Skip to main content

Advertisement

Log in

Microgravity and space radiation inhibit autophagy in human capillary endothelial cells, through either opposite or synergistic effects on specific molecular pathways

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts’ health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All transcriptome analysis raw data were deposited in GEO as GSE157937.

Code availability

Not applicable.

Abbreviations

AcTUBA:

Acetylated tubulin alpha

ATP5H:

Mitochondrial ATP synthase, subunit d

CC:

Culture chamber

COC:

Cyclic olefin copolymer

CTNNB:

Catenin-beta

DEG:

Differentially expressed genes

EC:

Endothelial cell

ESA:

European Space Agency

EU:

Experimental Unit

FISH:

Fluorescent in situ hybridization

GC:

Ground controls, samples prepared in parallel with samples sent to space, but grown on Earth

GSEA:

Gene Set Enrichment Analysis

Hh:

Hedgehog

HMEC-1:

Human microvascular endothelial cells-1

IF:

Immunofluorescence

ISS:

International Space Station

KRT7:

Cytokeratin 7

LC3B:

Light chain 3 isoform B

LINC:

Linker of nucleoskeleton and cytoskeleton

MYL2:

Myosin light chain 2

PBS:

Phosphate buffer saline

γH2AX:

Phosphorylated histone H2AX

PML NB:

Promyelocytic leukemia nuclear bodies

SF:

Space flight

SF-1g:

Space-flown samples cultured at 1g within the centrifuge onboard

SF-μg:

Space-flown samples exposed to real microgravity

SR:

Space radiation

TMA:

Transport modified anthropometric

TUBA:

Tubulin alpha

VIM:

Vimentin

WCP:

Whole chromosome probes

YAP1:

Yes-associated protein 1

References

  1. Rijken PJ, De Groot RP, Briegleb W, Kruijer W, Verkleij AJ, Boonstra J et al (1991) Epidermal growth factor-induced cell rounding is sensitive to simulated microgravity. Aviat Sp Environ Med 62(1):32–36

    CAS  Google Scholar 

  2. Buken C, Sahana J, Corydon TJ, Melnik D, Bauer J, Wehland M et al (2019) Morphological and molecular changes in juvenile normal human fibroblasts exposed to simulated microgravity. Sci Rep 9(1):11882

    PubMed  PubMed Central  Google Scholar 

  3. Dietz C, Infanger M, Romswinkel A, Strube F, Kraus A (2019) Apoptosis induction and alteration of cell adherence in human lung cancer cells under simulated microgravity. Int J Mol Sci 20(14):3601

    CAS  PubMed Central  Google Scholar 

  4. Thiel CS, Tauber S, Lauber B, Polzer J, Seebacher C, Uhl R et al (2019) Rapid morphological and cytoskeletal response to microgravity in human primary macrophages. Int J Mol Sci 20(10):2402

    PubMed Central  Google Scholar 

  5. Vassy J, Portet S, Beil M, Millot G, Fauvel-Lafève F, Karniguian A et al (2001) The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. FASEB J 15(6):1104–1106

    CAS  PubMed  Google Scholar 

  6. Infanger M, Kossmehl P, Shakibaei M, Baatout S, Witzing A, Grosse J et al (2006) Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: impact of vascular endothelial growth factor. Apoptosis 11(5):749–764

    CAS  PubMed  Google Scholar 

  7. Tauber S, Lauber BA, Paulsen K, Layer LE, Lehmann M, Hauschild S et al (2017) Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS One 12(4):e0175599

    PubMed  PubMed Central  Google Scholar 

  8. Zhou L, Zhang C, Zhang F, Lü S, Sun S, Lü D et al (2018) Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector. Biomech Model Mechanobiol 17(1):191–203

    PubMed  Google Scholar 

  9. Thiel CS, Tauber S, Seebacher C, Schropp M, Uhl R, Lauber B et al (2019) Real-time 3D high-resolution microscopy of human cells on the international space station. Int J Mol Sci 20(8):2033

    CAS  PubMed Central  Google Scholar 

  10. Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, Angeloni D (2017) Human pathophysiological adaptations to the space environment. Front Physiol 8:547

    PubMed  PubMed Central  Google Scholar 

  11. Coupé M, Fortrat JO, Larina I, Gauquelin-Koch G, Gharib C, Custaud MA (2009) Cardiovascular deconditioning: from autonomic nervous system to microvascular dysfunctions. Respir Physiol Neurobiol 169(Suppl):S10–S12

    PubMed  Google Scholar 

  12. Maier JAM, Cialdai F, Monici M, Morbidelli L (2015) The impact of microgravity and hypergravity on endothelial cells. Biomed Res Int 2015:434803

    PubMed  PubMed Central  Google Scholar 

  13. Lin X, Zhang K, Wei D, Tian Y, Gao Y, Chen Z et al (2020) The impact of spaceflight and simulated microgravity on cell adhesion. Int J Mol Sci 21:3031

    CAS  PubMed Central  Google Scholar 

  14. Herranz R, Anken R, Boonstra J, Braun M, Christianen PCM, de Geest M et al (2013) Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1):1–17

    PubMed  PubMed Central  Google Scholar 

  15. Cotrupi S, Ranzani D, Maier JAM (2005) Impact of modeled microgravity on microvascular endothelial cells. Biochim Biophys Acta 1746(2):163–168

    CAS  PubMed  Google Scholar 

  16. Mariotti M, Maier JAM (2008) Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells. J Cell Biochem 104:129–135

    CAS  PubMed  Google Scholar 

  17. Kang CY, Zou L, Yuan M, Wang Y, Li TZ, Zhang Y et al (2011) Impact of simulated microgravity on microvascular endothelial cell apoptosis. Eur J Appl Physiol 111(9):2131–2138

    PubMed  Google Scholar 

  18. Tang NP, Hui TT, Ma J, Mei QB (2019) Effects of miR-503-5p on apoptosis of human pulmonary microvascular endothelial cells in simulated microgravity. J Cell Biochem 120(1):727–737

    CAS  PubMed  Google Scholar 

  19. Zhao H, Shi Y, Qiu C, Zhao J, Gong Y, Nie C et al (2021) Effects of simulated microgravity on ultrastructure and apoptosis of choroidal vascular endothelial cells. Front Physiol 18:11

    Google Scholar 

  20. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC et al (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99(6):683–690

    CAS  PubMed  Google Scholar 

  21. Barravecchia I, De CC, Pyankova OV, Scebba F, Mascherpa MC, Vecchione A et al (2018) Pitting corrosion within bioreactors for space cell-culture contaminated by Paenibacillus glucanolyticus, a case report. Microgravity Sci Technol 30(3):309–319

    CAS  Google Scholar 

  22. Balsamo M, Barravecchia I, Mariotti S, Merenda A, De Cesari C, Vukich M et al (2014) Molecular and cellular characterization of space flight effects on microvascular endothelial cell function—preparatorywork for the SFEF project. Microgravity Sci Technol 26(6):351–363

    CAS  Google Scholar 

  23. Barravecchia I, De Cesari C, Pyankova O, Scebba F, Pè M, Forcato M et al (2018) A comprehensive molecular and morphological study of the effects of space flight on human capillary endothelial cells: sample quality assessment and preliminary results. In: Proceedings, 39th ISGP meeting & ESA life sciences meeting. Front Physiol. section: Environmental, Aviation and Space Physiology. 2018.  https://doi.org/10.3389/conf.fphys.2018.26.00050

  24. Soyuz Users Manual, Issue 3 ST-GTD-SUM-01. Starsem; 2001. 1–204

  25. Versari S, Longinotti G, Barenghi L, Maier JAM, Bradamante S (2013) The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB J 27(11):4466–4475

    CAS  PubMed  Google Scholar 

  26. Tamma R, Colaianni G, Camerino C, Di Benedetto A, Greco G, Strippoli M et al (2009) Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J 23(8):2549–2554

    CAS  PubMed  Google Scholar 

  27. Monticone M, Liu Y, Pujic N, Cancedda R (2010) Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure. J Cell Biochem 111(2):442–452

    CAS  PubMed  Google Scholar 

  28. Franzoso S, Sandonà D, Picard A, Furlan S, Gobbo V, Salvatori S et al (2009) Cultured adult muscle fibers in the microgravity environment. The MYO experiment in the Foton-M3 space flight mission. Basic Appl Mol 19:65–76

    Google Scholar 

  29. ESA document: ESA-HSO-COU-025 2.0 (http://wsn.spaceflight.esa.int/docs/Factsheets/25%20Kubik%20HR_WEB.pdf)

  30. Mariotti S, Barravecchia I, Vindigni C, Pucci A, Balsamo M, Libro R et al (2014) MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion. Oncotarget 7(2):1808–1825

    Google Scholar 

  31. Marino A, Filippeschi C, Genchi GG, Mattoli V, Mazzolai B, Ciofani G (2014) The Osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater 10(10):4304–4313

    CAS  PubMed  Google Scholar 

  32. Barr ML, Hamilton JD (1948) A quantitative study of certain morphological changes in spinal motor neurons during axon reaction. J Comp Neurol 89(2):93–121

    CAS  PubMed  Google Scholar 

  33. Sabatino L, Botto N, Borghini A, Turchi S, Andreassi MG (2013) Development of a new multiplex quantitative real-time PCR assay for the detection of the mtDNA4977 deletion in coronary artery disease patients: A link with telomere shortening. Environ Mol Mutagen 54(5):299–307

    CAS  PubMed  Google Scholar 

  34. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    CAS  PubMed  Google Scholar 

  35. Liao Y, Smyth GK, Shi W (2014) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    CAS  PubMed  Google Scholar 

  36. Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    PubMed  PubMed Central  Google Scholar 

  37. Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS et al (2015) Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res 43(15):e97

    PubMed  PubMed Central  Google Scholar 

  38. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yin T, Cook D, Lawrence M (2012) ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol 13(8):R77

    PubMed  PubMed Central  Google Scholar 

  40. Mehta IS, Amira M, Harvey AJ, Bridger JM (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 11(1):R5

    PubMed  PubMed Central  Google Scholar 

  41. Foster HA, Estrada-Girona G, Themis M, Garimberti E, Hill MA, Bridger JM et al (2013) Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells. Mutat Res Genet Toxicol Environ Mutagen 756(1–2):66–77

    CAS  Google Scholar 

  42. Patteson AE, Pogoda K, Byfield FJ, Mandal K, Ostrowska-Podhorodecka Z, Charrier EE et al (2019) Loss of vimentin enhances cell motility through small confining spaces. Small 15(50):1903180

    CAS  Google Scholar 

  43. Jiu Y, Lehtimäki J, Tojkander S, Cheng F, Jäälinoja H, Liu X et al (2015) Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers. Cell Rep 11(10):1511–1518

    CAS  PubMed  Google Scholar 

  44. Jiu Y, Peränen J, Schaible N, Cheng F, Eriksson JE, Krishnan R et al (2017) Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J Cell Sci 130(5):892–902

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hookway C, Ding L, Davidson MW, Rappoport JZ, Danuser G, Gelfand VI (2015) Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Mol Biol Cell 26(9):1675–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  46. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592

    PubMed  Google Scholar 

  47. Koken MHM, Linares-Cruz G, Quignon F, Viron A, Chelbi-Alix MK, Sobczak-Thepot J et al (1995) The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 10(7):1315–1324

    CAS  PubMed  Google Scholar 

  48. Dellaire G, Bazett-Jones DP (2004) PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. BioEssays 26:963–977

    CAS  PubMed  Google Scholar 

  49. Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP (2004) PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6(7):665–672

    CAS  PubMed  Google Scholar 

  50. Chang FTM, McGhie JD, Chan FL, Tang MC, Anderson MA, Mann JR et al (2013) PML bodies provide an important platform for the maintenance of telomeric chromatin integrity in embryonic stem cells. Nucleic Acids Res 41(8):4447–4458

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Vancurova M, Hanzlikova H, Knoblochova L, Kosla J, Majera D, Mistrik M et al (2019) PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair. DNA Repair (Amst) 1(78):114–127

    Google Scholar 

  52. Chang HR, Munkhjargal A, Kim M-J, Park SY, Jung E, Ryu J-H et al (2018) The functional roles of PML nuclear bodies in genome maintenance. Mutat Res 809:99–107

    CAS  PubMed  Google Scholar 

  53. Mah L-J, El-Osta A, Karagiannis TC (2010) γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24(4):679–686

    CAS  PubMed  Google Scholar 

  54. Van Loon JJWA (2009) Mechanomics and physicomics in gravisensing. Microgravity Sci Technol 21(1–2):159–167

    Google Scholar 

  55. Pukhlyakova E, Aman AJ, Elsayad K, Technau U (2018) β-Catenin-dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria. Proc Natl Acad Sci USA 115(24):6231–6236

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Luu VZ, Chowdhury B, Al-Omran M, Hess DA, Verma S (2018) Role of endothelial primary cilia as fluid mechanosensors on vascular health. Atherosclerosis 275:196–204

    CAS  PubMed  Google Scholar 

  57. Kallakuri S, Yu JA, Li J, Li Y, Weinstein BM, Nicoli S et al (2015) Endothelial cilia are essential for developmental vascular integrity in zebrafish. J Am Soc Nephrol 26(4):864–875

    CAS  PubMed  Google Scholar 

  58. Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10(3):211–219

    CAS  PubMed  Google Scholar 

  59. Crawford-Young SJ (2006) Effects of microgravity on cell cytoskeleton and embryogenesis. Int J Dev Biol 50(2–3):183–191

    PubMed  Google Scholar 

  60. Corydon TJ, Kopp S, Wehland M, Braun M, Schütte A, Mayer T et al (2016) Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci Rep 6:20043

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bradbury P, Wu H, Choi JU, Rowan AE, Zhang H, Poole K et al (2020) Modeling the impact of microgravity at the cellular level: implications for human disease. Front Cell Dev Biol 8:96

    PubMed  PubMed Central  Google Scholar 

  62. Zhang Y-S, Liu B, Luo X-J, Li T-B, Zhang J-J, Peng J-J et al (2015) Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction. Basic Res Cardiol 110(4):38

    PubMed  Google Scholar 

  63. Caridi CP, D’agostino C, Ryu T, Zapotoczny G, Delabaere L, Li X et al (2018) Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559(7712):54–60

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Papaseit C, Pochon N, Tabony J (2000) Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci USA 97(15):8364–8368

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Goldman RD (1971) The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J Cell Biol 51(3):752–762

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li N, Wang C, Sun S, Zhang C, Lü D, Chen Q et al (2018) Microgravity-induced alterations of inflammation-related mechanotransduction in endothelial cells on board SJ-10 satellite. Front Physiol 31:9

    Google Scholar 

  67. De Cesari C, Barravecchia I, Pyankova OV, Vezza M, Germani MM, Scebba F et al (2020) Hypergravity activates a pro-angiogenic homeostatic response by human capillary endothelial cells. Int J Mol Sci 21(7):2354

    PubMed Central  Google Scholar 

  68. Simon DN, Wilson KL (2011) The nucleoskeleton as a genome-associated dynamic “network of networks.” Nat Rev Mol Cell Biol 12:695–708

    CAS  PubMed  Google Scholar 

  69. Meinke P, Schirmer EC (2015) LINC’ing form and function at the nuclear envelope. FEBS Lett 589:2514–2521

    CAS  PubMed  Google Scholar 

  70. Elcock LS, Bridger JM (2008) Exploring the effects of a dysfunctional nuclear matrix. Biochem Soc Trans 36(6):1378–1383

    CAS  PubMed  Google Scholar 

  71. Neelam S, Richardson B, Barker R, Udave C, Gilroy S, Cameron M et al (2020) Changes in nuclear shape and gene expression in response to simulated microgravity are linc complex-dependent. Int J Mol Sci 21(18):1–17

    Google Scholar 

  72. Chakraborty N, Cheema A, Gautam A, Donohue D, Hoke A, Conley C et al (2018) Gene-metabolite profile integration to understand the cause of spaceflight induced immunodeficiency. npj Microgravity. https://doi.org/10.1038/s41526-017-0038-4

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yang C, Svitkina TM (2019) Ultrastructure and dynamics of the actin-myosin II cytoskeleton during mitochondrial fission. Nat Cell Biol 21(5):603–613

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Drummond ML, Li M, Tarapore E, Nguyen TTL, Barouni BJ, Cruz S et al (2018) Actin polymerization controls cilia-mediated signaling. J Cell Biol 217(9):3255–3266

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Leonard JM, Ye H, Wetmore C, Karnitz LM (2008) Sonic Hedgehog signaling impairs ionizing radiation–induced checkpoint activation and induces genomic instability. J Cell Biol 183(3):385–391

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Filipová A, Diaz-Garcia D, Bezrouk A, Čížková D, Havelek R, Vávrová J et al (2015) Ionizing radiation increases primary cilia incidence and induces multiciliation in C2C12 myoblasts. Cell Biol Int 39(8):943–953

    PubMed  Google Scholar 

  77. Qu W, Li D, Wang Y, Wu Q, Hao D (2018) Activation of sonic hedgehog signaling is associated with human osteosarcoma cells radioresistance characterized by increased proliferation, migration, and invasion. Med Sci Monit 4(24):3764–3771

    Google Scholar 

  78. Datta K, Suman S, Fornace A (2014) Radiation persistently promoted oxidative stress, activated mTOR via PI3K/Akt, and downregulated autophagy pathway in mouse intestine. Int J Biochem Cell Biol 57:167

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Moreno-Villanueva M, Wong M, Lu T, Zhang Y, Wu H (2017) Interplay of space radiation and microgravity in DNA damage and DNA damage response. Microgravity 3:14

    PubMed  PubMed Central  Google Scholar 

  80. Gruosso T, Mieulet V, Cardon M, Bourachot B, Kieffer Y, Devun F et al (2016) Chronic oxidative stress promotes H2 AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med 8(5):527–549

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579

    CAS  PubMed  Google Scholar 

  82. Honig LS, Kang MS, Cheng R, Eckfeldt JH, Thyagarajan B, Leiendecker-Foster C et al (2015) Heritability of telomere length in a study of long-lived families. Neurobiol Aging 36(10):2785–2790

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Von Zglinicki T (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann New York Acad Sci 908:99–110

    Google Scholar 

  84. Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP et al (2016) Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev 25:55–69

    CAS  PubMed  Google Scholar 

  85. Sishc BJ, Nelson CB, McKenna MJ, Battaglia CLR, Herndon A, Idate R et al (2015) Telomeres and telomerase in the radiation response: Implications for instability, reprograming, and carcinogenesis. Front Oncol. https://doi.org/10.3389/fonc.2015.00257

    Article  PubMed  PubMed Central  Google Scholar 

  86. Luxton JJ, McKenna MJ, Taylor LE, George KA, Zwart SR, Crucian BE et al (2020) Temporal telomere and DNA damage responses in the space radiation environment. Cell Rep 33(10):108435

    CAS  PubMed  Google Scholar 

  87. Luxton JJ, McKenna MJ, Lewis A, Taylor LE, George KA, Dixit SM et al (2020) Telomere length dynamics and DNA damage responses associated with long-duration spaceflight. Cell Rep 33(10):108435

    CAS  PubMed  Google Scholar 

  88. Bains SK, Chapman K, Bright S, Senan A, Kadhim M, Slijepcevic P (2018) Effects of ionizing radiation on telomere length and telomerase activity in cultured human lens epithelium cells. Int J Radiat Biol 95(1):54–63

    PubMed  Google Scholar 

  89. Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M et al (2010) Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. J Immunol Methods 352(1–2):71–80

    CAS  PubMed  Google Scholar 

  90. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR et al (2019) The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science 364(6436):127–128

    Google Scholar 

  91. Ali M, Devkota S, Il RJ, Lee J, Lee HW (2016) Telomerase reverse transcriptase induces basal and amino acid starvation-induced autophagy through mTORC1. Biochem Biophys Res Commun 478(3):1198–1204

    CAS  PubMed  Google Scholar 

  92. Welsh J, Bevelacqua JJ, Keshavarz M, Mortazavi SAR, Mortazavi SMJ (2019) Is telomere length a biomarker of adaptive response? Controversial findings of NASA and residents of high background radiation areas. J Biomed Phys Eng. 9(3):381

    Google Scholar 

  93. Sonnenfeld G, Shearer WT (2002) Immune function during space flight. Nutrition 18(10):899–903

    CAS  PubMed  Google Scholar 

  94. Crucian B, Sams C (2009) Immune system dysregulation during spaceflight: clinical risk for exploration-class missions. J Leukoc Biol 86(5):1017–1018

    CAS  PubMed  Google Scholar 

  95. Guéguinou N, Huin-Schohn C, Bascove M, Bueb J-L, Tschirhart E, Legrand-Frossi C et al (2009) Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J Leukoc Biol 86(5):1027–1038

    PubMed  Google Scholar 

  96. Kennedy AR (2014) Biological effects of space radiation and development of effective countermeasures. Life Sci Space Res 1:10–43

    Google Scholar 

  97. Gambara G, Salanova M, Ciciliot S, Furlan S, Gutsmann M, Schiffl G et al (2017) Microgravity-induced transcriptome adaptation in mouse paraspinal longissimus dorsi muscle highlights insulin resistance-linked genes. Front Physiol 8(MAY):279

    PubMed  PubMed Central  Google Scholar 

  98. Lee SJ, Lehar A, Meir JU, Koch C, Morgan A, Warren LE et al (2020) Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight. Proc Natl Acad Sci USA 117(38):23942–23951

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Okada R, Fujita S, Suzuki R, Hayashi T, Tsubouchi H, Kato C et al (2021) Transcriptome analysis of gravitational effects on mouse skeletal muscles under microgravity and artificial 1 g onboard environment. Sci Rep 11(1):9168

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pavel M, Renna M, Park SJ, Menzies FM, Ricketts T, Füllgrabe J et al (2018) Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat Commun 9(1):1–18

    CAS  Google Scholar 

  102. Hughson RL, Helm A, Durante M (2018) Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol 15:167–180

    PubMed  Google Scholar 

  103. Rufini A, Tucci P, Celardo I, Melino G (2013) Senescence and aging: The critical roles of p53. Oncogene 32:5129–5143

    CAS  PubMed  Google Scholar 

  104. Locatelli L, Cazzaniga A, De Palma C, Castiglioni S, Maier JAM (2020) Mitophagy contributes to endothelial adaptation to simulated microgravity. FASEB J 34(1):1833–1845

    CAS  PubMed  Google Scholar 

  105. Macis M, Lugli F, Zerbetto F (2017) Modeling living cells response to surface tension and chemical patterns. ACS Appl Mater Interfaces 9(23):19552–19561

    CAS  PubMed  Google Scholar 

  106. Zhou EH, Martinez FD, Fredberg JJ (2013) Cell rheology: mush rather than machine. Nat Mater 12(3):184–185

    CAS  PubMed  Google Scholar 

  107. Uva BM, Masini MA, Sturla M, Bruzzone F, Giuliani M, Tagliafierro G et al (2002) Microgravity-induced apoptosis in cultured glial cells. Eur J Histochem 46(3):209–214

    CAS  PubMed  Google Scholar 

  108. Higashibata A, Imamizo-Sato M, Seki M, Yamazaki T, Ishioka N (2006) Influence of simulated microgravity on the activation of the small GTPase Rho involved in cytoskeletal formation—Molecular cloning and sequencing of bovine leukemia-associated guanine nucleotide exchange factor. BMC Biochem 28:7

    Google Scholar 

  109. Louis F, Deroanne C, Nusgens B, Vico L, Guignandon A (2015) RhoGTPases as key players in mammalian cell adaptation to microgravity. Biomed Res Int 747693

  110. Tabony J, Glade N, Papaseit C, Demongeot J (2002) Microtubule Self-organisation and its gravity dependence. Adv Space Biol Med 8:19–58

    CAS  PubMed  Google Scholar 

  111. Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32(8):1585–1593

    CAS  PubMed  Google Scholar 

  112. Rösner H, Wassermann T, Möller W, Hanke W (2006) Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma 229(2–4):225–234

    PubMed  Google Scholar 

  113. Janmaleki M, Pachenari M, Seyedpour SM, Shahghadami R, Sanati-Nezhad A (2016) Impact of simulated microgravity on cytoskeleton and viscoelastic properties of endothelial cell. Sci Rep 1:6

    Google Scholar 

  114. Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12(11):1007–1018

    CAS  PubMed  Google Scholar 

  115. Yatagai F, Honma M, Dohmae N, Ishioka N (2019) Biological effects of space environmental factors: a possible interaction between space radiation and microgravity. Life Sci Space Res 20:113–123

    Google Scholar 

Download references

Acknowledgements

All space biology experiments are supported by complex logistics and require by definition a large range of interventions. The authors wish to acknowledge the contribution of several professionals whose roles were critical for completing this work: Valfredo Zolesi, Alessandro Donati, Aleandro Norfini, Michele Balsamo (Kayser Italia, srl, Livorno, Italy); Jason Hatton, Jutta Krause, Paolo Provasi, Andrea Koheler, Pierfilippo Manieri, Sergio Mugnai (ESA); Sara Piccirillo, Gabriele Mascetti (ASI); Andreas Mogensen (Astronaut Corps, ESA) and Kimiya Yui (Astronaut Corps, Jaxa), Paolo Nespoli (Astronaut Corps, ESA, Ret.); Raimondo Fortezza (Telespazio, Napoli, Italy); Fabienne Wyss, Jeannine Winkler, Bernd Rattenbacher (USOC Hergiswil, CH); Alexander Sverev and all his team of PAO RCS Energia (Russia); Rosa Sapone, Paolo Cergna (Altech spa, Torino, Italy); Thomas Berger (DLR); Sonke Burmeister (CAU); Lucia Giorgetti (IBBA CNR, Pisa, Italy); Edoardo Bertolini (Scuola Superiore Sant’Anna, Pisa, Italy); Daniele Panetta (IFC CNR, Pisa, Italy); Gianni Ciofani, Attilio Marino (IIT, Pontedera, Italy); Gianni Costa (Pierburg Italy); Benedetto Grimaldi (IIT, Genova); Jonny Martini (DHL); Mr. and Mrs. Vittorio E. Angeloni. Last but not least, Riccardo M. Andreazzoli and Matteo and Giulia Meccheri for their cheerful comprehension and forbearance.

Funding

The study was supported by European Space Agency (ESA ILSRA-2009-1026), Agenzia Spaziale Italiana (contract number 5681).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and overall supervision: DA; methodology: DA, IB, MF, SB, JMB; investigation and validation, data collection, image and statistical analysis: IB, CDC, OVP, MF, SB, JMB, HAF, FS, AB, MA, GS; writing—original draft preparation: DA, IB; writing editing: MF, SB, JMB, GS; project administration: DA; funding acquisition: DA, MA, MEP. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Debora Angeloni.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The manuscript has been approved by all co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2021_4025_MOESM1_ESM.docx

Supplementary file 1 Supplementary Table 1 List of antibodies used for IF, with indication of biological source, commercial provider and dilution used (DOCX 14 KB)

18_2021_4025_MOESM2_ESM.tif

Supplementary file 2 Supplementary Fig. 1 Schematic representation of the ENDO EU. A Mission patch of the ENDO study, supported by ESA and ASI. B 3D rendering of the microincubator (Kayser Italia, Livorno, Italy). Reservoirs containing cell culture media is in red, fixative in green, washing solution in grey. The cell culture support is in red on the incubator proximal side. Further details are in [21–23]. C Launch of Soyuz TMA-18M (manned Mission 44S) from Baikonur Cosmodrome (Kazahstan), at 4:37 GMT, September 2nd 2015. D ESA thermal case Yellow Box, used for maintaining samples while traveling after landing from retrieval site to the PI home laboratory (TIF 114298 KB)

18_2021_4025_MOESM3_ESM.tif

Supplementary file 3 Supplementary Fig. 2 Results of IF preparatory work. HMEC-1 cells were variously stimulated on ground to activate autophagy (AE) and DNA damage response mechanisms (FK): culture in serum-free medium (Starvation: 48 h); exposure to oxygen reactive species (50 mM H2O2, 1.5 h prior to fixing); DNA synthesis inhibition (10mM Hydroxyurea, HDU); induction of double strand breaks (exposure to 1 Gray X-rays). LN labeling with chromosome markers 1, 10 and 17 in ground samples. For each experimental group, three independent operators counted at least 60 cells (six cells per at least ten fields). All tests were repeated at least three times (TIF 104213 KB)

18_2021_4025_MOESM4_ESM.tif

Supplementary file 4 Supplementary Fig. 3 Nuclear and cell shape. Shape descriptors indicated absence of differences in terms of Circularity (A), Roundness (B) and Solidity (C) among the three experimental groups. Statistical analysis was performed with One way ANOVA and Bonferroni multiple comparison post-hoc tests (TIF 90558 KB)

18_2021_4025_MOESM5_ESM.tif

Supplementary file 5 Supplementary Fig. 4 PCA analysis. Unsupervised principal component analysis of the RNA-seq samples (TIF 36294 KB)

18_2021_4025_MOESM6_ESM.tif

Supplementary file6 Supplementary Fig. 5 Integration of genomics and transcriptomics data. Circular plots integrated the gene expression information with physical localization of genes differentially affected by SF (A), showing a different contribution of Microgravity (B) and Radiation (C). All chromosomes were  affected. Red and green bars indicate up- and down-regulated genes respectively (TIF 91434 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barravecchia, I., De Cesari, C., Forcato, M. et al. Microgravity and space radiation inhibit autophagy in human capillary endothelial cells, through either opposite or synergistic effects on specific molecular pathways. Cell. Mol. Life Sci. 79, 28 (2022). https://doi.org/10.1007/s00018-021-04025-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04025-z

Keywords

Navigation