Loulier K, Barry R, Mahou P et al (2014) Multiplex cell and lineage tracking with combinatorial labels. Neuron 81:505–520. https://doi.org/10.1016/j.neuron.2013.12.016
CAS
Article
PubMed
Google Scholar
Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62. https://doi.org/10.1038/nature06293
CAS
Article
PubMed
Google Scholar
Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144. https://doi.org/10.1016/j.cell.2010.09.016
CAS
Article
PubMed
Google Scholar
Zong H, Espinosa JS, Su HH et al (2005) Mosaic analysis with double markers in mice. Cell 121:479–492. https://doi.org/10.1016/j.cell.2005.02.012
CAS
Article
PubMed
Google Scholar
Hippenmeyer S, Youn YH, Moon HM et al (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68:695–709. https://doi.org/10.1016/j.neuron.2010.09.027
CAS
Article
PubMed
PubMed Central
Google Scholar
Tasic B, Miyamichi K, Hippenmeyer S et al (2012) Extensions of MADM (mosaic analysis with double markers) in mice. PLoS ONE 7:e33332. https://doi.org/10.1371/journal.pone.0033332
CAS
Article
PubMed
PubMed Central
Google Scholar
Hippenmeyer S, Johnson RL, Luo L (2013) Mosaic analysis with double markers reveals cell-type-specific paternal growth dominance. Cell Rep 3:960–967. https://doi.org/10.1016/j.celrep.2013.02.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Contreras X, Amberg N, Davaatseren A et al (2021) A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Rep 35:109274. https://doi.org/10.1016/j.celrep.2021.109274
CAS
Article
PubMed
PubMed Central
Google Scholar
Beattie R, Streicher C, Amberg N et al (2020) Lineage tracing and clonal analysis in developing cerebral cortex using mosaic analysis with double markers (MADM). J Vis Exp. https://doi.org/10.3791/61147
Article
PubMed
Google Scholar
Liang H, Hippenmeyer S, Ghashghaei HT (2012) A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors. Biol Open 1:1200–1203. https://doi.org/10.1242/bio.20122287
CAS
Article
PubMed
PubMed Central
Google Scholar
Wachsman G, Heidstra R, Scheres B (2011) Distinct cell-autonomous functions of retinoblastoma-related in Arabidopsis stem cells revealed by the brother of Brainbow clonal analysis system. Plant Cell 23:2581–2591. https://doi.org/10.1105/tpc.111.086199
CAS
Article
PubMed
PubMed Central
Google Scholar
Cai D, Cohen KB, Luo T et al (2013) Improved tools for the Brainbow toolbox. Nat Methods 10:540–547. https://doi.org/10.1038/nmeth.2450
CAS
Article
PubMed
PubMed Central
Google Scholar
Red-Horse K, Ueno H, Weissman IL, Krasnow MA (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549–553. https://doi.org/10.1038/nature08873
CAS
Article
PubMed
PubMed Central
Google Scholar
Rinkevich Y, Lindau P, Ueno H et al (2011) Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476:409–413. https://doi.org/10.1038/nature10346
CAS
Article
PubMed
Google Scholar
Tabansky I, Lenarcic A, Draft RW et al (2013) Developmental bias in cleavage-stage mouse blastomeres. Curr Biol 23:21–31. https://doi.org/10.1016/j.cub.2012.10.054
CAS
Article
PubMed
Google Scholar
Roy E, Neufeld Z, Cerone L et al (2016) Bimodal behaviour of interfollicular epidermal progenitors regulated by hair follicle position and cycling. EMBO J 35:2658–2670. https://doi.org/10.15252/embj.201693806
CAS
Article
PubMed
PubMed Central
Google Scholar
Ghigo C, Mondor I, Jorquera A et al (2013) Multicolor fate mapping of Langerhans cell homeostasis. J Exp Med 210:1657–1664. https://doi.org/10.1084/jem.20130403
CAS
Article
PubMed
PubMed Central
Google Scholar
Yanai H, Tanaka T, Ueno H (2013) Multicolor lineage tracing methods and intestinal tumors. J Gastroenterol 48:423–433. https://doi.org/10.1007/s00535-012-0736-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Yanai H, Atsumi N, Tanaka T et al (2017) Intestinal cancer stem cells marked by Bmi1 or Lgr5 expression contribute to tumor propagation via clonal expansion. Sci Rep 7:41838. https://doi.org/10.1038/srep41838
CAS
Article
PubMed
PubMed Central
Google Scholar
Dumas L, Heitz-Marchaland C, Fouquet S et al (2015) Multicolor analysis of oligodendrocyte morphology, interactions, and development with Brainbow: multicolor imaging of myelination. Glia 63:699–717. https://doi.org/10.1002/glia.22779
Article
PubMed
Google Scholar
Baggiolini A, Varum S, Mateos JM et al (2015) Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16:314–322. https://doi.org/10.1016/j.stem.2015.02.017
CAS
Article
PubMed
Google Scholar
Tas JMJ, Mesin L, Pasqual G et al (2016) Visualizing antibody affinity maturation in germinal centers. Science 351:1048–1054. https://doi.org/10.1126/science.aad3439
CAS
Article
PubMed
PubMed Central
Google Scholar
Hagert CF, Bohn AB, Wittenborn TR, Degn SE (2020) Seeing the confetti colors in a new light utilizing flow cytometry and imaging flow cytometry. Cytom A 97:811–823. https://doi.org/10.1002/cyto.a.24032
Article
Google Scholar
Calzolari F, Michel J, Baumgart EV et al (2015) Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci 18:490–492. https://doi.org/10.1038/nn.3963
CAS
Article
PubMed
Google Scholar
Reeves MQ, Kandyba E, Harris S et al (2018) Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat Cell Biol 20:699–709. https://doi.org/10.1038/s41556-018-0109-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Schepers AG, Snippert HJ, Stange DE et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:730–735. https://doi.org/10.1126/science.1224676
CAS
Article
PubMed
Google Scholar
Aragona M, Dekoninck S, Rulands S et al (2017) Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat Commun 8:14684. https://doi.org/10.1038/ncomms14684
Article
PubMed
PubMed Central
Google Scholar
Cheung KJ, Padmanaban V, Silvestri V et al (2016) Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci USA 113:E854–E863. https://doi.org/10.1073/pnas.1508541113
CAS
Article
PubMed
PubMed Central
Google Scholar
Bast L, Calzolari F, Strasser MK et al (2018) Increasing neural stem cell division asymmetry and quiescence are predicted to contribute to the age-related decline in neurogenesis. Cell Rep 25:3231-3240.e8. https://doi.org/10.1016/j.celrep.2018.11.088
CAS
Article
PubMed
Google Scholar
Bardehle S, Krüger M, Buggenthin F et al (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16:580–586. https://doi.org/10.1038/nn.3371
CAS
Article
PubMed
Google Scholar
Lange Canhos L, Chen M, Falk S et al (2021) Repetitive injury and absence of monocytes promote astrocyte self-renewal and neurological recovery. Glia 69:165–181. https://doi.org/10.1002/glia.23893
CAS
Article
PubMed
Google Scholar
Kuony A, Michon F (2017) Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation. Front Physiol 8:739. https://doi.org/10.3389/fphys.2017.00739
Article
PubMed
PubMed Central
Google Scholar
Pontes-Quero S, Heredia L, Casquero-García V et al (2017) Dual ifgMosaic: a versatile method for multispectral and combinatorial mosaic gene-function analysis. Cell 170:800-814.e18. https://doi.org/10.1016/j.cell.2017.07.031
CAS
Article
PubMed
PubMed Central
Google Scholar
Garcia-Gonzalez I, Mühleder S, Fernández-Chacón M, Benedito R (2020) Genetic tools to study cardiovascular biology. Front Physiol. https://doi.org/10.3389/fphys.2020.01084
Article
PubMed
PubMed Central
Google Scholar
García-Marqués J, López-Mascaraque L (2013) Clonal identity determines astrocyte cortical heterogeneity. Cereb Cortex 23:1463–1472. https://doi.org/10.1093/cercor/bhs134
Article
PubMed
Google Scholar
García-Marqués J, Nunez-Llaves R, Lopez-Mascaraque L (2014) NG2-glia from pallial progenitors produce the largest clonal clusters of the brain: time frame of clonal generation in cortex and olfactory bulb. J Neurosci 34:2305–2313. https://doi.org/10.1523/JNEUROSCI.3060-13.2014
CAS
Article
PubMed
PubMed Central
Google Scholar
García-Marqués J, López-Mascaraque L (2017) Clonal mapping of astrocytes in the olfactory bulb and rostral migratory stream. Cereb Cortex 27:2195–2209. https://doi.org/10.1093/cercor/bhw071
Article
PubMed
Google Scholar
Sánchez-González R, Bribián A, López-Mascaraque L (2020) Cell fate potential of NG2 progenitors. Sci Rep. https://doi.org/10.1038/s41598-020-66753-9
Article
PubMed
PubMed Central
Google Scholar
Sánchez-González R, Salvador N, López-Mascaraque L (2020) Unraveling the adult cell progeny of early postnatal progenitor cells. Sci Rep. https://doi.org/10.1038/s41598-020-75973-y
Article
PubMed
PubMed Central
Google Scholar
Figueres-Oñate M, García-Marqués J, López-Mascaraque L (2016) UbC-StarTrack, a clonal method to target the entire progeny of individual progenitors. Sci Rep. https://doi.org/10.1038/srep33896
Article
PubMed
PubMed Central
Google Scholar
Figueres-Oñate M, Sánchez-Villalón M, Sánchez-González R, López-Mascaraque L (2019) Lineage tracing and cell potential of postnatal single progenitor cells in vivo. Stem Cell Rep 13:700–712. https://doi.org/10.1016/j.stemcr.2019.08.010
CAS
Article
Google Scholar
Chen F, LoTurco J (2012) A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J Neurosci Methods 207:172–180. https://doi.org/10.1016/j.jneumeth.2012.03.016
CAS
Article
PubMed
PubMed Central
Google Scholar
Garcia-Moreno F, Vasistha NA, Begbie J, Molnar Z (2014) CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development 141:1589–1598. https://doi.org/10.1242/dev.105254
CAS
Article
PubMed
PubMed Central
Google Scholar
Vasistha NA, García-Moreno F, Arora S et al (2015) Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb Cortex 25:3290–3302. https://doi.org/10.1093/cercor/bhu125
Article
PubMed
Google Scholar
Mahou P, Zimmerley M, Loulier K et al (2012) Multicolor two-photon tissue imaging by wavelength mixing. Nat Methods 9:815–818. https://doi.org/10.1038/nmeth.2098
CAS
Article
PubMed
Google Scholar
Clavreul S, Abdeladim L, Hernández-Garzón E et al (2019) Cortical astrocytes develop in a plastic manner at both clonal and cellular levels. Nat Commun. https://doi.org/10.1038/s41467-019-12791-5
Article
PubMed
PubMed Central
Google Scholar
Abdeladim L, Matho KS, Clavreul S et al (2019) Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nat Commun. https://doi.org/10.1038/s41467-019-09552-9
Article
PubMed
PubMed Central
Google Scholar
Kumamoto T, Maurinot F, Barry-Martinet R et al (2020) Direct readout of neural stem cell transgenesis with an integration-coupled gene expression switch. Neuron 107:617-630.e6. https://doi.org/10.1016/j.neuron.2020.05.038
CAS
Article
PubMed
PubMed Central
Google Scholar
Weber K, Bartsch U, Stocking C, Fehse B (2008) A multicolor panel of novel lentiviral “gene ontology” (LeGO) vectors for functional gene analysis. Mol Ther 16:698–706. https://doi.org/10.1038/mt.2008.6
CAS
Article
PubMed
Google Scholar
Weber K, Mock U, Petrowitz B et al (2010) Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis. Gene Ther 17:511–520. https://doi.org/10.1038/gt.2009.149
CAS
Article
PubMed
Google Scholar
Weber K, Thomaschewski M, Warlich M et al (2011) RGB marking facilitates multicolor clonal cell tracking. Nat Med 17:504–509. https://doi.org/10.1038/nm.2338
CAS
Article
PubMed
Google Scholar
Gomez-Nicola D, Riecken K, Fehse B, Perry VH (2015) In-vivo RGB marking and multicolour single-cell tracking in the adult brain. Sci Rep 4:7520. https://doi.org/10.1038/srep07520
CAS
Article
Google Scholar
Boldogkői Z, Balint K, Awatramani GB et al (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6:127–130. https://doi.org/10.1038/nmeth.1292
CAS
Article
PubMed
Google Scholar
Cornils K, Thielecke L, Hüser S et al (2014) Multiplexing clonality: combining RGB marking and genetic barcoding. Nucleic Acids Res 42:e56–e56. https://doi.org/10.1093/nar/gku081
CAS
Article
PubMed
PubMed Central
Google Scholar
Hammer S, Monavarfeshani A, Lemon T et al (2015) Multiple retinal axons converge onto relay cells in the adult mouse thalamus. Cell Rep 12:1575–1583. https://doi.org/10.1016/j.celrep.2015.08.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Shen FY, Harrington MM, Walker LA et al (2020) Light microscopy based approach for mapping connectivity with molecular specificity. Nat Commun 11:4632. https://doi.org/10.1038/s41467-020-18422-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Sakaguchi R, Leiwe MN, Imai T (2018) Bright multicolor labeling of neuronal circuits with fluorescent proteins and chemical tags. Elife 7:e40350. https://doi.org/10.7554/eLife.40350
Article
PubMed
PubMed Central
Google Scholar
Card JP, Kobiler O, Ludmir EB et al (2011) A dual infection pseudorabies virus conditional reporter approach to identify projections to collateralized neurons in complex neural circuits. PLoS ONE 6:e21141. https://doi.org/10.1371/journal.pone.0021141
CAS
Article
PubMed
PubMed Central
Google Scholar
Pan YA, Livet J, Sanes JR et al (2011) Multicolor Brainbow imaging in zebrafish. Cold Spring Harbor Protoc. https://doi.org/10.1101/pdb.prot5546
Article
Google Scholar
Robles E, Filosa A, Baier H (2013) Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. J Neurosci 33:5027–5039. https://doi.org/10.1523/JNEUROSCI.4990-12.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Pan YA, Freundlich T, Weissman TA et al (2013) Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140:2835–2846. https://doi.org/10.1242/dev.094631
CAS
Article
PubMed
PubMed Central
Google Scholar
Cook ZT, Brockway NL, Tobias ZJC et al (2019) Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context. Mol Biol Cell 30:491–505. https://doi.org/10.1091/mbc.E18-06-0340
CAS
Article
PubMed
PubMed Central
Google Scholar
Brockway NL, Cook ZT, O’Gallagher MJ et al (2019) Multicolor lineage tracing using in vivo time-lapse imaging reveals coordinated death of clonally related cells in the developing vertebrate brain. Dev Biol 453:130–140. https://doi.org/10.1016/j.ydbio.2019.05.006
CAS
Article
PubMed
Google Scholar
Cook ZT, Brockway NL, Weissman TA (2020) Visualizing the developing brain in living zebrafish using Brainbow and time-lapse confocal imaging. J Vis Exp. https://doi.org/10.3791/60593
Article
PubMed
Google Scholar
Rochard LJ, Ling ITC, Kong Y, Liao EC (2015) Visualization of chondrocyte intercalation and directional proliferation via zebrabow clonal cell analysis in the embryonic Meckel’s cartilage. J Vis Exp. https://doi.org/10.3791/52935
Article
PubMed
PubMed Central
Google Scholar
Rochard L, Monica SD, Ling ITC et al (2016) Roles of Wnt pathway genes wls, wnt9a, wnt5b, frzb and gpc4 in regulating convergent-extension during zebrafish palate morphogenesis. Development 143:2541–2547. https://doi.org/10.1242/dev.137000
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang X, Gao J, Jia X et al (2017) Bipotent progenitors as embryonic origin of retinal stem cells. J Cell Biol 216:1833–1847. https://doi.org/10.1083/jcb.201611057
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuwata M, Nikaido M, Hatta K (2019) Local heat-shock mediated multi-color labeling visualizing behaviors of enteric neural crest cells associated with division and neurogenesis in zebrafish gut. Dev Dyn 248:437–448. https://doi.org/10.1002/dvdy.36
CAS
Article
PubMed
Google Scholar
Singh SP, Ninov N (2020) Multicolor labeling and tracing of pancreatic beta-cell proliferation in zebrafish. In: King AJF (ed) Animal Models Of Diabetes. Springer, New York, pp 159–179
Chapter
Google Scholar
Gupta V, Poss KD (2012) Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 484:479–484. https://doi.org/10.1038/nature11045
CAS
Article
PubMed
PubMed Central
Google Scholar
Foglia MJ, Cao J, Tornini VA, Poss KD (2016) Multicolor mapping of the cardiomyocyte proliferation dynamics that construct the atrium. Development 143:1688–1696. https://doi.org/10.1242/dev.136606
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen C-H, Puliafito A, Cox BD et al (2016) Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Dev Cell 36:668–680. https://doi.org/10.1016/j.devcel.2016.02.017
CAS
Article
PubMed
PubMed Central
Google Scholar
Xiong F, Obholzer ND, Noche RR, Megason SG (2015) Multibow: digital spectral barcodes for cell tracing. PLoS ONE 10:e0127822. https://doi.org/10.1371/journal.pone.0127822
CAS
Article
PubMed
PubMed Central
Google Scholar
Egawa R, Hososhima S, Hou X et al (2013) Optogenetic probing and manipulation of the calyx-type presynaptic terminal in the embryonic chick ciliary ganglion. PLoS ONE 8:e59179. https://doi.org/10.1371/journal.pone.0059179
CAS
Article
PubMed
PubMed Central
Google Scholar
Cai H, Wang YL, Wainner RT et al (2019) Wedge prism approach for simultaneous multichannel microscopy. Sci Rep. https://doi.org/10.1038/s41598-019-53581-9
Article
PubMed
PubMed Central
Google Scholar
Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461. https://doi.org/10.1016/S0896-6273(00)80701-1
CAS
Article
PubMed
Google Scholar
Yu H-H, Chen C-H, Shi L et al (2009) Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12:947–953. https://doi.org/10.1038/nn.2345
CAS
Article
PubMed
PubMed Central
Google Scholar
Hampel S, Chung P, McKellar CE et al (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8:253–259. https://doi.org/10.1038/nmeth.1566
CAS
Article
PubMed
PubMed Central
Google Scholar
Hadjieconomou D, Rotkopf S, Alexandre C et al (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8:260–266. https://doi.org/10.1038/nmeth.1567
CAS
Article
PubMed
Google Scholar
Boulina M, Samarajeewa H, Baker JD et al (2013) Live imaging of multicolor-labeled cells in Drosophila. Development 140:1605–1613. https://doi.org/10.1242/dev.088930
CAS
Article
PubMed
PubMed Central
Google Scholar
von Hilchen CM, Bustos AE, Giangrande A et al (2013) Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system. Development 140:3657–3668. https://doi.org/10.1242/dev.093245
CAS
Article
Google Scholar
Schubert FK, Hagedorn N, Yoshii T et al (2018) Neuroanatomical details of the lateral neurons of Drosophila melanogaster support their functional role in the circadian system. J Comp Neurol 526:1209–1231. https://doi.org/10.1002/cne.24406
CAS
Article
PubMed
PubMed Central
Google Scholar
Worley MI, Setiawan L, Hariharan IK (2013) TIE-DYE: a combinatorial marking system to visualize and genetically manipulate clones during development in Drosophila melanogaster. Development 140:3275–3284. https://doi.org/10.1242/dev.096057
CAS
Article
PubMed
PubMed Central
Google Scholar
Kanca O, Caussinus E, Denes AS et al (2014) Raeppli: a whole-tissue labeling tool for live imaging of Drosophila development. Development 141:472–480. https://doi.org/10.1242/dev.102913
CAS
Article
PubMed
Google Scholar
Nern A, Pfeiffer BD, Rubin GM (2015) Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci 112:E2967–E2976. https://doi.org/10.1073/pnas.1506763112
CAS
Article
PubMed
PubMed Central
Google Scholar
Batelli S, Kremer M, Jung C, Gaul U (2017) Application of multicolor flpout technique to study high resolution single cell morphologies and cell interactions of glia in Drosophila. J Vis Exp. https://doi.org/10.3791/56177
Article
PubMed
PubMed Central
Google Scholar
Veling MW, Li Y, Veling MT et al (2019) Identification of neuronal lineages in the Drosophila peripheral nervous system with a “digital” multi-spectral lineage tracing system. Cell Rep 29:3303-3312.e3. https://doi.org/10.1016/j.celrep.2019.10.124
CAS
Article
PubMed
PubMed Central
Google Scholar
Garcia-Marques J, Espinosa-Medina I, Ku K-Y et al (2020) A programmable sequence of reporters for lineage analysis. Nat Neurosci 23:1618–1628. https://doi.org/10.1038/s41593-020-0676-9
CAS
Article
PubMed
Google Scholar
El-Nachef D, Shi K, Beussman KM et al (2020) A Rainbow reporter tracks single cells and reveals heterogeneous cellular dynamics among pluripotent stem cells and their differentiated derivatives. Stem Cell Rep 15:226–241. https://doi.org/10.1016/j.stemcr.2020.06.005
CAS
Article
Google Scholar
Luskin MB (1994) Neuronal cell lineage in the vertebrate central nervous system. FASEB j 8:722–730. https://doi.org/10.1096/fasebj.8.10.8050671
CAS
Article
PubMed
Google Scholar
Ma J, Shen Z, Yu Y-C, Shi S-H (2018) Neural lineage tracing in the mammalian brain. Curr Opin Neurobiol 50:7–16. https://doi.org/10.1016/j.conb.2017.10.013
CAS
Article
PubMed
Google Scholar
Kebschull JM, Zador AM (2018) Cellular barcoding: lineage tracing, screening and beyond. Nat Methods 15:871–879. https://doi.org/10.1038/s41592-018-0185-x
CAS
Article
PubMed
Google Scholar
Espinosa-Medina I, Garcia-Marques J, Cepko C, Lee T (2019) High-throughput dense reconstruction of cell lineages. Open Biol 9:190229. https://doi.org/10.1098/rsob.190229
Article
PubMed
PubMed Central
Google Scholar
Figueres-Oñate M, Sánchez-González R, López-Mascaraque L (2020) Deciphering neural heterogeneity through cell lineage tracing. Cell Mol Life Sci. https://doi.org/10.1007/s00018-020-03689-3
Article
PubMed
PubMed Central
Google Scholar
Wagner DE, Klein AM (2020) Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet 21:410–427. https://doi.org/10.1038/s41576-020-0223-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Espinosa JS, Luo L (2008) Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci 28:2301–2312. https://doi.org/10.1523/JNEUROSCI.5157-07.2008
CAS
Article
PubMed
PubMed Central
Google Scholar
Bonaguidi MA, Wheeler MA, Shapiro JS et al (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145:1142–1155. https://doi.org/10.1016/j.cell.2011.05.024
CAS
Article
PubMed
PubMed Central
Google Scholar
Liang H, Xiao G, Yin H et al (2013) Neural development is dependent on the function of specificity protein 2 in cell cycle progression. Development 140:552–561. https://doi.org/10.1242/dev.085621
CAS
Article
PubMed
PubMed Central
Google Scholar
Johnson CA, Ghashghaei HT (2020) Sp2 regulates late neurogenic but not early expansive divisions of neural stem cells underlying population growth in the mouse cortex. Development 147:dev186056. https://doi.org/10.1242/dev.186056
CAS
Article
PubMed
PubMed Central
Google Scholar
Gao P, Postiglione MP, Krieger TG et al (2014) Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159:775–788. https://doi.org/10.1016/j.cell.2014.10.027
CAS
Article
PubMed
PubMed Central
Google Scholar
Mayer C, Jaglin XH, Cobbs LV et al (2015) Clonally related forebrain interneurons disperse broadly across both functional areas and structural boundaries. Neuron 87:989–998. https://doi.org/10.1016/j.neuron.2015.07.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Shi W, Xianyu A, Han Z et al (2017) Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus. Nat Neurosci 20:516–528. https://doi.org/10.1038/nn.4519
CAS
Article
PubMed
PubMed Central
Google Scholar
Laukoter S, Beattie R, Pauler FM et al (2020) Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nat Commun. https://doi.org/10.1038/s41467-019-14077-2
Article
PubMed
PubMed Central
Google Scholar
Laukoter S, Pauler FM, Beattie R et al (2020) Cell-type specificity of genomic imprinting in cerebral cortex. Neuron 107:1160-1179.e9. https://doi.org/10.1016/j.neuron.2020.06.031
CAS
Article
PubMed
PubMed Central
Google Scholar
Beattie R, Postiglione MP, Burnett LE et al (2017) Mosaic analysis with double markers reveals distinct sequential functions of Lgl1 in neural stem cells. Neuron 94:517–533. https://doi.org/10.1016/j.neuron.2017.04.012
CAS
Article
PubMed
Google Scholar
Ortiz-Álvarez G, Daclin M, Shihavuddin A et al (2019) Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members. Neuron 102:159-172.e7. https://doi.org/10.1016/j.neuron.2019.01.051
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Mennicke CV, Xiao G et al (2020) Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage. Cells 9:2662. https://doi.org/10.3390/cells9122662
CAS
Article
PubMed Central
Google Scholar
Tay TL, Mai D, Dautzenberg J et al (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20:793–803. https://doi.org/10.1038/nn.4547
CAS
Article
PubMed
Google Scholar
Tsunekawa Y, Terhune RK, Fujita I et al (2016) Developing a de novo targeted knock-in method based on in utero electroporation into the mammalian brain. Development 143:3216–3222. https://doi.org/10.1242/dev.136325
CAS
Article
PubMed
PubMed Central
Google Scholar
Roy E, Wong HY, Villani R et al (2020) Regional variation in epidermal susceptibility to UV-induced carcinogenesis reflects proliferative activity of epidermal progenitors. Cell Rep 31:107702. https://doi.org/10.1016/j.celrep.2020.107702
CAS
Article
PubMed
Google Scholar
Detter MR, Snellings DA, Marchuk DA (2018) Cerebral cavernous malformations develop through clonal expansion of mutant endothelial cells. Circ Res 123:1143–1151. https://doi.org/10.1161/CIRCRESAHA.118.313970
CAS
Article
PubMed
PubMed Central
Google Scholar
Yu VWC, Yusuf RZ, Oki T et al (2016) Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167:1310-1322.e17. https://doi.org/10.1016/j.cell.2016.10.045
CAS
Article
PubMed
Google Scholar
Gentek R, Ghigo C, Hoeffel G et al (2018) Epidermal γδ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J Exp Med 215:2994–3005. https://doi.org/10.1084/jem.20181206
CAS
Article
PubMed
PubMed Central
Google Scholar
Jarjour M, Jorquera A, Mondor I et al (2014) Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells. J Exp Med 211:1109–1122. https://doi.org/10.1084/jem.20132409
CAS
Article
PubMed
PubMed Central
Google Scholar
Mondor I, Jorquera A, Sene C et al (2016) Clonal proliferation and stochastic pruning orchestrate lymph node vasculature remodeling. Immunity 45:877–888. https://doi.org/10.1016/j.immuni.2016.09.017
CAS
Article
PubMed
Google Scholar
Lim X, Tan SH, Koh WLC et al (2013) Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 342:1226–1230. https://doi.org/10.1126/science.1239730
CAS
Article
PubMed
PubMed Central
Google Scholar
Snippert HJ, Schepers AG, Es JH et al (2014) Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep 15:62–69. https://doi.org/10.1002/embr.201337799
CAS
Article
PubMed
Google Scholar
Dirian L, Galant S, Coolen M et al (2014) Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells. Dev Cell 30:123–136. https://doi.org/10.1016/j.devcel.2014.05.012
CAS
Article
PubMed
Google Scholar
Dumas L, Clavreul S, Durand J et al (2020) In utero electroporation of multiaddressable genome-integrating color (MAGIC) markers to individualize cortical mouse astrocytes. J Vis Exp. https://doi.org/10.3791/61110
Article
PubMed
Google Scholar
Figueres-Oñate M, García-Marqués J, Pedraza M et al (2015) Spatiotemporal analyses of neural lineages after embryonic and postnatal progenitor targeting combining different reporters. Front Neurosci. https://doi.org/10.3389/fnins.2015.00087
Article
PubMed
PubMed Central
Google Scholar
Parmigiani E, Leto K, Rolando C et al (2015) Heterogeneity and bipotency of astroglial-like cerebellar progenitors along the interneuron and glial lineages. J Neurosci 35:7388–7402. https://doi.org/10.1523/JNEUROSCI.5255-14.2015
CAS
Article
PubMed
PubMed Central
Google Scholar
Cerrato V, Parmigiani E, Figueres-Oñate M et al (2018) Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity. PLoS Biol. https://doi.org/10.1371/journal.pbio.2005513
Article
PubMed
PubMed Central
Google Scholar
Rios AC, Fu NY, Lindeman GJ, Visvader JE (2014) In situ identification of bipotent stem cells in the mammary gland. Nature 506:322–327. https://doi.org/10.1038/nature12948
CAS
Article
PubMed
Google Scholar
Harrison TA, He Z, Boggs K et al (2016) Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area. Mol Vis 22:31–39
CAS
PubMed
PubMed Central
Google Scholar
Defoe DM, Rao H, Harris DJ et al (2020) A non-canonical role for p27Kip1 in restricting proliferation of corneal endothelial cells during development. PLoS ONE 15:e0226725. https://doi.org/10.1371/journal.pone.0226725
CAS
Article
PubMed
PubMed Central
Google Scholar
Tillberg PW, Chen F, Piatkevich KD et al (2016) Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol 34:987–992. https://doi.org/10.1038/nbt.3625
CAS
Article
PubMed
PubMed Central
Google Scholar
Li Y, Walker LA, Zhao Y et al (2020) Bitbow: a digital format of Brainbow enables highly efficient neuronal lineage tracing and morphology reconstruction in single brains. Neuroscience 2:153
Google Scholar
Roossien DH, Sadis BV, Yan Y et al (2019) Multispectral tracing in densely labeled mouse brain with nTracer. Bioinformatics 35:3544–3546. https://doi.org/10.1093/bioinformatics/btz084
CAS
Article
PubMed
PubMed Central
Google Scholar
Chang J-B, Chen F, Yoon Y-G et al (2017) Iterative expansion microscopy. Nat Methods 14:593–599. https://doi.org/10.1038/nmeth.4261
CAS
Article
PubMed
PubMed Central
Google Scholar
Gutiérrez Y, García-Marques J, Liu X et al (2019) Sibling astrocytes share preferential coupling via gap junctions. Glia 67:1852–1858. https://doi.org/10.1002/glia.23662
Article
PubMed
Google Scholar
Mihalas AB, Hevner RF (2018) Clonal analysis reveals laminar fate multipotency and daughter cell apoptosis of mouse cortical intermediate progenitors. Development 145:dev164335. https://doi.org/10.1242/dev.164335
CAS
Article
PubMed
PubMed Central
Google Scholar
Llorca A, Ciceri G, Beattie R et al (2019) A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. Elife. https://doi.org/10.7554/eLife.51381
Article
PubMed
PubMed Central
Google Scholar
Joo W, Hippenmeyer S, Luo L (2014) Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science 346:626–629. https://doi.org/10.1126/science.1258996
CAS
Article
PubMed
PubMed Central
Google Scholar
Henderson NT, Le Marchand SJ, Hruska M et al (2019) Ephrin-B3 controls excitatory synapse density through cell-cell competition for EphBs. Life. https://doi.org/10.7554/eLife.41563
Article
Google Scholar
Espinosa JS, Wheeler DG, Tsien RW, Luo L (2009) Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62:205–217. https://doi.org/10.1016/j.neuron.2009.03.006
CAS
Article
PubMed
PubMed Central
Google Scholar
Pontes-Quero S, Fernández-Chacón M, Luo W et al (2019) High mitogenic stimulation arrests angiogenesis. Nat Commun 10:2016. https://doi.org/10.1038/s41467-019-09875-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Luo W, Garcia-Gonzalez I, Fernández-Chacón M et al (2021) Arterialization requires the timely suppression of cell growth. Nature 589:437–441. https://doi.org/10.1038/s41586-020-3018-x
CAS
Article
PubMed
Google Scholar
Menchero S, Rollan I, Lopez-Izquierdo A et al (2019) Transitions in cell potency during early mouse development are driven by Notch. Life 8:e42930. https://doi.org/10.7554/eLife.42930
Article
Google Scholar
Manavski Y, Lucas T, Glaser SF et al (2018) Clonal expansion of endothelial cells contributes to ischemia-induced neovascularization. Circ Res 122:670–677. https://doi.org/10.1161/CIRCRESAHA.117.312310
CAS
Article
PubMed
Google Scholar
Henner A, Ventura PB, Jiang Y, Zong H (2013) MADM-ML, a mouse genetic mosaic system with increased clonal efficiency. PLoS ONE 8:e77672. https://doi.org/10.1371/journal.pone.0077672
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu C, Sage JC, Miller MR et al (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–221. https://doi.org/10.1016/j.cell.2011.06.014
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen F, Becker AJ, LoTurco JJ (2014) Contribution of tumor heterogeneity in a new animal model of CNS tumors. Mol Cancer Res 12:742–753. https://doi.org/10.1158/1541-7786.MCR-13-0531
CAS
Article
PubMed
PubMed Central
Google Scholar
Weber K, Thomaschewski M, Benten D, Fehse B (2012) RGB marking with lentiviral vectors for multicolor clonal cell tracking. Nat Protoc 7:839–849. https://doi.org/10.1038/nprot.2012.026
CAS
Article
PubMed
Google Scholar
Mohme M, Maire CL, Riecken K et al (2017) Optical barcoding for single-clone tracking to study tumor heterogeneity. Mol Ther 25:621–633. https://doi.org/10.1016/j.ymthe.2016.12.014
CAS
Article
PubMed
PubMed Central
Google Scholar
Martín-López E, García-Marques J, Núñez-Llaves R, López-Mascaraque L (2013) Clonal astrocytic response to cortical injury. PLoS ONE 8:e74039. https://doi.org/10.1371/journal.pone.0074039
CAS
Article
PubMed
PubMed Central
Google Scholar
Wanner IB, Anderson MA, Song B et al (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870–12886. https://doi.org/10.1523/JNEUROSCI.2121-13.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Götz S, Bribian A, López-Mascaraque L et al (2021) Heterogeneity of astrocytes: electrophysiological properties of juxtavascular astrocytes before and after brain injury. Glia 69:346–361. https://doi.org/10.1002/glia.23900
CAS
Article
PubMed
Google Scholar
Bribian A, Pérez-Cerdá F, Matute C, López-Mascaraque L (2018) Clonal glial response in a multiple sclerosis mouse model. Front Cell Neurosci 12:375. https://doi.org/10.3389/fncel.2018.00375
CAS
Article
PubMed
PubMed Central
Google Scholar
Barriola S, Pérez-Cerdá F, Matute C et al (2020) A clonal NG2-glia cell response in a mouse model of multiple sclerosis. Cells 9:1279. https://doi.org/10.3390/cells9051279
CAS
Article
PubMed Central
Google Scholar
Foerster S, Neumann B, McClain C et al (2020) Proliferation is a requirement for differentiation of oligodendrocyte progenitor cells during CNS remyelination. Neuroscience. https://doi.org/10.1101/2020.05.21.108373
Article
Google Scholar
Eichhoff G, Busche MA, Garaschuk O (2008) In vivo calcium imaging of the aging and diseased brain. Eur J Nucl Med Mol Imaging 35:99–106. https://doi.org/10.1007/s00259-007-0709-6
Article
Google Scholar
Mahou P, Vermot J, Beaurepaire E, Supatto W (2014) Multicolor two-photon light-sheet microscopy. Nat Methods 11:600–601. https://doi.org/10.1038/nmeth.2963
CAS
Article
PubMed
Google Scholar
Guesmi K, Abdeladim L, Tozer S et al (2018) Dual-color deep-tissue three-photon microscopy with a multiband infrared laser. Light. https://doi.org/10.1038/s41377-018-0012-2
Article
Google Scholar
Vigouroux RJ, Belle M, Chédotal A (2017) Neuroscience in the third dimension: shedding new light on the brain with tissue clearing. Mol Brain 10:33. https://doi.org/10.1186/s13041-017-0314-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang Z, Maunze B, Wang Y et al (2018) Global connectivity and function of descending spinal input revealed by 3D microscopy and retrograde transduction. J Neurosci 38:10566–10581. https://doi.org/10.1523/JNEUROSCI.1196-18.2018
CAS
Article
PubMed
PubMed Central
Google Scholar
Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488. https://doi.org/10.1038/nn.2928
CAS
Article
PubMed
Google Scholar
Furlan G, Cuccioli V, Vuillemin N et al (2017) Life-long neurogenic activity of individual neural stem cells and continuous growth establish an outside-in architecture in the teleost pallium. Curr Biol 27:3288-3301.e3. https://doi.org/10.1016/j.cub.2017.09.052
CAS
Article
PubMed
PubMed Central
Google Scholar
Ke M-T, Nakai Y, Fujimoto S et al (2016) Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep 14:2718–2732. https://doi.org/10.1016/j.celrep.2016.02.057
CAS
Article
PubMed
Google Scholar
Susaki EA, Tainaka K, Perrin D et al (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–739. https://doi.org/10.1016/j.cell.2014.03.042
CAS
Article
PubMed
Google Scholar
Susaki EA, Tainaka K, Perrin D et al (2015) Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc 10:1709–1727. https://doi.org/10.1038/nprot.2015.085
CAS
Article
PubMed
Google Scholar
Susaki EA, Ueda HR (2016) Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem Biol 23:137–157. https://doi.org/10.1016/j.chembiol.2015.11.009
CAS
Article
PubMed
Google Scholar
Ke M-T, Fujimoto S, Imai T (2013) SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 16:1154–1161. https://doi.org/10.1038/nn.3447
CAS
Article
PubMed
Google Scholar
Ke M-T, Imai T (2014) Optical clearing of fixed brain samples using SeeDB. Curr Protoc Neurosci. https://doi.org/10.1002/0471142301.ns0222s66
Article
PubMed
Google Scholar
Rios AC, Capaldo BD, Vaillant F et al (2019) Intraclonal plasticity in mammary tumors revealed through large-scale single-cell resolution 3D imaging. Cancer Cell 35:618-632.e6. https://doi.org/10.1016/j.ccell.2019.02.010
CAS
Article
PubMed
Google Scholar
van Ineveld RL, Ariese HCR, Wehrens EJ et al (2020) Single-cell resolution three-dimensional imaging of intact organoids. JOVE. https://doi.org/10.3791/60709
Dawson CA, Mueller SN, Lindeman GJ et al (2021) Intravital microscopy of dynamic single-cell behavior in mouse mammary tissue. Nat Protoc. https://doi.org/10.1038/s41596-020-00473-2
Article
PubMed
Google Scholar
Martinez RJ, Neeld DK, Evavold BD (2015) Identification of T cell clones without the need for sequencing. J Immunol Methods 424:28–31. https://doi.org/10.1016/j.jim.2015.04.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Shihavuddin A, Basu S, Rexhepaj E et al (2017) Smooth 2D manifold extraction from 3D image stack. Nat Commun. https://doi.org/10.1038/ncomms15554
Article
PubMed
PubMed Central
Google Scholar
Salvi M, Cerrato V, Buffo A, Molinari F (2019) Automated segmentation of brain cells for clonal analyses in fluorescence microscopy images. J Neurosci Methods 325:108348. https://doi.org/10.1016/j.jneumeth.2019.108348
Article
PubMed
Google Scholar
Cabeza-Cabrerizo M, van Blijswijk J, Wienert S et al (2019) Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate mapping of DC progenitors. Sci Immunol 4:eaaw1941. https://doi.org/10.1126/sciimmunol.aaw1941
Article
PubMed
PubMed Central
Google Scholar