ajpath.2008.080019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kam TI, Mao X, Park H, Chou SC, Karuppagounder SS, Umanah GE, Yun SP, Brahmachari S, Panicker N, Chen R et al (2018) Poly(ADP-ribose) drives pathologic alpha-synuclein neurodegeneration in Parkinson’s disease. Science. https://doi.org/10.1126/science.aat8407

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C et al (2016) A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science. https://doi.org/10.1126/science.aad6872

    Article  PubMed  PubMed Central  Google Scholar 

  11. David KK, Andrabi SA, Dawson TM, Dawson VL (2009) Parthanatos, a messenger of death. Front Biosci (Landmark Ed) 14:1116–1128. https://doi.org/10.2741/3297

    Article  CAS  Google Scholar 

  12. Andrabi SA, Dawson TM, Dawson VL (2008) Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci 1147:233–241. https://doi.org/10.1196/annals.1427.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park H, Kam TI, Dawson TM, Dawson VL (2020) Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. Int Rev Cell Mol Biol 353:1–29. https://doi.org/10.1016/bs.ircmb.2019.12.009

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Yu SW, Koh DW, Lew J, Coombs C, Bowers W, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2004) Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 24(48):10963–10973. https://doi.org/10.1523/JNEUROSCI.3461-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang R, Li C, Qiao P, Xue Y, Zheng X, Chen H, Zeng X, Liu W, Boldogh I, Ba X (2018) OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos. Cell Death Dis 9(6):628. https://doi.org/10.1038/s41419-018-0680-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mashimo M, Kato J, Moss J (2013) ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc Natl Acad Sci U S A 110(47):18964–18969. https://doi.org/10.1073/pnas.1312783110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan J, Dawson TM, Dawson VL (2017) Cell death mechanisms of neurodegeneration. Adv Neurobiol 15:403–425. https://doi.org/10.1007/978-3-319-57193-5_16

    Article  PubMed  Google Scholar 

  18. Jang KH, Do YJ, Son D, Son E, Choi JS, Kim E (2017) AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration. Cell Death Dis 8(1):e2526. https://doi.org/10.1038/cddis.2016.437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Regdon Z, Robaszkiewicz A, Kovacs K, Rygielska Z, Hegedus C, Bodoor K, Szabo E, Virag L (2019) LPS protects macrophages from AIF-independent parthanatos by downregulation of PARP1 expression, induction of SOD2 expression, and a metabolic shift to aerobic glycolysis. Free Radic Biol Med 131:184–196. https://doi.org/10.1016/j.freeradbiomed.2018.11.034

    Article  CAS  PubMed  Google Scholar 

  20. Erdelyi K, Bai P, Kovacs I, Szabo E, Mocsar G, Kakuk A, Szabo C, Gergely P, Virag L (2009) Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB J 23(10):3553–3563. https://doi.org/10.1096/fj.09-133264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robaszkiewicz A, Erdelyi K, Kovacs K, Kovacs I, Bai P, Rajnavolgyi E, Virag L (2012) Hydrogen peroxide-induced poly(ADP-ribosyl)ation regulates osteogenic differentiation-associated cell death. Free Radic Biol Med 53(8):1552–1564. https://doi.org/10.1016/j.freeradbiomed.2012.08.567

    Article  CAS  PubMed  Google Scholar 

  22. Virag L, Salzman AL, Szabo C (1998) Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J Immunol 161(7):3753–3759

    CAS  PubMed  Google Scholar 

  23. Virag L, Scott GS, Cuzzocrea S, Marmer D, Salzman AL, Szabo C (1998) Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation. Immunology 94(3):345–355. https://doi.org/10.1046/j.1365-2567.1998.00534.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96(24):13978–13982. https://doi.org/10.1073/pnas.96.24.13978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ba X, Garg NJ (2011) Signaling mechanism of poly(ADP-ribose) polymerase-1 (PARP-1) in inflammatory diseases. Am J Pathol 178(3):946–955. https://doi.org/10.1016/j.ajpath.2010.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32(1):12–19. https://doi.org/10.1016/j.tibs.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  27. Andrabi SA, Umanah GK, Chang C, Stevens DA, Karuppagounder SS, Gagne JP, Poirier GG, Dawson VL, Dawson TM (2014) Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci U S A 111(28):10209–10214. https://doi.org/10.1073/pnas.1405158111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fouquerel E, Goellner EM, Yu Z, Gagne JP, Barbi de Moura M, Feinstein T, Wheeler D, Redpath P, Li J, Romero G et al (2014) ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep 8(6):1819–1831. https://doi.org/10.1016/j.celrep.2014.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432. https://doi.org/10.1101/gad.183509.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24. https://doi.org/10.1016/j.molcel.2010.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gibson BA, Kraus WL (2017) Identification of protein substrates of specific PARP enzymes using analog-sensitive PARP mutants and a “clickable” NAD(+) analog. Methods Mol Biol 1608:111–135. https://doi.org/10.1007/978-1-4939-6993-7_9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li M, Lu LY, Yang CY, Wang S, Yu X (2013) The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes Dev 27(16):1752–1768. https://doi.org/10.1101/gad.226357.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, Poirier GG, Dawson VL, Dawson TM (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4(167):ra20. https://doi.org/10.1126/scisignal.2000902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Luo W, Wang Y (2019) PARP-1 and its associated nucleases in DNA damage response. DNA Repair (Amst) 81:102651. https://doi.org/10.1016/j.dnarep.2019.102651

    Article  CAS  Google Scholar 

  36. Lee Y, Karuppagounder SS, Shin JH, Lee YI, Ko HS, Swing D, Jiang H, Kang SU, Lee BD, Kang HC et al (2013) Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat Neurosci 16(10):1392–1400. https://doi.org/10.1038/nn.3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Visochek L, Grigoryan G, Kalal A, Milshtein-Parush H, Gazit N, Slutsky I, Yeheskel A, Shainberg A, Castiel A, Seger R et al (2016) A PARP1-ERK2 synergism is required for the induction of LTP. Sci Rep 6:24950. https://doi.org/10.1038/srep24950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13(7):411–424. https://doi.org/10.1038/nrm3376

    Article  CAS  PubMed  Google Scholar 

  39. Homburg S, Visochek L, Moran N, Dantzer F, Priel E, Asculai E, Schwartz D, Rotter V, Dekel N, Cohen-Armon M (2000) A fast signal-induced activation of Poly(ADP-ribose) polymerase: a novel downstream target of phospholipase c. J Cell Biol 150(2):293–307. https://doi.org/10.1083/jcb.150.2.293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ju BG, Solum D, Song EJ, Lee KJ, Rose DW, Glass CK, Rosenfeld MG (2004) Activating the PARP-1 sensor component of the groucho/ TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. Cell 119(6):815–829. https://doi.org/10.1016/j.cell.2004.11.017

    Article  CAS  PubMed  Google Scholar 

  41. Cohen-Armon M, Visochek L, Rozensal D, Kalal A, Geistrikh I, Klein R, Bendetz-Nezer S, Yao Z, Seger R (2007) DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol Cell 25(2):297–308. https://doi.org/10.1016/j.molcel.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  42. Teloni F, Altmeyer M (2016) Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 44(3):993–1006. https://doi.org/10.1093/nar/gkv1383

    Article  CAS  PubMed  Google Scholar 

  43. Cohen MS, Chang P (2018) Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol 14(3):236–243. https://doi.org/10.1038/nchembio.2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kamaletdinova T, Fanaei-Kahrani Z, Wang ZQ (2019) The enigmatic function of PARP1: from PARylation activity to PAR readers. Cells. https://doi.org/10.3390/cells8121625

    Article  PubMed  PubMed Central  Google Scholar 

  45. Leung AK (2014) Poly(ADP-ribose): an organizer of cellular architecture. J Cell Biol 205(5):613–619. https://doi.org/10.1083/jcb.201402114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kunze FA, Hottiger MO (2019) Regulating immunity via ADP-ribosylation: therapeutic implications and beyond. Trends Immunol 40(2):159–173. https://doi.org/10.1016/j.it.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  47. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829. https://doi.org/10.1128/MMBR.00040-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu L, Ke Y, Jiang X, He F, Pan L, Xu L, Zeng X, Ba X (2012) Lipopolysaccharide activates ERK-PARP-1-RelA pathway and promotes nuclear factor-kappaB transcription in murine macrophages. Hum Immunol 73(5):439–447. https://doi.org/10.1016/j.humimm.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  49. Ke Y, Han Y, Guo X, Wen J, Wang K, Jiang X, Tian X, Ba X, Boldogh I, Zeng X (2017) PARP1 promotes gene expression at the post-transcriptiona level by modulating the RNA-binding protein HuR. Nat Commun 8:14632. https://doi.org/10.1038/ncomms14632

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ray Chaudhuri A, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18(10):610–621. https://doi.org/10.1038/nrm.2017.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou Y, Feng X, Koh DW (2011) Activation of cell death mediated by apoptosis-inducing factor due to the absence of poly(ADP-ribose) glycohydrolase. Biochemistry 50(14):2850–2859. https://doi.org/10.1021/bi101829r

    Article  CAS  PubMed  Google Scholar 

  52. Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC, Stoger T, Poirier GG, Dawson VL, Dawson TM (2004) Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci U S A 101(51):17699–17704. https://doi.org/10.1073/pnas.0406182101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Dawson VL, Dawson TM (2009) Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol 218(2):193–202. https://doi.org/10.1016/j.expneurol.2009.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harrision D, Gravells P, Thompson R, Bryant HE (2020) Poly(ADP-ribose) glycohydrolase (PARG) vs. poly(ADP-ribose) polymerase (PARP) - function in genome maintenance and relevance of inhibitors for anti-cancer therapy. Front Mol Biosci 7:191. https://doi.org/10.3389/fmolb.2020.00191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Min W, Wang ZQ (2009) Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front Biosci (Landmark Ed) 14:1619–1626. https://doi.org/10.2741/3329

    Article  CAS  Google Scholar 

  56. Cozzi A, Cipriani G, Fossati S, Faraco G, Formentini L, Min W, Cortes U, Wang ZQ, Moroni F, Chiarugi A (2006) Poly(ADP-ribose) accumulation and enhancement of postischemic brain damage in 110-kDa poly(ADP-ribose) glycohydrolase null mice. J Cereb Blood Flow Metab 26(5):684–695. https://doi.org/10.1038/sj.jcbfm.9600222

    Article  CAS  PubMed  Google Scholar 

  57. Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281(2):705–713. https://doi.org/10.1074/jbc.M510290200

    Article  CAS  PubMed  Google Scholar 

  58. Mashimo M, Bu X, Aoyama K, Kato J, Ishiwata-Endo H, Stevens LA, Kasamatsu A, Wolfe LA, Toro C, Adams D et al (2019) PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells. JCI Insight. https://doi.org/10.1172/jci.insight.124519

    Article  PubMed  PubMed Central  Google Scholar 

  59. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184(4):1331–1341. https://doi.org/10.1084/jem.184.4.1331

    Article  CAS  PubMed  Google Scholar 

  60. Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24(7):1375–1386. https://doi.org/10.1038/sj.emboj.7600614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Polster BM, Basanez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280(8):6447–6454. https://doi.org/10.1074/jbc.M413269200

    Article  CAS  PubMed  Google Scholar 

  62. Yu SW, Wang Y, Frydenlund DS, Ottersen OP, Dawson VL, Dawson TM (2009) Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release. ASN Neuro. https://doi.org/10.1042/AN20090046

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mate MJ, Ortiz-Lombardia M, Boitel B, Haouz A, Tello D, Susin SA, Penninger J, Kroemer G, Alzari PM (2002) The crystal structure of the mouse apoptosis-inducing factor AIF. Nat Struct Biol 9(6):442–446. https://doi.org/10.1038/nsb793

    Article  CAS  PubMed  Google Scholar 

  64. Churbanova IY, Sevrioukova IF (2008) Redox-dependent changes in molecular properties of mitochondrial apoptosis-inducing factor. J Biol Chem 283(9):5622–5631. https://doi.org/10.1074/jbc.M709147200

    Article  CAS  PubMed  Google Scholar 

  65. Sevrioukova IF (2009) Redox-linked conformational dynamics in apoptosis-inducing factor. J Mol Biol 390(5):924–938. https://doi.org/10.1016/j.jmb.2009.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Joza N, Oudit GY, Brown D, Benit P, Kassiri Z, Vahsen N, Benoit L, Patel MM, Nowikovsky K, Vassault A et al (2005) Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 25(23):10261–10272. https://doi.org/10.1128/MCB.25.23.10261-10272.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheung EC, Joza N, Steenaart NA, McClellan KA, Neuspiel M, McNamara S, MacLaurin JG, Rippstein P, Park DS, Shore GC et al (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25(17):4061–4073. https://doi.org/10.1038/sj.emboj.7601276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419(6905):367–374. https://doi.org/10.1038/nature01034

    Article  CAS  PubMed  Google Scholar 

  69. Lipton SA, Bossy-Wetzel E (2002) Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111(2):147–150. https://doi.org/10.1016/s0092-8674(02)01046-2

    Article  CAS  PubMed  Google Scholar 

  70. Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-de Murcia J, Susin SA (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27(13):4844–4862. https://doi.org/10.1128/MCB.02141-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cabon L, Galan-Malo P, Bouharrour A, Delavallee L, Brunelle-Navas MN, Lorenzo HK, Gross A, Susin SA (2012) BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death Differ 19(2):245–256. https://doi.org/10.1038/cdd.2011.91

    Article  CAS  PubMed  Google Scholar 

  72. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, Blomgren K, Plesnila N (2005) Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 25(44):10262–10272. https://doi.org/10.1523/JNEUROSCI.2818-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cheung EC, Melanson-Drapeau L, Cregan SP, Vanderluit JL, Ferguson KL, McIntosh WC, Park DS, Bennett SA, Slack RS (2005) Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 25(6):1324–1334. https://doi.org/10.1523/JNEUROSCI.4261-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J et al (2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14(5):729–739

    Article  CAS  PubMed  Google Scholar 

  75. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26(8):882–893. https://doi.org/10.1002/bies.20085

    Article  CAS  PubMed  Google Scholar 

  76. Mashimo M, Onishi M, Uno A, Tanimichi A, Nobeyama A, Mori M, Yamada S, Negi S, Bu X, Kato J et al (2021) The 89-kDa PARP1 cleavage fragment serves as a cytoplasmic PAR carrier to induce AIF-mediated apoptosis. J Biol Chem 296:100046. https://doi.org/10.1074/jbc.RA120.014479

    Article  CAS  PubMed  Google Scholar 

  77. Mashimo M, Moss J (2016) Functional role of ADP-ribosyl-acceptor hydrolase 3 in poly(ADP-ribose) polymerase-1 response to oxidative stress. Curr Protein Pept Sci 17(7):633–640. https://doi.org/10.2174/1389203717666160419144603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang X, Yang C, Chai J, Shi Y, Xue D (2002) Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298(5598):1587–1592. https://doi.org/10.1126/science.1076194

    Article  CAS  PubMed  Google Scholar 

  79. Xu Z, Zhang J, David KK, Yang ZJ, Li X, Dawson TM, Dawson VL, Koehler RC (2010) Endonuclease G does not play an obligatory role in poly(ADP-ribose) polymerase-dependent cell death after transient focal cerebral ischemia. Am J Physiol Regul Integr Comp Physiol 299(1):R215-221. https://doi.org/10.1152/ajpregu.00747.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cande C, Vahsen N, Kouranti I, Schmitt E, Daugas E, Spahr C, Luban J, Kroemer RT, Giordanetto F, Garrido C et al (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23(8):1514–1521. https://doi.org/10.1038/sj.onc.1207279

    Article  CAS  PubMed  Google Scholar 

  81. Zhu C, Wang X, Deinum J, Huang Z, Gao J, Modjtahedi N, Neagu MR, Nilsson M, Eriksson PS, Hagberg H et al (2007) Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med 204(8):1741–1748. https://doi.org/10.1084/jem.20070193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Artus C, Boujrad H, Bouharrour A, Brunelle MN, Hoos S, Yuste VJ, Lenormand P, Rousselle JC, Namane A, England P et al (2010) AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. EMBO J 29(9):1585–1599. https://doi.org/10.1038/emboj.2010.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baritaud M, Boujrad H, Lorenzo HK, Krantic S, Susin SA (2010) Histone H2AX: the missing link in AIF-mediated caspase-independent programmed necrosis. Cell Cycle 9(16):3166–3173. https://doi.org/10.4161/cc.9.16.12887

    Article  CAS  PubMed  Google Scholar 

  84. Doti N, Reuther C, Scognamiglio PL, Dolga AM, Plesnila N, Ruvo M, Culmsee C (2014) Inhibition of the AIF/CypA complex protects against intrinsic death pathways induced by oxidative stress. Cell Death Dis 5:e993. https://doi.org/10.1038/cddis.2013.518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rodriguez J, Xie C, Li T, Sun Y, Wang Y, Xu Y, Li K, Zhang S, Zhou K, Wang Y et al (2020) Inhibiting the interaction between apoptosis-inducing factor and cyclophilin A prevents brain injury in neonatal mice after hypoxia-ischemia. Neuropharmacology 171:108088. https://doi.org/10.1016/j.neuropharm.2020.108088

    Article  CAS  PubMed  Google Scholar 

  86. Bloom BR, Bennett B (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153(3731):80–82. https://doi.org/10.1126/science.153.3731.80

    Article  CAS  PubMed  Google Scholar 

  87. Bloom J, Sun S, Al-Abed Y (2016) MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 20(12):1463–1475. https://doi.org/10.1080/14728222.2016.1251582

    Article  CAS  PubMed  Google Scholar 

  88. Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R (1994) Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF). Biochemistry 33(47):14144–14155. https://doi.org/10.1021/bi00251a025

    Article  CAS  PubMed  Google Scholar 

  89. Florez-Sampedro L, Soto-Gamez A, Poelarends GJ, Melgert BN (2020) The role of MIF in chronic lung diseases: looking beyond inflammation. Am J Physiol Lung Cell Mol Physiol 318(6):L1183–L1197. https://doi.org/10.1152/ajplung.00521.2019

    Article  CAS  PubMed  Google Scholar 

  90. Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 3(10):791–800. https://doi.org/10.1038/nri1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Onodera S, Nishihira J, Koyama Y, Majima T, Aoki Y, Ichiyama H, Ishibashi T, Minami A (2004) Macrophage migration inhibitory factor up-regulates the expression of interleukin-8 messenger RNA in synovial fibroblasts of rheumatoid arthritis patients: common transcriptional regulatory mechanism between interleukin-8 and interleukin-1beta. Arthritis Rheum 50(5):1437–1447. https://doi.org/10.1002/art.20190

    Article  CAS  PubMed  Google Scholar 

  92. Schindler L, Dickerhof N, Hampton MB, Bernhagen J (2018) Post-translational regulation of macrophage migration inhibitory factor: basis for functional fine-tuning. Redox Biol 15:135–142. https://doi.org/10.1016/j.redox.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  93. Tarnowski M, Grymula K, Liu R, Tarnowska J, Drukala J, Ratajczak J, Mitchell RA, Ratajczak MZ, Kucia M (2010) Macrophage migration inhibitory factor is secreted by rhabdomyosarcoma cells, modulates tumor metastasis by binding to CXCR4 and CXCR7 receptors and inhibits recruitment of cancer-associated fibroblasts. Mol Cancer Res 8(10):1328–1343. https://doi.org/10.1158/1541-7786.MCR-10-0288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L et al (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13(5):587–596. https://doi.org/10.1038/nm1567

    Article  CAS  PubMed  Google Scholar 

  95. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R (2003) MIF signal transduction initiated by binding to CD74. J Exp Med 197(11):1467–1476. https://doi.org/10.1084/jem.20030286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shi X, Leng L, Wang T, Wang W, Du X, Li J, McDonald C, Chen Z, Murphy JW, Lolis E et al (2006) CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25(4):595–606. https://doi.org/10.1016/j.immuni.2006.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Binsky I, Haran M, Starlets D, Gore Y, Lantner F, Harpaz N, Leng L, Goldenberg DM, Shvidel L, Berrebi A et al (2007) IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci U S A 104(33):13408–13413. https://doi.org/10.1073/pnas.0701553104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leyton-Jaimes MF, Kahn J, Israelson A (2018) Macrophage migration inhibitory factor: a multifaceted cytokine implicated in multiple neurological diseases. Exp Neurol 301(Pt B):83–91. https://doi.org/10.1016/j.expneurol.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  99. Kleemann R, Kapurniotu A, Frank RW, Gessner A, Mischke R, Flieger O, Juttner S, Brunner H, Bernhagen J (1998) Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol 280(1):85–102. https://doi.org/10.1006/jmbi.1998.1864

    Article  CAS  PubMed  Google Scholar 

  100. Thiele M, Bernhagen J (2005) Link between macrophage migration inhibitory factor and cellular redox regulation. Antioxid Redox Signal 7(9–10):1234–1248. https://doi.org/10.1089/ars.2005.7.1234

    Article  CAS  PubMed  Google Scholar 

  101. Jonas E (2016) The MIFstep in parthanatos. Science 354(6308):36–37. https://doi.org/10.1126/science.aai8756

    Article  CAS  PubMed  Google Scholar 

  102. Kosinski J, Feder M, Bujnicki JM (2005) The PD-(D/E)XK superfamily revisited: identification of new members among proteins involved in DNA metabolism and functional predictions for domains of (hitherto) unknown function. BMC Bioinformatics 6:172. https://doi.org/10.1186/1471-2105-6-172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, MacArtney TJ, Hofmann K, Gartner A, West SC, Helleday T et al (2010) Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142(1):65–76. https://doi.org/10.1016/j.cell.2010.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, Lademann C, Cannavo E, Sartori AA, Hengartner MO, Jiricny J (2010) Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142(1):77–88. https://doi.org/10.1016/j.cell.2010.06.022

    Article  CAS  PubMed  Google Scholar 

  105. Laganeckas M, Margelevicius M, Venclovas C (2011) Identification of new homologs of PD-(D/E)XK nucleases by support vector machines trained on data derived from profile-profile alignments. Nucleic Acids Res 39(4):1187–1196. https://doi.org/10.1093/nar/gkq958

    Article  CAS  PubMed  Google Scholar 

  106. Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K (2012) Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 40(15):7016–7045. https://doi.org/10.1093/nar/gks382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dawson TM, Dawson VL (2017) Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu Rev Pharmacol Toxicol 57:437–454. https://doi.org/10.1146/annurev-pharmtox-010716-105001

    Article  CAS  PubMed  Google Scholar 

  108. McGurk L, Mojsilovic-Petrovic J, Van Deerlin VM, Shorter J, Kalb RG, Lee VM, Trojanowski JQ, Lee EB, Bonini NM (2018) Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis. Acta Neuropathol Commun 6(1):84. https://doi.org/10.1186/s40478-018-0586-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A, Deng Y (2021) Parthanatos and its associated components: promising therapeutic targets for cancer. Pharmacol Res 163:105299. https://doi.org/10.1016/j.phrs.2020.105299

    Article  CAS  PubMed  Google Scholar 

  110. Matulonis UA, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott C, Meier W, Shapira-Frommer R, Safra T et al (2016) Olaparib maintenance therapy in patients with platinum-sensitive, relapsed serous ovarian cancer and a BRCA mutation: overall survival adjusted for postprogression poly(adenosine diphosphate ribose) polymerase inhibitor therapy. Cancer 122(12):1844–1852. https://doi.org/10.1002/cncr.29995

    Article  CAS  PubMed  Google Scholar 

  111. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, Fabbro M, Ledermann JA, Lorusso D, Vergote I et al (2016) Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 375(22):2154–2164. https://doi.org/10.1056/NEJMoa1611310

    Article  CAS  PubMed  Google Scholar 

  112. Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, Konecny GE, Coleman RL, Tinker AV, O’Malley DM et al (2017) Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 18(1):75–87. https://doi.org/10.1016/S1470-2045(16)30559-9

    Article  CAS  PubMed  Google Scholar 

  113. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Goncalves A, Lee KH, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M et al (2018) Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 379(8):753–763. https://doi.org/10.1056/NEJMoa1802905

    Article  CAS  PubMed  Google Scholar 

  114. Singh N, Pay SL, Bhandare SB, Arimpur U, Motea EA (2020) Therapeutic strategies and biomarkers to modulate PARP activity for targeted cancer therapy. Cancers (Basel). https://doi.org/10.3390/cancers12040972

    Article  PubMed Central  Google Scholar 

  115. Beitz JM (2014) Parkinson’s disease: a review. Front Biosci (Schol Ed) 6:65–74. https://doi.org/10.2741/s415

    Article  Google Scholar 

  116. Oh YK, Shin KS, Kang SJ (2006) AIF translocates to the nucleus in the spinal motor neurons in a mouse model of ALS. Neurosci Lett 406(3):205–210. https://doi.org/10.1016/j.neulet.2006.07.044

    Article  CAS  PubMed  Google Scholar 

  117. Shibata N, Kakita A, Takahashi H, Ihara Y, Nobukuni K, Fujimura H, Sakoda S, Sasaki S, Yamamoto T, Kobayashi M (2009) Persistent cleavage and nuclear translocation of apoptosis-inducing factor in motor neurons in the spinal cord of sporadic amyotrophic lateral sclerosis patients. Acta Neuropathol 118(6):755–762. https://doi.org/10.1007/s00401-009-0580-6

    Article  CAS  PubMed  Google Scholar 

  118. Duan Y, Du A, Gu J, Duan G, Wang C, Gui X, Ma Z, Qian B, Deng X, Zhang K et al (2019) PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res 29(3):233–247. https://doi.org/10.1038/s41422-019-0141-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Soria Lopez JA, Gonzalez HM, Leger GC (2019) Alzheimer’s disease. Handb Clin Neurol 167:231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3

    Article  PubMed  Google Scholar 

  120. Angelova PR, Abramov AY (2014) Interaction of neurons and astrocytes underlies the mechanism of Abeta-induced neurotoxicity. Biochem Soc Trans 42(5):1286–1290. https://doi.org/10.1042/BST20140153

    Article  CAS  PubMed  Google Scholar 

  121. Abeti R, Abramov AY, Duchen MR (2011) Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain 134(Pt 6):1658–1672. https://doi.org/10.1093/brain/awr104

    Article  PubMed  Google Scholar 

  122. Kauppinen TM, Suh SW, Higashi Y, Berman AE, Escartin C, Won SJ, Wang C, Cho SH, Gan L, Swanson RA (2011) Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid beta. J Neuroinflammation 8:152. https://doi.org/10.1186/1742-2094-8-152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Labbadia J, Morimoto RI (2013) Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 38(8):378–385. https://doi.org/10.1016/j.tibs.2013.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sun Y, Savanenin A, Reddy PH, Liu YF (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 276(27):24713–24718. https://doi.org/10.1074/jbc.M103501200

    Article  CAS  PubMed  Google Scholar 

  125. Cardinale A, Paldino E, Giampa C, Bernardi G, Fusco FR (2015) PARP-1 inhibition is neuroprotective in the R6/2 mouse model of Huntington’s disease. PLoS ONE 10(8):e0134482. https://doi.org/10.1371/journal.pone.0134482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Visnes T, Cazares-Korner A, Hao W, Wallner O, Masuyer G, Loseva O, Mortusewicz O, Wiita E, Sarno A, Manoilov A et al (2018) Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science 362(6416):834–839. https://doi.org/10.1126/science.aar8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Donley N, Jaruga P, Coskun E, Dizdaroglu M, McCullough AK, Lloyd RS (2015) Small molecule inhibitors of 8-oxoguanine DNA glycosylase-1 (OGG1). ACS Chem Biol 10(10):2334–2343. https://doi.org/10.1021/acschembio.5b00452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagne JP, Lee Y, Ko HS, Lee BD, Poirier GG et al (2011) Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci U S A 108(34):14103–14108. https://doi.org/10.1073/pnas.1108799108

    Article  PubMed  PubMed Central  Google Scholar 

  129. Andrabi SA, Kang HC, Haince JF, Lee YI, Zhang J, Chi Z, West AB, Koehler RC, Poirier GG, Dawson TM et al (2011) Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat Med 17(6):692–699. https://doi.org/10.1038/nm.2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Park YH, Seo JH, Park JH, Lee HS, Kim KW (2017) Hsp70 acetylation prevents caspase-dependent/independent apoptosis and autophagic cell death in cancer cells. Int J Oncol 51(2):573–578. https://doi.org/10.3892/ijo.2017.4039

    Article  CAS  PubMed  Google Scholar 

  131. Shelar SB, Kaminska KK, Reddy SA, Kumar D, Tan CT, Yu VC, Lu J, Holmgren A, Hagen T, Chew EH (2015) Thioredoxin-dependent regulation of AIF-mediated DNA damage. Free Radic Biol Med 87:125–136. https://doi.org/10.1016/j.freeradbiomed.2015.06.029

    Article  CAS  PubMed  Google Scholar 

  132. Russo L, Mascanzoni F, Farina B, Dolga AM, Monti A, Caporale A, Culmsee C, Fattorusso R, Ruvo M, Doti N (2021) Design, optimization, and structural characterization of an apoptosis-inducing factor peptide targeting human cyclophilin a to inhibit apoptosis inducing factor-mediated cell death. J Med Chem 64(15):11445–11459. https://doi.org/10.1021/acs.jmedchem.1c00777

    Article  CAS  PubMed  Google Scholar 

  133. Monti A, Sturlese M, Caporale A, Roger JA, Mascanzoni F, Ruvo M, Doti N (1864) Design, synthesis, structural analysis and biochemical studies of stapled AIF(370–394) analogues as ligand of CypA. Biochim Biophys Acta Gen Subj 12:129717. https://doi.org/10.1016/j.bbagen.2020.129717

    Article  CAS  Google Scholar 

  134. Wang M, Zhang L, Han X, Yang J, Qian J, Hong S, Samaniego F, Romaguera J, Yi Q (2007) Atiprimod inhibits the growth of mantle cell lymphoma in vitro and in vivo and induces apoptosis via activating the mitochondrial pathways. Blood 109(12):5455–5462. https://doi.org/10.1182/blood-2006-12-063958

    Article  CAS  PubMed  Google Scholar 

  135. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA et al (2005) Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 12(Suppl 2):1463–1467. https://doi.org/10.1038/sj.cdd.4401724

    Article  CAS  PubMed  Google Scholar 

  136. Feng X, Zhou Y, Proctor AM, Hopkins MM, Liu M, Koh DW (2012) Silencing of apoptosis-inducing factor and poly(ADP-ribose) glycohydrolase reveals novel roles in breast cancer cell death after chemotherapy. Mol Cancer 11:48. https://doi.org/10.1186/1476-4598-11-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (grant number: 31900557 to R.W., 31970686 to X.B. and 31801182 to Y.K.), China Postdoctoral Science Foundation Grant (grant number: 2019M662431 to R.W.).

Author information

Authors and Affiliations

Authors

Contributions

RW and XB had the idea for the article; RW, LL and JL performed the literature search; RW, XB, LL, JL, JG, YK and XZ drafted and critically revised work; RW designed the figures. LL and RW produced the figures.

Corresponding authors

Correspondence to Xueqing Ba or Ruoxi Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent the publication of the manuscript in CMLS.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Li, J., Ke, Y. et al. The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell. Mol. Life Sci. 79, 60 (2022). https://doi.org/10.1007/s00018-021-04109-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04109-w

Keywords

Navigation