Skip to main content

Advertisement

Log in

Tuning the ignition of CAR: optimizing the affinity of scFv to improve CAR-T therapy

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

How single-chain variable fragments (scFvs) affect the functions of chimeric antigen receptors (CARs) has not been well studied. Here, the components of CAR with an emphasis on scFv were described, and then several methods to measure scFv affinity were discussed. Next, scFv optimization studies for CD19, CD38, HER2, GD2 or EGFR were overviewed, showing that tuning the affinity of scFv could alleviate the on-target/off-tumor toxicity. The affinities of scFvs for different antigens were also summarized to designate a relatively optimal working range for CAR design. Last, a synthetic biology approach utilizing a low-affinity synthetic Notch (synNotch) receptor to achieve ultrasensitivity of antigen-density discrimination and murine models to assay the on-target/off-tumor toxicity of CARs were highlighted. Thus, this review provides preliminary guidelines of choosing the right scFvs for CARs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. June CH, Sadelain M (2018) Chimeric antigen receptor therapy. N Engl J Med 379:64–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vairy S, Garcia JL, Teira P, Bittencourt H (2018) CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. Drug Des Dev Ther 12:3885–3898

    Article  CAS  Google Scholar 

  3. Neelapu SS et al (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. New Engl J Med 377:2531–2544

    Article  CAS  PubMed  Google Scholar 

  4. Jacobson CA et al (2020) Interim analysis of ZUMA-5: a phase II study of axicabtagene ciloleucel (axi-cel) in patients (pts) with relapsed/refractory indolent non-Hodgkin lymphoma (R/R iNHL). J Clin Oncol 38

  5. Morris EC, Neelapu SS, Giavridis T, Sadelain M (2021) Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol 17:1–12

    Google Scholar 

  6. Maude SL, Barrett D, Teachey DT, Grupp SA (2014) Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 20:119–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schubert ML et al (2021) Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol 32:34–48

    Article  CAS  PubMed  Google Scholar 

  8. Qin JS et al (2020) Antitumor potency of an anti-CD19 chimeric antigen receptor T-cell therapy, lisocabtagene maraleucel in combination with ibrutinib or acalabrutinib. J Immunother 43:107–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang MH et al (2020) KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 382:1331–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Locke FL et al (2017) Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther 25:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu SN, Yi M, Qin S, Wu KM (2019) Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer 18:125

    Article  PubMed  PubMed Central  Google Scholar 

  12. Filley AC, Henriquez M, Dey M (2018) CART immunotherapy: development success, and translation to malignant gliomas and other solid tumors. Front Oncol 8:453

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lamers CHJ, Klaver Y, Gratama JW, Sleijfer S, Debets R (2016) Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells—a completed study overview. Biochem Soc T 44:951–959

    Article  CAS  Google Scholar 

  14. Morgan RA et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andrea AE, Chiron A, Bessoles S, Hacein-Bey-Abina S (2020) Engineering next-generation CAR-T cells for better toxicity management. Int J Mol Sci 21:8620

    Article  CAS  PubMed Central  Google Scholar 

  16. Dotti G, Gottschalk S, Savoldo B, Brenner MK (2014) Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 257:107–126

    Article  CAS  PubMed  Google Scholar 

  17. Hudecek M et al (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 19:3153–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahmed N et al (2010) HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 16:474–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghorashian S et al (2019) Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat Med 25:1408–1414

    Article  CAS  PubMed  Google Scholar 

  20. Drent E et al (2017) A rational strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization. Mol Ther 25:1946–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu X et al (2015) Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 75:3596–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castellarin M et al (2020) A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. Jci Insight 5:e136012

  23. Richman SA et al (2018) High-affinity GD2-specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model. Cancer Immunol Res 6:36–46

    Article  CAS  PubMed  Google Scholar 

  24. Caruso HG et al (2015) Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 75:3505–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hernandez-Lopez RA et al (2021) T cell circuits that sense antigen density with an ultrasensitive threshold. Science 371:1166–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Becker MLB et al (1989) Expression of a hybrid immunoglobulin-T Cell-receptor protein in transgenic mice. Cell 58:911–921

    Article  CAS  PubMed  Google Scholar 

  28. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 20:70–75

    Article  CAS  PubMed  Google Scholar 

  29. Finney HM, Akbar AN, Lawson ADG (2004) Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol 172:104–113

    Article  CAS  PubMed  Google Scholar 

  30. Hong MH, Clubb JD, Chen YY (2020) Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38:473–488

    Article  CAS  PubMed  Google Scholar 

  31. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86:10024–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmid DA et al (2010) Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function. J Immunol 184:4936–4946

    Article  CAS  PubMed  Google Scholar 

  33. Chmielewski M, Hombach A, Heuser C, Adams GP, Abken H (2004) T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J Immunol 173:7647–7653

    Article  CAS  PubMed  Google Scholar 

  34. Sharma P et al (2020) Structure-guided engineering of the affinity and specificity of CARs against Tn-glycopeptides. Proc Natl Acad Sci USA 117:15148–15159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Estep P et al (2013) High throughput solution-based measurement of antibody-antigen affinity and epitope binning. Mabs-Austin 5:270–278

    Article  Google Scholar 

  36. Sadelain M (2015) CAR therapy: the CD19 paradigm. J Clin Invest 125:3392–3400

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brudno JN et al (2018) Clinical anti-lymphoma activity and toxicity of T cells expressing a novel anti-CD19 chimeric antigen receptor with fully-human variable regions. J Clin Oncol 36

  38. Michelozzi IM et al (2020) The enhanced functionality of low-affinity CD19 CAR T cells is associated with activation priming and polyfunctional cytokine phenotype. Blood 136(Supplement 1):52–53

    Article  Google Scholar 

  39. Hamieh M et al (2019) CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568:112–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao ZT et al (2019) Blocking CD38-driven fratricide among T cells enables effective antitumor activity by CD38-specific chimeric antigen receptor T cells. J Genet Genom 46:367–377

    Article  Google Scholar 

  41. Ding Z et al (2021) CD38 multi-functionality in oral squamous cell carcinoma: prognostic implications, immune balance, and immune checkpoint. Front Oncol 11:687430

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ge Y et al (2019) CD38 affects the biological behavior and energy metabolism of nasopharyngeal carcinoma cells. Int J Oncol 54:585–599

    CAS  PubMed  Google Scholar 

  43. Liao S et al (2014) CD38 is highly expressed and affects the PI3K/Akt signaling pathway in cervical cancer. Oncol Rep 32:2703–2709

    Article  CAS  PubMed  Google Scholar 

  44. de Weers M et al (2011) Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 186:1840–1848

    Article  PubMed  Google Scholar 

  45. Guo YL et al (2020) Efficiency and side effects of anti-CD38 CAR T cells in an adult patient with relapsed B-ALL after failure of bi-specific CD19/CD22 CAR T cell treatment. Cell Mol Immunol 17:430–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krejcik J et al (2016) Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 128:384–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mihara K et al (2009) Activated T-cell-mediated immunotherapy with a chimeric receptor against CD38 in B-cell non-hodgkin lymphoma. J Immunother 32:737–743

    Article  CAS  PubMed  Google Scholar 

  48. Drent E et al (2019) Combined CD28 and 4-1BB costimulation potentiates affinity-tuned chimeric antigen receptor-engineered T cells. Clin Cancer Res 25:4014–4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garcia-Guerrero E, Sierro-Martinez B, Perez-Simon JA (2020) Overcoming chimeric antigen receptor (CAR) modified T-cell therapy limitations in multiple myeloma. Front Immunol 11:1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31:71–75

    Article  CAS  PubMed  Google Scholar 

  51. Fedorov VD, Themeli M, Sadelain M (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5:215ra172

    Article  PubMed  PubMed Central  Google Scholar 

  52. Szoor A et al (2020) Trastuzumab derived HER2-specific CARs for the treatment of trastuzumab-resistant breast cancer: CAR T cells penetrate and eradicate tumors that are not accessible to antibodies. Cancer Lett 484:1–8

    Article  CAS  PubMed  Google Scholar 

  53. Ahmed N et al (2009) Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther 17:1779–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huszno J, Les D, Sarzyczny-Slola D, Nowara E (2013) Cardiac side effects of trastuzumab in breast cancer patients - single centere experiences. Wspolczesna Onkol 17:190–195

    Article  CAS  Google Scholar 

  55. Sujjitjoon J et al (2021) GD2-specific chimeric antigen receptor-modified T cells targeting retinoblastoma—assessing tumor and T cell interaction. Transl Oncol 14:100971

    Article  PubMed  Google Scholar 

  56. Golinelli G et al (2020) Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther 27:558–570

    Article  CAS  PubMed  Google Scholar 

  57. Nazha B, Inal C, Owonikoko TK (2020) Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front Oncol 10:1000

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yu AL et al (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363:1324–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ari P, Kars M, Meany H, Pestieau S (2018) Treatment of transient peripheral neuropathy during chimeric 14.18 antibody therapy in children with neuroblastoma: a case series. J Pediat Hematol Oncol 40:E113–E116

    Article  Google Scholar 

  60. Richman SA, Milone MC (2018) Neurotoxicity associated with a high-affinity GD2 CAR-response. Cancer Immunol Res 6:496–497

    Article  PubMed  Google Scholar 

  61. Majzner RG, Weber EW, Lynn RC, Xu P, Mackall CL (2018) Neurotoxicity associated with a high-affinity GD2 CAR-letter. Cancer Immunol Res 6:494–495

    Article  PubMed  Google Scholar 

  62. Ke EE, Wu YL (2016) EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: where do we stand now? Trends Pharmacol Sci 37:887–903

    Article  CAS  PubMed  Google Scholar 

  63. Li H et al (2018) Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis 9:177

    Google Scholar 

  64. Feng K et al (2016) Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci 59:468–479

    Article  CAS  PubMed  Google Scholar 

  65. Guo Y et al (2018) Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res 24:1277–1286

    Article  CAS  PubMed  Google Scholar 

  66. Liu Y et al (2020) Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: a phase I clinical trial. Cytotherapy 22:573–580

    Article  PubMed  Google Scholar 

  67. Perez R, Moreno E, Garrido G, Crombet T (2011) EGFR-targeting as a biological therapy: understanding nimotuzumab’s clinical effects. Cancers 3:2014–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Caliendo F, Dukhinova M, Siciliano V (2019) Engineered cell-based therapeutics: synthetic biology meets immunology. Front Bioeng Biotech 7:43

    Article  Google Scholar 

  69. Wu MR, Jusiak B, Lu TK (2019) Engineering advanced cancer therapies with synthetic biology. Nat Rev Cancer 19:187–195

    PubMed  Google Scholar 

  70. Rafiq S, Hackett CS, Brentjens RJ (2020) Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 17:147–167

    Article  PubMed  Google Scholar 

  71. Roybal KT et al (2016) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164:770–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Giavridis T et al (2018) CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 24:731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Norelli M et al (2018) Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 24:739–748

    Article  CAS  PubMed  Google Scholar 

  74. Jayaraman J et al (2020) CAR-T design: elements and their synergistic function. EBioMedicine 58:102931

    Article  PubMed  PubMed Central  Google Scholar 

  75. Orlando EJ et al (2018) Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med 24:1504

    Article  CAS  PubMed  Google Scholar 

  76. Sotillo E et al (2015) Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5:1282–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nijhof IS et al (2016) CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood 128:959–970

    Article  CAS  PubMed  Google Scholar 

  78. Ghose J et al (2018) Daratumumab induces CD38 internalization and impairs myeloma cell adhesion. Oncoimmunology 7:e1486948

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li R, Ma C, Cai HG, Chen WQ (2020) The CAR T-Cell Mechanoimmunology at a Glance. Adv Sci 7:2002628

    Article  CAS  Google Scholar 

  80. Fry TJ et al (2018) CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 24:20

    Article  CAS  PubMed  Google Scholar 

  81. Long AH et al (2015) 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feucht J et al (2019) Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med 25:82–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the published work of many researchers whose work has relevance for this review, but were not cited because of space and our own limitations.

Funding

This research was funded by the National Natural Science Foundation of China Grants 31971324 (J.S.), 81973993 (X.G.) and 31971125 (C.Z.), by Zhejiang Provincial Natural Science Foundation Grants LR20H160003 (J.S.) and LY21H080002 (C.L.) and by the Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province JBZX-201904 (C.L.).

Author information

Authors and Affiliations

Authors

Contributions

Y.D., R.C. and J.S. wrote the manuscript. All the authors discussed and approved the manuscript.

Corresponding author

Correspondence to Jie Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Chen, R., Huang, Y. et al. Tuning the ignition of CAR: optimizing the affinity of scFv to improve CAR-T therapy. Cell. Mol. Life Sci. 79, 14 (2022). https://doi.org/10.1007/s00018-021-04089-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04089-x

Keywords

Navigation