Skip to main content
Log in

Mechanisms supporting aminoadenine-based viral DNA genomes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Bacteriophage genomes are the richest source of modified nucleobases of any life form. Of these, 2,6 diaminopurine, which pairs with thymine by forming three hydrogen bonds violates Watson and Crick’s base pairing. 2,6 diaminopurine initially found in the cyanophage S-2L is more widespread than expected and has also been detected in phage infecting Gram-negative and Gram-positive bacteria. The biosynthetic pathway for aminoadenine containing DNA as well as the exclusion of adenine are now elucidated. This example of a natural deviation from the genetic code represents only one of the possibilities explored by nature and provides a proof of concept for the synthetic biology of non-canonical nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The atomic coordinates of PhiVC8 PurZ, S-2L DatZ and S-2L MazZ have been deposited in the Protein Data Bank with the accession codes 6FLF, 6FM0, 6FM1, 6TNH; 6ZPB and 6ZPC; 7ODY.

References

  1. Carell T, Brandmayr C, Hienzsch A et al (2012) Structure and function of noncanonical nucleobases. Angew Chem Int Ed 51:7110–7131. https://doi.org/10.1002/anie.201201193

    Article  CAS  Google Scholar 

  2. Adhikari S, Curtis PD (2016) DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 40:575–591. https://doi.org/10.1093/femsre/fuw023

    Article  CAS  PubMed  Google Scholar 

  3. Lee Y-J, Dai N, Walsh SE et al (2018) Identification and biosynthesis of thymidine hypermodifications in the genomic DNA of widespread bacterial viruses. Proc Natl Acad Sci USA 115:E3116–E3125. https://doi.org/10.1073/pnas.1714812115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weigele P, Raleigh EA (2016) Biosynthesis and function of modified bases in bacteria and their viruses. Chem Rev 116:12655–12687. https://doi.org/10.1021/acs.chemrev.6b00114

    Article  CAS  PubMed  Google Scholar 

  5. Lee Y-J, Dai N, Müller SI et al (2021) Pathways of thymidine hypermodification. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab781

    Article  PubMed  PubMed Central  Google Scholar 

  6. Swinton D, Hattman S, Crain PF et al (1983) Purification and characterization of the unusual deoxynucleoside, α-N-(9-beta-d-2’-deoxyribofuranosylpurin-6-yl)glycinamide, specified by the phage Mu modification function. Proc Natl Acad Sci USA 80:7400–7404. https://doi.org/10.1073/pnas.80.24.7400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thiaville JJ, Kellner SM, Yuan Y et al (2016) Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proc Natl Acad Sci USA 113:E1452-1459. https://doi.org/10.1073/pnas.1518570113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nikolskaya II, Lopatina NG, Debov SS (1976) Methylated guanine derivative as a minor base in the DNA of phage DDVI Shigella disenteriae. Biochim Biophys Acta 435:206–210. https://doi.org/10.1016/0005-2787(76)90251-3

    Article  CAS  PubMed  Google Scholar 

  9. Dunn DB, Smith JD (1958) The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J 68:627–636. https://doi.org/10.1042/bj0680627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crippen CS, Lee Y-J, Hutinet G et al (2019) Deoxyinosine and 7-Deaza-2-deoxyguanosine as carriers of genetic information in the DNA of Campylobacter viruses. J Virol. https://doi.org/10.1128/JVI.01111-19

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hutinet G, Lee Y, de Crécy-Lagard V, Weigele P Hypermodified DNA in Viruses of E. coli and Salmonella. EcoSal Plus 9:eESP-0028–2019

  12. Kirnos MD, Khudyakov IY, Alexandrushkina NI, Vanyushin BF (1977) 2-Aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA. Nature 270:369–370. https://doi.org/10.1038/270369a0

    Article  CAS  PubMed  Google Scholar 

  13. Khudyakov IY, Kirnos MD, Alexandrushkina NI, Vanyushin BF (1978) Cyanophage S-2L contains DNA with 2,6-diaminopurine substituted for adenine. Virology 88:8–18. https://doi.org/10.1016/0042-6822(78)90104-6

    Article  CAS  PubMed  Google Scholar 

  14. Bailly C, Suh D, Waring MJ, Chaires JB (1998) Binding of daunomycin to diaminopurine- and/or inosine-substituted DNA. Biochemistry 37:1033–1045. https://doi.org/10.1021/bi9716128

    Article  CAS  PubMed  Google Scholar 

  15. Bailly C, Waring MJ (1998) The use of diaminopurine to investigate structural properties of nucleic acids and molecular recognition between ligands and DNA. Nucleic Acids Res 26:4309–4314. https://doi.org/10.1093/nar/26.19.4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Szekeres M, Matveyev AV (1987) Cleavage and sequence recognition of 2,6-diaminopurine-containing DNA by site-specific endonucleases. FEBS Lett 222:89–94. https://doi.org/10.1016/0014-5793(87)80197-7

    Article  CAS  PubMed  Google Scholar 

  17. Honzatko RB, Stayton MM, Fromm HJ (1999) Adenylosuccinate synthetase: recent developments. Adv Enzymol Relat Areas Mol Biol 73(57–102):ix–x

    CAS  Google Scholar 

  18. Solís-Sánchez A, Hernández-Chiñas U, Navarro-Ocaña A et al (2016) Genetic characterization of ØVC8 lytic phage for Vibrio cholerae O1. Virol J 13:47. https://doi.org/10.1186/s12985-016-0490-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bouyoub A, Barbier G, Forterre P, Labedan B (1996) The adenylosuccinate synthetase from the hyperthermophilic archaeon Pyrococcus species displays unusual structural features. J Mol Biol 261:144–154. https://doi.org/10.1006/jmbi.1996.0448

    Article  CAS  PubMed  Google Scholar 

  20. Jayalakshmi R, Sumathy K, Balaram H (2002) Purification and characterization of recombinant plasmodium falciparum adenylosuccinate synthetase expressed in Escherichia coli. Protein Expr Purif 25:65–72. https://doi.org/10.1006/prep.2001.1610

    Article  CAS  PubMed  Google Scholar 

  21. Powell SM, Zalkin H, Dixon JE (1992) Cloning and characterization of the cDNA encoding human adenylosuccinate synthetase. FEBS Lett 303:4–10. https://doi.org/10.1016/0014-5793(92)80465-S

    Article  CAS  PubMed  Google Scholar 

  22. Honzatko RB, Fromm HJ (1999) Structure-function studies of adenylosuccinate synthetase from Escherichia coli. Arch Biochem Biophys 370:1–8. https://doi.org/10.1006/abbi.1999.1383

    Article  CAS  PubMed  Google Scholar 

  23. Sleiman D, Garcia PS, Lagune M et al (2021) A third purine biosynthetic pathway encoded by aminoadenine-based viral DNA genomes. Science 372:516–520. https://doi.org/10.1126/science.abe6494

    Article  CAS  PubMed  Google Scholar 

  24. Zhou Y, Xu X, Wei Y et al (2021) A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science 372:512–516. https://doi.org/10.1126/science.abe4882

    Article  CAS  PubMed  Google Scholar 

  25. Iancu CV, Zhou Y, Borza T et al (2006) Cavitation as a mechanism of substrate discrimination by adenylosuccinate synthetases. Biochemistry 45:11703–11711. https://doi.org/10.1021/bi0607498

    Article  CAS  PubMed  Google Scholar 

  26. Kang C, Sun N, Honzatko RB, Fromm HJ (1994) Replacement of Asp333 with Asn by site-directed mutagenesis changes the substrate specificity of Escherichia coli adenylosuccinate synthetase from guanosine 5′-triphosphate to xanthosine 5′-triphosphate. J Biol Chem 269:24046–24049

    Article  CAS  Google Scholar 

  27. Pezo V, Jaziri F, Bourguignon P-Y et al (2021) Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science 372:520–524. https://doi.org/10.1126/science.abe6542

    Article  CAS  PubMed  Google Scholar 

  28. Czernecki D, Hu H, Romoli F, Delarue M (2021) Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage ϕVC8. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab955

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeon YJ, Park SC, Song WS et al (2016) Structural and biochemical characterization of bacterial YpgQ protein reveals a metal-dependent nucleotide pyrophosphohydrolase. J Struct Biol 195:113–122. https://doi.org/10.1016/j.jsb.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  30. Vorontsov II, Minasov G, Kiryukhina O et al (2011) Characterization of the deoxynucleotide triphosphate triphosphohydrolase (dNTPase) activity of the EF1143 protein from Enterococcus faecalis and crystal structure of the activator-substrate complex. J Biol Chem 286:33158–33166. https://doi.org/10.1074/jbc.M111.250456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Czernecki D, Legrand P, Tekpinar M et al (2021) How cyanophage S-2L rejects adenine and incorporates 2-aminoadenine to saturate hydrogen bonding in its DNA. Nat Commun 12:2420. https://doi.org/10.1038/s41467-021-22626-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moroz OV, Harkiolaki M, Galperin MY et al (2004) The crystal structure of a complex of Campylobacter jejuni dUTPase with substrate analogue sheds light on the mechanism and suggests the “basic module” for dimeric d(C/U)TPases. J Mol Biol 342:1583–1597. https://doi.org/10.1016/j.jmb.2004.07.050

    Article  CAS  PubMed  Google Scholar 

  33. Czernecki D, Bonhomme F, Kaminski P-A, Delarue M (2021) Characterization of a triad of genes in cyanophage S-2L sufficient to replace adenine by 2-aminoadenine in bacterial DNA. Nat Commun 12:4710. https://doi.org/10.1038/s41467-021-25064-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cleaves HJ, Butch C, Burger PB et al (2019) One among millions: the chemical space of nucleic acid-like molecules. J Chem Inf Model 59:4266–4277. https://doi.org/10.1021/acs.jcim.9b00632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Professor Patrick Trieu-Cuot for his support.

Funding

This study was funded from the French government’s Investissement d’Avenir program, Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases (Grant No. ANR-10-LABX-62-IBEID).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to P. A. Kaminski.

Ethics declarations

Conflict of interests

The author declares no competing financial interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminski, P.A. Mechanisms supporting aminoadenine-based viral DNA genomes. Cell. Mol. Life Sci. 79, 51 (2022). https://doi.org/10.1007/s00018-021-04055-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04055-7

Keywords

Navigation