Skip to main content

Advertisement

Log in

Acute hypoxia elevates arginase 2 and induces polyamine stress response in zebrafish via evolutionarily conserved mechanism

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Living organisms repeatedly encounter stressful events and apply various strategies to survive. Polyamines are omnipresent bioactive molecules with multiple functions. Their transient synthesis, inducible by numerous stressful stimuli, is termed the polyamine stress response. Animals developed evolutionarily conserved strategies to cope with stresses. The urea cycle is an ancient attribute that deals with ammonia excess in terrestrial species. Remarkably, most fish retain the urea cycle genes fully expressed during the early stages of development and silenced in adult animals. Environmental challenges instigate urea synthesis in fish despite substantial energetic costs, which poses the question of the urea cycle's evolutionary significance. Arginase plays a critical role in oxidative stress-dependent reactions being the final urea cycle enzyme. Its unique subcellular localization, high inducibility, and several regulation levels provide a supreme ability to control the polyamine synthesis rate. Notably, oxidative stress instigates the arginase-1 activity in mammals. Arginase is also dysregulated in aging organisms' brain and muscle tissues, indicating its role in the pathogenesis of age-associated diseases. We designed a study to investigate the levels of the urea cycle and polyamine synthesis-related enzymes in a fish model of acute hypoxia. We evidence synchronized elevation of arginase-2 and ornithine decarboxylase following oxidative stress in adult fish and aging animals signifying the specific function of arginase-2 in fish. Moreover, we demonstrate oxidative stress-associated polyamine synthesis' induction and urea cycle' arrest in adult fish. The subcellular arginase localization found in the fish seems to correspond to its possible evolutionary roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The raw data are available from the corresponding authors on request.

Abbreviations

CAT:

Catalase

CNS:

Central nervous system

CPS:

Carbamoyl phosphate synthetase

DOL:

Dissolved oxygen level

GPX:

Glutathione peroxidase

HIF-1:

Hypoxia-inducible factor 1

IHC:

Immunohistochemical staining

ODS:

Ornithine decarboxylase

OTC:

Ornithine transcarbamylase

PSR:

Polyamine stress response

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TNFα:

Tumor necrosis factor-alpha

References

  1. Jamieson D, Chance B, Cadenas E, Boveris A (1986) The relation of free radical production to hyperoxia. Annu Rev Physiol 48:703–719. https://doi.org/10.1146/annurev.ph.48.030186.003415

    Article  CAS  PubMed  Google Scholar 

  2. Clanton T (2005) Yet another oxygen paradox. J Appl Physiol (1985) 99(4):1245–1246. https://doi.org/10.1152/japplphysiol.00609.2005

    Article  Google Scholar 

  3. Coimbra-Costa D, Alva N, Duran M, Carbonell T, Rama R (2017) Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol 12:216–225. https://doi.org/10.1016/j.redox.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clanton TL (2007) Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol (1985) 102(6):2379–2388

    Article  CAS  Google Scholar 

  5. de la Torre JC (2012) Cerebral hemodynamics and vascular risk factors: setting the stage for Alzheimer’s disease. J Alzheimers Dis 32(3):553–567. https://doi.org/10.3233/JAD-2012-120793

    Article  PubMed  Google Scholar 

  6. Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med 80(2):51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rhee HJ, Kim EJ, Lee JK (2007) Physiological polyamines: simple primordial stress molecules. J Cell Mol Med 11(4):685–703. https://doi.org/10.1111/j.1582-4934.2007.00077.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314. https://doi.org/10.1038/ncb1975

    Article  CAS  PubMed  Google Scholar 

  9. Minois N, Carmona-Gutierrez D, Bauer MA, Rockenfeller P, Eisenberg T, Brandhorst S et al (2012) Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and -independent pathways. Cell Death Dis 3:e401. https://doi.org/10.1038/cddis.2012.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Polis B, Karasik D, Samson AO (2021) Alzheimer’s disease as a chronic maladaptive polyamine stress response. Aging (Albany NY) 13(7):10770–10795. https://doi.org/10.18632/aging.202928

    Article  CAS  Google Scholar 

  11. Gilad GM, Gilad VH (1992) Polyamines in neurotrauma. Ubiquitous molecules in search of a function. Biochem Pharmacol 44(3):401–407. https://doi.org/10.1016/0006-2952(92)90428-l

    Article  CAS  PubMed  Google Scholar 

  12. Alcazar R, Cuevas JC, Planas J, Zarza X, Bortolotti C, Carrasco P et al (2011) Integration of polyamines in the cold acclimation response. Plant Sci 180(1):31–38. https://doi.org/10.1016/j.plantsci.2010.07.022

    Article  CAS  PubMed  Google Scholar 

  13. Tkachenko AG, Akhova AV, Shumkov MS, Nesterova LY (2012) Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Res Microbiol 163(2):83–91. https://doi.org/10.1016/j.resmic.2011.10.009

    Article  CAS  PubMed  Google Scholar 

  14. Farriol M, Segovia-Silvestre T, Venereo Y, Orta X (2003) Antioxidant effect of polyamines on erythrocyte cell membrane lipoperoxidation after free-radical damage. Phytother Res 17(1):44–47. https://doi.org/10.1002/ptr.1073

    Article  CAS  PubMed  Google Scholar 

  15. Gaboriau F, Vaultier M, Moulinoux JP, Delcros JG (2005) Antioxidative properties of natural polyamines and dimethylsilane analogues. Redox Rep 10(1):9–18. https://doi.org/10.1179/135100005X21561

    Article  CAS  PubMed  Google Scholar 

  16. Toro-Funes N, Odriozola-Serrano I, Bosch-Fuste J, Latorre-Moratalla ML, Veciana-Nogues MT, Izquierdo-Pulido M et al (2012) Fast simultaneous determination of free and conjugated isoflavones in soy milk by UHPLC-UV. Food Chem 135(4):2832–2838. https://doi.org/10.1016/j.foodchem.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  17. Gaboriau F, Kreder A, Clavreul N, Moulinoux JP, Delcros JG, Lescoat G (2004) Polyamine modulation of iron uptake in CHO cells. Biochem Pharmacol 67(9):1629–1637. https://doi.org/10.1016/j.bcp.2003.12.033

    Article  CAS  PubMed  Google Scholar 

  18. Fujisawa S, Kadoma Y (2005) Kinetic evaluation of polyamines as radical scavengers. Anticancer Res 25(2A):965–969

    CAS  PubMed  Google Scholar 

  19. Mott DD, Washburn MS, Zhang S, Dingledine RJ (2003) Subunit-dependent modulation of kainate receptors by extracellular protons and polyamines. J Neurosci 23(4):1179–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sala-Rabanal M, Li DC, Dake GR, Kurata HT, Inyushin M, Skatchkov SN et al (2013) Polyamine transport by the polyspecific organic cation transporters OCT1, OCT2, and OCT3. Mol Pharm 10(4):1450–1458. https://doi.org/10.1021/mp400024d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427(21):3389–3406. https://doi.org/10.1016/j.jmb.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  22. Lee JH, Son MY, Yoon MY, Choi JD, Kim YT (2004) Isolation and characterization of ornithine decarboxylase gene from flounder (Paralichthys olivaceus). Mar Biotechnol (NY) 6(5):453–462. https://doi.org/10.1007/s10126-004-4100-3

    Article  CAS  Google Scholar 

  23. Peters D, Berger J, Langnaese K, Derst C, Madai VI, Krauss M et al (2013) Arginase and arginine decarboxylase—where do the putative gate keepers of polyamine synthesis reside in rat brain? PLoS ONE 8(6):e66735. https://doi.org/10.1371/journal.pone.0066735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35(2):63–75. https://doi.org/10.1016/j.tips.2013.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10(3):252–256. https://doi.org/10.1016/s0959-437x(00)00074-5

    Article  CAS  PubMed  Google Scholar 

  26. Caldovic L, Haskins N, Mumo A, Majumdar H, Pinter M, Tuchman M et al (2014) Expression pattern and biochemical properties of zebrafish N-acetylglutamate synthase. PLoS ONE 9(1):e85597. https://doi.org/10.1371/journal.pone.0085597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Braun MH, Steele SL, Ekker M, Perry SF (2009) Nitrogen excretion in developing zebrafish (Danio rerio): a role for Rh proteins and urea transporters. Am J Physiol Renal Physiol 296(5):F994–F1005. https://doi.org/10.1152/ajprenal.90656.2008

    Article  CAS  PubMed  Google Scholar 

  28. Takiguchi M, Matsubasa T, Amaya Y, Mori M (1989) Evolutionary aspects of urea cycle enzyme genes. BioEssays 10(5):163–166. https://doi.org/10.1002/bies.950100506

    Article  CAS  PubMed  Google Scholar 

  29. Jenkinson CP, Grody WW, Cederbaum SD (1996) Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 114(1):107–132. https://doi.org/10.1016/0305-0491(95)02138-8

    Article  CAS  PubMed  Google Scholar 

  30. Wood CM, Munger RS, Toews DP (1989) Ammonia, Urea and H+ Distribution and the Evolution of Ureotelism in Amphibians. J Exp Biol 144(1):215–233. https://doi.org/10.1242/jeb.144.1.215

    Article  Google Scholar 

  31. Walsh PJ (1997) Evolution and regulation of urea synthesis and ureotely in (batrachoidid) fishes. Annu Rev Physiol 59:299–323. https://doi.org/10.1146/annurev.physiol.59.1.299

    Article  CAS  PubMed  Google Scholar 

  32. Chew SF, Chan NK, Loong AM, Hiong KC, Tam WL, Ip YK (2004) Nitrogen metabolism in the African lungfish (Protopterus dolloi) aestivating in a mucus cocoon on land. J Exp Biol 207(Pt 5):777–786. https://doi.org/10.1242/jeb.00813

    Article  CAS  PubMed  Google Scholar 

  33. Frohnhofer HG, Geiger-Rudolph S, Pattky M, Meixner M, Huhn C, Maischein HM et al (2016) Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish. Biol Open 5(6):736–744. https://doi.org/10.1242/bio.018721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robertson MA, Padgett LR, Fine JA, Chopra G, Mastracci TL (2020) Targeting polyamine biosynthesis to stimulate beta cell regeneration in zebrafish. Islets 12(5):99–107. https://doi.org/10.1080/19382014.2020.1791530

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moussavi Nik SH, Wilson L, Newman M, Croft K, Mori TA, Musgrave I et al (2012) The BACE1-PSEN-AbetaPP regulatory axis has an ancient role in response to low oxygen/oxidative stress. J Alzheimers Dis 28(3):515–530. https://doi.org/10.3233/JAD-2011-110533

    Article  CAS  PubMed  Google Scholar 

  36. Banerjee B, Koner D, Karasik D, Saha N (2021) Genome-wide identification of novel long non-coding RNAs and their possible roles in hypoxic zebrafish brain. Genomics 113(1 Pt 1):29–43. https://doi.org/10.1016/j.ygeno.2020.11.023

    Article  CAS  PubMed  Google Scholar 

  37. Moretti S, Armougom F, Wallace IM, Higgins DG, Jongeneel CV, Notredame C (2007) The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 35(Web Server issue):W645–W648. https://doi.org/10.1093/nar/gkm333

    Article  PubMed  PubMed Central  Google Scholar 

  38. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577. https://doi.org/10.1080/10635150701472164

    Article  CAS  PubMed  Google Scholar 

  39. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  40. Lefort V, Longueville JE, Gascuel O (2017) SMS: Smart Model Selection in PhyML. Mol Biol Evol 34(9):2422–2424. https://doi.org/10.1093/molbev/msx149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552. https://doi.org/10.1080/10635150600755453

    Article  PubMed  Google Scholar 

  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  43. Polis B, Srikanth KD, Elliott E, Gil-Henn H, Samson AO (2018) L-Norvaline reverses cognitive decline and synaptic loss in a murine model of Alzheimer’s disease. Neurotherapeutics 15(4):1036–1054. https://doi.org/10.1007/s13311-018-0669-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Basnet RM, Zizioli D, Taweedet S, Finazzi D, Memo M (2019) Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines. https://doi.org/10.3390/biomedicines7010023

    Article  PubMed  PubMed Central  Google Scholar 

  45. Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210(Pt 14):2526–2539. https://doi.org/10.1242/jeb.003939

    Article  PubMed  Google Scholar 

  46. Caldwell RB, Toque HA, Narayanan SP, Caldwell RW (2015) Arginase: an old enzyme with new tricks. Trends Pharmacol Sci 36(6):395–405. https://doi.org/10.1016/j.tips.2015.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ouzounis CA, Kyrpides NC (1994) On the evolution of arginases and related enzymes. J Mol Evol 39(1):101–104. https://doi.org/10.1007/BF00178255

    Article  PubMed  Google Scholar 

  48. Vockley JG, Jenkinson CP, Shukla H, Kern RM, Grody WW, Cederbaum SD (1996) Cloning and characterization of the human type II arginase gene. Genomics 38(2):118–123. https://doi.org/10.1006/geno.1996.0606

    Article  CAS  PubMed  Google Scholar 

  49. Samson ML (2000) Drosophila arginase is produced from a nonvital gene that contains the elav locus within its third intron. J Biol Chem 275(40):31107–31114. https://doi.org/10.1074/jbc.M001346200

    Article  CAS  PubMed  Google Scholar 

  50. Dzik JM (2014) Evolutionary roots of arginase expression and regulation. Front Immunol 5:544. https://doi.org/10.3389/fimmu.2014.00544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morris SM Jr (1992) Regulation of enzymes of urea and arginine synthesis. Annu Rev Nutr 12:81–101. https://doi.org/10.1146/annurev.nu.12.070192.000501

    Article  CAS  PubMed  Google Scholar 

  52. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K (2015) MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteom 14(4):1113–1126. https://doi.org/10.1074/mcp.M114.043083

    Article  CAS  Google Scholar 

  53. Saitoh T, Igura M, Obita T, Ose T, Kojima R, Maenaka K et al (2007) Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states. EMBO J 26(22):4777–4787. https://doi.org/10.1038/sj.emboj.7601888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Minois N, Carmona-Gutierrez D, Madeo F (2011) Polyamines in aging and disease. Aging (Albany NY) 3(8):716–732. https://doi.org/10.18632/aging.100361

    Article  Google Scholar 

  55. Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25(10):2518–2521. https://doi.org/10.1523/JNEUROSCI.4526-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scheib J, Byrd-Jacobs C (2020) Zebrafish astroglial morphology in the olfactory bulb is altered with repetitive peripheral damage. Front Neuroanat 14:4. https://doi.org/10.3389/fnana.2020.00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grupp L, Wolburg H, Mack AF (2010) Astroglial structures in the zebrafish brain. J Comp Neurol 518(21):4277–4287. https://doi.org/10.1002/cne.22481

    Article  CAS  PubMed  Google Scholar 

  58. Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86(1):6–19. https://doi.org/10.1093/toxsci/kfi110

    Article  CAS  PubMed  Google Scholar 

  59. Veldman MB, Lin S (2008) Zebrafish as a developmental model organism for pediatric research. Pediatr Res 64(5):470–476. https://doi.org/10.1203/PDR.0b013e318186e609

    Article  PubMed  Google Scholar 

  60. Peterson RE, Theobald HM, Kimmel GL (1993) Developmental and reproductive toxicity of dioxins and related compounds: cross-species comparisons. Crit Rev Toxicol 23(3):283–335. https://doi.org/10.3109/10408449309105013

    Article  CAS  PubMed  Google Scholar 

  61. Chang C, Wu SL, Zhao XD, Zhao CT, Li YH (2014) Developmental toxicity of doxorubicin hydrochloride in embryo-larval stages of zebrafish. Biomed Mater Eng 24(1):909–916. https://doi.org/10.3233/BME-130885

    Article  CAS  PubMed  Google Scholar 

  62. Zhu W, Shou W, Payne RM, Caldwell R, Field LJ (2008) A mouse model for juvenile doxorubicin-induced cardiac dysfunction. Pediatr Res 64(5):488–494. https://doi.org/10.1203/PDR.0b013e318184d732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Capiotti KM, Fazenda L, Nazario LR, Menezes FP, Kist LW, Bogo MR et al (2013) Arginine exposure alters ectonucleotidase activities and morphology of zebrafish larvae (Danio rerio). Int J Dev Neurosci 31(1):75–81. https://doi.org/10.1016/j.ijdevneu.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  64. Srivastava S, Ratha BK (2013) Unique hepatic cytosolic arginase evolved independently in ureogenic freshwater air-breathing teleost, Heteropneustes fossilis. PLoS ONE 8(6):e66057. https://doi.org/10.1371/journal.pone.0066057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walsh P (1995) Subcellular localization and biochemical properties of the enzymes of carbamoyl phosphate and urea synthesis in the batrachoidid fishes Opsanus beta, Opsanus tau and Porichthys notatus. J Exp Biol 198(Pt 3):755–766

    Article  CAS  PubMed  Google Scholar 

  66. Dkhar J, Saha N, Ratha BK (1991) Ureogenesis in a freshwater teleost: an unusual sub-cellular localization of ornithine-urea cycle enzymes in the freshwater air-breathing teleost Heteropneustes fossilis. Biochem Int 25(6):1061–1069

    CAS  PubMed  Google Scholar 

  67. Banerjee B, Koner D, Lal P, Saha N (2017) Unique mitochondrial localization of arginase 1 and 2 in hepatocytes of air-breathing walking catfish, Clarias batrachus and their differential expression patterns under hyper-ammonia stress. Gene 622:13–22. https://doi.org/10.1016/j.gene.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  68. Esch F, Lin KI, Hills A, Zaman K, Baraban JM, Chatterjee S et al (1998) Purification of a multipotent antideath activity from bovine liver and its identification as arginase: nitric oxide-independent inhibition of neuronal apoptosis. J Neurosci 18(11):4083–4095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jones ME, Anderson AD, Anderson C, Hodes S (1961) Citrulline synthesis in rat tissues. Arch Biochem Biophys 95:499–507. https://doi.org/10.1016/0003-9861(61)90182-5

    Article  CAS  PubMed  Google Scholar 

  70. Chandra S, Romero MJ, Shatanawi A, Alkilany AM, Caldwell RB, Caldwell RW (2012) Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway. Br J Pharmacol 165(2):506–519. https://doi.org/10.1111/j.1476-5381.2011.01584.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ryoo S, Bhunia A, Chang F, Shoukas A, Berkowitz DE, Romer LH (2011) OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling. Atherosclerosis 214(2):279–287. https://doi.org/10.1016/j.atherosclerosis.2010.10.044

    Article  CAS  PubMed  Google Scholar 

  72. Pandey D, Bhunia A, Oh YJ, Chang F, Bergman Y, Kim JH et al (2014) OxLDL triggers retrograde translocation of arginase2 in aortic endothelial cells via ROCK and mitochondrial processing peptidase. Circ Res 115(4):450–459. https://doi.org/10.1161/CIRCRESAHA.115.304262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Malpica-Nieves CJ, Rivera-Aponte DE, Tejeda-Bayron FA, Mayor AM, Phanstiel O, Veh RW et al (2020) The involvement of polyamine uptake and synthesis pathways in the proliferation of neonatal astrocytes. Amino Acids 52(8):1169–1180. https://doi.org/10.1007/s00726-020-02881-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bernstein HG, Muller M (1999) The cellular localization of the L-ornithine decarboxylase/polyamine system in normal and diseased central nervous systems. Prog Neurobiol 57(5):485–505. https://doi.org/10.1016/s0301-0082(98)00065-3

    Article  CAS  PubMed  Google Scholar 

  75. Xiong Y, Yepuri G, Montani JP, Ming XF, Yang Z (2017) Arginase-II deficiency extends lifespan in mice. Front Physiol 8:682. https://doi.org/10.3389/fphys.2017.00682

    Article  PubMed  PubMed Central  Google Scholar 

  76. Stewart JA, Caron H (1977) Arginases of mouse brain and liver. J Neurochem 29(4):657–663. https://doi.org/10.1111/j.1471-4159.1977.tb07783.x

    Article  CAS  PubMed  Google Scholar 

  77. Hu J, Mahmoud MI, el-Fakahany EE (1994) Polyamines inhibit nitric oxide synthase in rat cerebellum. Neurosci Lett 175(1–2):41–45. https://doi.org/10.1016/0304-3940(94)91073-1

    Article  CAS  PubMed  Google Scholar 

  78. Polis B, Gurevich V, Assa M, Samson AO (2019) Norvaline restores the BBB integrity in a mouse model of Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms20184616

    Article  PubMed  PubMed Central  Google Scholar 

  79. Portugal TR, Aksnes A (1983) Arginase activity in different fish species and tissues. Comp Biochem Physiol B 76:15–16

    Article  Google Scholar 

  80. Polis B, Samson AO (2019) A new perspective on Alzheimer's disease as a brain expression of a complex metabolic disorder. In: Wisniewski T (ed) Alzheimer's disease. Codon Publications, Brisbane (AU)

    Google Scholar 

  81. Pandya CD, Lee B, Toque HA, Mendhe B, Bragg RT, Pandya B et al (2019) Age-dependent oxidative stress elevates arginase 1 and uncoupled nitric oxide synthesis in skeletal muscle of aged mice. Oxid Med Cell Longev 2019:1704650. https://doi.org/10.1155/2019/1704650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Polis B, Srikanth KD, Gurevich V, Bloch N, Gil-Henn H, Samson AO (2020) Arginase inhibition supports survival and differentiation of neuronal precursors in adult Alzheimer’s disease mice. Int J Mol Sci. https://doi.org/10.3390/ijms21031133

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wallner S, Hermetter A, Mayer B, Wascher TC (2001) The alpha-amino group of L-arginine mediates its antioxidant effect. Eur J Clin Invest 31(2):98–102. https://doi.org/10.1046/j.1365-2362.2001.00771.x

    Article  CAS  PubMed  Google Scholar 

  84. Samardzic K, Rodgers KJ (2019) Cytotoxicity and mitochondrial dysfunction caused by the dietary supplement l-norvaline. Toxicol In Vitro 56:163–171. https://doi.org/10.1016/j.tiv.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  85. Polis B, Gilinsky MA, Samson AO (2019) Reports of L-norvaline toxicity in humans may be greatly overstated. Brain Sci. https://doi.org/10.3390/brainsci9120382

    Article  PubMed  PubMed Central  Google Scholar 

  86. Polis B, Srikanth KD, Gurevich V, Gil-Henn H, Samson AO (2019) L-Norvaline, a new therapeutic agent against Alzheimer’s disease. Neural Regen Res 14(9):1562–1572. https://doi.org/10.4103/1673-5374.255980

    Article  PubMed  PubMed Central  Google Scholar 

  87. De A, Singh MF, Singh V, Ram V, Bisht S (2016) Treatment effect of l-Norvaline on the sexual performance of male rats with streptozotocin induced diabetes. Eur J Pharmacol 771:247–254. https://doi.org/10.1016/j.ejphar.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  88. Gilinsky MA, Polityko YK, Markel AL, Latysheva TV, Samson AO, Polis B et al (2020) Norvaline reduces blood pressure and induces diuresis in rats with inherited stress-induced arterial hypertension. Biomed Res Int 2020:4935386. https://doi.org/10.1155/2020/4935386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bila I, Dzydzan O, Brodyak I, Sybirna N (2019) Agmatine prevents oxidative-nitrative stress in blood leukocytes under streptozotocin-induced diabetes mellitus. Open Life Sci 14:299–310. https://doi.org/10.1515/biol-2019-0033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. El-Sayed EK, Ahmed A, Morsy EE, Nofal S (2019) Neuroprotective effect of agmatine (decarboxylated l-arginine) against oxidative stress and neuroinflammation in rotenone model of Parkinson’s disease. Hum Exp Toxicol 38(2):173–184. https://doi.org/10.1177/0960327118788139

    Article  CAS  PubMed  Google Scholar 

  91. Nandi A, Yan LJ, Jana CK, Das N (2019) Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev 2019:9613090. https://doi.org/10.1155/2019/9613090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

ISF grant #1121/19 (to D.K.).

Author information

Authors and Affiliations

Authors

Contributions

DK conceived and supervised the study and edited the manuscript. BP designed the study, performed the image acquisition and analysis, and wrote the manuscript. BB, IK, IBZ performed experiments, analyzed the results, and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Baruh Polis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

This study was performed under the guidelines of the Institutional Animal Ethics Committee of Bar-Ilan University [IACUC’s protocol # b16633]. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Consent to participate

This article does not contain any studies involving human participants performed by any of the authors.

Consent for publication

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2021_4043_MOESM1_ESM.tif

Fig. S1. The urea cycle diagram in fish (enzymes, products, and steps). The urea cycle converts toxic ammonia to urea, which bears two amino groups in its structure, one derived from ammonia and another from aspartate. The enzymes: carbamoyl phosphate synthetase 3 (CPS3), ornithine transcarbamylase (Otc), argininosuccinate synthetase (Ass), argininosuccinate lyase (Asl), arginase (Arg), ornithine decarboxylase (Odc)

Supplementary file2 (PDF 58 kb)

Supplementary file3 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, B., Khrystoforova, I., Polis, B. et al. Acute hypoxia elevates arginase 2 and induces polyamine stress response in zebrafish via evolutionarily conserved mechanism. Cell. Mol. Life Sci. 79, 41 (2022). https://doi.org/10.1007/s00018-021-04043-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04043-x

Keywords

Navigation