Skip to main content
Log in

Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Multiple RNA pathways are required to produce functional sperm. Here, we review RNA post-transcriptional regulation during spermatogenesis with particular emphasis on the role of 3' end modifications. From early studies in the 1970s, it became clear that spermiogenesis transcripts could be stored for days only to be translated at advanced stages of spermatid differentiation. The transition between the translationally repressed and active states was observed to correlate with the shortening of the transcripts' poly(A) tail, establishing a link between RNA 3' end metabolism and male germ cell differentiation. Since then, numerous RNA metabolic pathways have been implicated not only in the progression through spermatogenesis, but also in the maintenance of genomic integrity. Recent studies have characterized the elusive 3' biogenesis of Piwi-interacting RNAs (piRNAs), identified a critical role for messenger RNA (mRNA) 3' uridylation in meiotic progression, established the mechanisms that destabilize transcripts with long 3' untranslated regions (3'UTRs) in post-mitotic cells, and defined the physiological relevance of RNA exonucleases and deadenylases in male germ cells. In this review, we discuss RNA processing in the male germline in the light of the most recent findings. A brief recollection of different RNA-processing events will aid future studies exploring post-transcriptional regulation in spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Saitou M, Yamaji M (2010) Germ cell specification in mice: Signaling, transcription regulation, and epigenetic consequences. Reproduction 139:931–942. https://doi.org/10.1530/REP-10-0043

    Article  CAS  PubMed  Google Scholar 

  2. Meistrich ML, Mohapatra B, Shirley CR, Zhao M (2003) Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111:483–488. https://doi.org/10.1007/s00412-002-0227-z

    Article  PubMed  Google Scholar 

  3. Lee J, Inoue K, Ono R et al (2002) Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129:1807–1817. https://doi.org/10.1242/dev.129.8.1807

    Article  CAS  PubMed  Google Scholar 

  4. Lane N, Dean W, Erhardt S et al (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93. https://doi.org/10.1002/gene.10168

    Article  CAS  PubMed  Google Scholar 

  5. Monesi V (1964) Ribonucleic acid synthesis during mitosis and meiosis in the mouse testis. J Cell Biol 22:521–532. https://doi.org/10.1083/JCB.22.3.521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paronetto MP, Messina V, Barchi M et al (2011) Sam68 marks the transcriptionally active stages of spermatogenesis and modulates alternative splicing in male germ cells. Nucleic Acids Res 39:4961–4974. https://doi.org/10.1093/nar/gkr085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hyde SJ, Eckenroth BE, Smith BA et al (2010) TRNAHis guanylyltransferase (THG1), a unique 3’–5’ nucleotidyl transferase, shares unexpected structural homology with canonical 5’-3’ DNA polymerases. Proc Natl Acad Sci USA 107:20305–20310. https://doi.org/10.1073/pnas.1010436107

    Article  PubMed  PubMed Central  Google Scholar 

  8. Trippe R, Guschina E, Hossbach M et al (2006) Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA 12:1494–1504. https://doi.org/10.1261/rna.87706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Edmonds M, Vaughan MH, Nakazato H (1971) Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA of HeLa cells: possible evidence for a precursor relationship. Proc Natl Acad Sci USA 68:1336–1340. https://doi.org/10.1073/pnas.68.6.1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Darnell JE, Wall R, Tushinski RJ (1971) An adenylic acid-rich sequence in messenger RNA of HeLa cells and its possible relationship to reiterated sites in DNA. Proc Natl Acad Sci USA 68:1321–1325. https://doi.org/10.1073/pnas.68.6.1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee SY, Mendecki J, Brawerman G (1971) A polynucleotide segment rich in adenylic acid in the rapidly-labeled polyribosomal RNA component of mouse sarcoma 180 ascites cells. Proc Natl Acad Sci USA 68:1331–1335. https://doi.org/10.1073/pnas.68.6.1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deutscher MP (1982) 7 tRNA Nucleotidyltransferase. Enzymes 15:183–215. https://doi.org/10.1016/S1874-6047(08)60279-6

    Article  CAS  Google Scholar 

  13. Soumillon M, Necsulea A, Weier M et al (2013) Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 3:2179–2190. https://doi.org/10.1016/j.celrep.2013.05.031

    Article  CAS  PubMed  Google Scholar 

  14. Shi Y, Di Giammartino DC, Taylor D et al (2009) Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33:365–376. https://doi.org/10.1016/j.molcel.2008.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang X, Yan C, Zhan X et al (2018) Structure of the human activated spliceosome in three conformational states. Cell Res 28:307–322. https://doi.org/10.1038/cr.2018.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nguyen TA, Jo MH, Choi YG et al (2015) Functional anatomy of the human microprocessor. Cell 161:1374–1387. https://doi.org/10.1016/j.cell.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  17. Weick EM, Puno MR, Januszyk K et al (2018) Helicase-dependent RNA decay illuminated by a Cryo-EM structure of a human nuclear RNA exosome-MTR4 complex. Cell 173:1663-1677.e21. https://doi.org/10.1016/j.cell.2018.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Subtelny AO, Eichhorn SW, Chen GR et al (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508:66–71. https://doi.org/10.1038/nature13007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim J, Lee M, Son A et al (2016) mTAIL-seq reveals dynamic poly (A) tail regulation in oocyte-to-embryo development. Genes Dev 30:1–12. https://doi.org/10.1101/gad.284802.116.3

    Article  Google Scholar 

  20. Liu Y, Nie H, Liu H, Lu F (2019) Poly(A) inclusive RNA isoform sequencing (PAIso−seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat Commun 10:5292. https://doi.org/10.1038/s41467-019-13228-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845. https://doi.org/10.1038/nrg3813

    Article  CAS  PubMed  Google Scholar 

  22. Ohinata Y, Payer B, O’Carroll D et al (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436:207–213. https://doi.org/10.1038/nature03813

    Article  CAS  PubMed  Google Scholar 

  23. Molyneaux K, Wylie C (2004) Primordial germ cell migration. Int J Dev Biol 48:537–544. https://doi.org/10.1387/ijdb.041833km

    Article  CAS  PubMed  Google Scholar 

  24. Seki Y, Hayashi K, Itoh K et al (2005) Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 278:440–458. https://doi.org/10.1016/j.ydbio.2004.11.025

    Article  CAS  PubMed  Google Scholar 

  25. Seisenberger S, Andrews S, Krueger F et al (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ Cells. Mol Cell 48:849–862. https://doi.org/10.1016/j.molcel.2012.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Youngren KK, Coveney D, Peng X et al (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435:360–364. https://doi.org/10.1038/nature03595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Noguchi T, Noguchi M (1985) A recessive mutation (ter) causing germ cell deficiency and a high incidence of congenital testicular teratomas in 129/Sv-ter mice. J Natl Cancer Inst 75:385–392. https://doi.org/10.1093/jnci/75.2.385

    Article  CAS  PubMed  Google Scholar 

  28. Ruthig VA, Yokonishi T, Friedersdorf MB et al (2021) A transgenic DND1GFPfusion allele reports in vivo expression and RNA-binding targets in undifferentiated mouse germ cells. Biol Reprod 104:861–874. https://doi.org/10.1093/biolre/ioaa233

    Article  PubMed  Google Scholar 

  29. Ruthig VA, Friedersdorf MB, Garness JA et al (2019) The RNA-binding protein DND1 acts sequentially as a negative regulator of pluripotency and a positive regulator of epigenetic modifiers required for germ cell reprogramming. Development 146:dev175950. https://doi.org/10.1242/dev.175950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamaji M, Jishage M, Meyer C et al (2017) DND1 maintains germline stem cells via recruitment of the CCR4-NOT complex to target mRNAs. Nature 543:568–572. https://doi.org/10.1038/nature21690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruggiu M, Speed R, Taggart M et al (1997) The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389:73–77. https://doi.org/10.1038/37987

    Article  CAS  PubMed  Google Scholar 

  32. Lin Y, Page DC (2005) Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice. Dev Biol 288:309–316. https://doi.org/10.1016/j.ydbio.2005.06.032

    Article  CAS  PubMed  Google Scholar 

  33. Chen H-H, Welling M, Bloch DB et al (2014) DAZL limits pluripotency, differentiation, and apoptosis in developing primordial germ cells. Stem Cell Rep 3:892–904. https://doi.org/10.1016/j.stemcr.2014.09.003

    Article  CAS  Google Scholar 

  34. Niimi Y, Imai A, Nishimura H et al (2019) Essential role of mouse dead end1 in the maintenance of spermatogonia. Dev Biol 445:103–112. https://doi.org/10.1016/j.ydbio.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  35. Mikedis MM, Fan Y, Nicholls PK et al (2020) Dazl mediates a broad translational program regulating expansion and differentiation of spermatogonial progenitors. Elife 9:1–96. https://doi.org/10.7554/eLife.56523

    Article  Google Scholar 

  36. Li H, Liang Z, Yang J et al (2019) DAZL is a master translational regulator of murine spermatogenesis. Natl Sci Rev 6:455–468. https://doi.org/10.1093/nsr/nwy163

    Article  CAS  PubMed  Google Scholar 

  37. Zagore LL, Sweet TJ, Hannigan MM et al (2018) DAZL regulates germ cell survival through a network of polyA-proximal mRNA interactions. Cell Rep 25:1225-1240.e6. https://doi.org/10.1016/j.celrep.2018.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Collier B, Gorgoni B, Loveridge C et al (2005) The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells. EMBO J 24:2656–2666. https://doi.org/10.1038/sj.emboj.7600738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kedde M, Strasser MJ, Boldajipour B et al (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286. https://doi.org/10.1016/j.cell.2007.11.034

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki A, Niimi Y, Shinmyozu K et al (2016) Dead end1 is an essential partner of NANOS 2 for selective binding of target RNA s in male germ cell development. EMBO Rep 17:37–46. https://doi.org/10.15252/embr.201540828

    Article  CAS  PubMed  Google Scholar 

  41. Tsuda M, Sasaoka Y, Kiso M et al (2003) Conserved role of nanos proteins in germ cell development. Science (80-) 301:1239–1241. https://doi.org/10.1126/science.1085222

    Article  CAS  Google Scholar 

  42. Suzuki A, Tsuda M, Saga Y (2007) Functional redundancy among Nanos proteins and a distinct role of Nanos2 during male germ cell development. Development 134:77–83. https://doi.org/10.1242/dev.02697

    Article  CAS  PubMed  Google Scholar 

  43. Lin Y-T, Capel B (2015) Cell fate commitment during mammalian sex determination. Curr Opin Genet Dev 32:144–152. https://doi.org/10.1016/J.GDE.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barrios F, Filipponi D, Pellegrini M et al (2010) Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci 123:871–880. https://doi.org/10.1242/jcs.057968

    Article  CAS  PubMed  Google Scholar 

  45. Bowles J, Feng CW, Spiller C et al (2010) FGF9 suppresses meiosis and promotes male germ cell fate in mice. Dev Cell 19:440–449. https://doi.org/10.1016/j.devcel.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki A, Saga Y (2008) Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev 22:430–435. https://doi.org/10.1101/gad.1612708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saba R, Kato Y, Saga Y (2014) NANOS2 promotes male germ cell development independent of meiosis suppression. Dev Biol 385:32–40. https://doi.org/10.1016/J.YDBIO.2013.10.018

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki A, Saba R, Miyoshi K et al (2012) Interaction between NANOS2 and the CCR4-NOT deadenylation complex is essential for male germ cell development in mouse. PLoS One 7:33558. https://doi.org/10.1371/journal.pone.0033558

    Article  CAS  Google Scholar 

  49. Codino A, Turowski T, van de Lagemaat LN et al (2021) NANOS2 is a sequence-specific mRNA-binding protein that promotes transcript degradation in spermatogonial stem cells. iScience 24:102762. https://doi.org/10.1016/j.isci.2021.102762

    Article  PubMed  PubMed Central  Google Scholar 

  50. Suzuki A, Igarashi K, Aisaki KI et al (2010) NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc Natl Acad Sci U S A 107:3594–3599. https://doi.org/10.1073/pnas.0908664107

    Article  PubMed  PubMed Central  Google Scholar 

  51. Luo Y, Na Z, Slavoff SA (2018) P-bodies: composition, properties, and functions. Biochemistry 57:2424–2431. https://doi.org/10.1021/acs.biochem.7b01162

    Article  CAS  PubMed  Google Scholar 

  52. Li RM, Zhang MN, Tang QY, Song MG (2020) Global deletion of the RNA decapping enzyme Dcp2 postnatally in male mice results in infertility. Biochem Biophys Res Commun 526:512–518. https://doi.org/10.1016/j.bbrc.2020.03.101

    Article  CAS  PubMed  Google Scholar 

  53. Goldstrohm AC, Wickens M (2008) Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 9:337–344. https://doi.org/10.1038/nrm2370

    Article  CAS  PubMed  Google Scholar 

  54. Lau NC, Kolkman A, van Schaik FMA et al (2009) Human Ccr4-Not complexes contain variable deadenylase subunits. Biochem J 422:443–453. https://doi.org/10.1042/BJ20090500

    Article  CAS  PubMed  Google Scholar 

  55. Mostafa D, Takahashi A, Yanagiya A et al (2020) Essential functions of the CNOT7/8 catalytic subunits of the CCR4-NOT complex in mRNA regulation and cell viability. RNA Biol 17:403–416. https://doi.org/10.1080/15476286.2019.1709747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakamura T, Yao R, Ogawa T et al (2004) Oligo-astheno-teratozoospermia in mice lacking Cnot7, a regulator of retinoid X receptor beta. Nat Genet 36:528–533. https://doi.org/10.1038/ng1344

    Article  CAS  PubMed  Google Scholar 

  57. Berthet C, Morera A-M, Asensio M-J et al (2004) CCR4-Associated Factor CAF1 is an essential factor for spermatogenesis. Mol Cell Biol 24:5808–5820. https://doi.org/10.1128/mcb.24.13.5808-5820.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sha Q, Yu J, Guo J et al (2018) CNOT 6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J. https://doi.org/10.15252/embj.201899333

    Article  PubMed  PubMed Central  Google Scholar 

  59. Eliseeva IA, Lyabin DN, Ovchinnikov LP (2013) Poly(A)-binding proteins: structure, domain organization, and activity regulation. Biochem 78:1377–1391. https://doi.org/10.1134/S0006297913130014

    Article  CAS  Google Scholar 

  60. Baer BW, Kornberg RD (1983) The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J Cell Biol 96:717–721. https://doi.org/10.1083/jcb.96.3.717

    Article  CAS  PubMed  Google Scholar 

  61. Łabno A, Tomecki R, Dziembowski A (2016) Cytoplasmic RNA decay pathways—enzymes and mechanisms. Biochim Biophys Acta Mol Cell Res 1863:3125–3147. https://doi.org/10.1016/j.bbamcr.2016.09.023

    Article  CAS  Google Scholar 

  62. Schuller JM, Falk S, Fromm L et al (2018) Structure of the nuclear exosome captured on a maturing preribosome. Science (80-) 360:219–222. https://doi.org/10.1126/science.aar5428

    Article  CAS  Google Scholar 

  63. Staals RHJ, Bronkhorst AW, Schilders G et al (2010) Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J 29:2358–2367. https://doi.org/10.1038/emboj.2010.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tomecki R, Kristiansen MS, Lykke-Andersen S et al (2010) The human core exosome interacts with differentially localized processive RNases: HDIS3 and hDIS3L. EMBO J 29:2342–2357. https://doi.org/10.1038/emboj.2010.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jamin SP, Petit FG, Kervarrec C et al (2017) EXOSC10/Rrp6 is post-translationally regulated in Male germ cells and controls the onset of spermatogenesis. Sci Rep 7:1–15. https://doi.org/10.1038/s41598-017-14643-y

    Article  CAS  Google Scholar 

  66. Hunter RW, Liu Y, Manjunath H et al (2018) Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in upregulation of Igf2 in nephron progenitor cells. Genes Dev 32:903–908. https://doi.org/10.1101/gad.315804.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Astuti D, Morris MR, Cooper WN et al (2012) Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat Genet 44:277–284. https://doi.org/10.1038/ng.1071

    Article  CAS  PubMed  Google Scholar 

  68. Lubas M, Damgaard CK, Tomecki R et al (2013) Exonuclease hDIS3L2 specifies an exosome-independent 3’–5’ degradation pathway of human cytoplasmic mRNA. EMBO J 32:1855–1868. https://doi.org/10.1038/emboj.2013.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lim J, Ha M, Chang H et al (2014) Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159:1365–1376. https://doi.org/10.1016/j.cell.2014.10.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Malecki M, Viegas SC, Carneiro T et al (2013) The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J 32:1842–1854. https://doi.org/10.1038/emboj.2013.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oakberg EF (1956) Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 99:507–516. https://doi.org/10.1002/aja.1000990307

    Article  CAS  PubMed  Google Scholar 

  72. Li XZ, Roy CK, Dong X et al (2013) An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell 50:67–81. https://doi.org/10.1016/j.molcel.2013.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bolcun-Filas E, Bannister LA, Barash A et al (2011) A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Development 138:3319–3330. https://doi.org/10.1242/dev.067645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Anderson EL, Baltus AE, Roepers-Gajadien HL et al (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci 105:14976–14980. https://doi.org/10.1073/PNAS.0807297105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baltus AE, Menke DB, Hu Y-C et al (2006) In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 3812(38):1430–1434. https://doi.org/10.1038/ng1919

    Article  CAS  Google Scholar 

  76. Koubova J, Menke DB, Zhou Q et al (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci 103:2474–2479. https://doi.org/10.1073/PNAS.0510813103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bowles J, Knight D, Smith C et al (2006) Retinoid signaling determines germ cell fate in mice. Science (80-) 312:596–600. https://doi.org/10.1126/SCIENCE.1125691

    Article  CAS  Google Scholar 

  78. Abby E, Tourpin S, Ribeiro J et al (2016) Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts. Nat Commun 7:1–16. https://doi.org/10.1038/ncomms10324

    Article  CAS  Google Scholar 

  79. Soh YQS, Mikedis MM, Kojima M et al (2017) Meioc maintains an extended meiotic prophase I in mice. PLoS Genet 13:e1006704. https://doi.org/10.1371/journal.pgen.1006704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987. https://doi.org/10.1016/S1097-2765(00)00097-6

    Article  CAS  PubMed  Google Scholar 

  81. Wojtas MN, Pandey RR, Mendel M et al (2017) Regulation of m6A transcripts by the 3ʹ→5ʹ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol Cell 68:374-387.e12. https://doi.org/10.1016/j.molcel.2017.09.021

    Article  CAS  PubMed  Google Scholar 

  82. Hsu PJ, Zhu Y, Ma H et al (2017) Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27:1115–1127. https://doi.org/10.1038/cr.2017.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kretschmer J, Rao H, Hackert P et al (2018) The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1. RNA 24:1339–1350. https://doi.org/10.1261/rna.064238.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bailey AS, Batista PJ, Gold RS et al (2017) The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. Elife 6:e26116. https://doi.org/10.7554/eLife.26116

    Article  PubMed  PubMed Central  Google Scholar 

  85. He PC, He C (2021) m6A RNA methylation: from mechanisms to therapeutic potential. EMBO J 40:e105977. https://doi.org/10.15252/EMBJ.2020105977

    Article  CAS  PubMed  Google Scholar 

  86. Jain D, Puno MR, Meydan C et al (2018) Ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. Elife 7:e30919. https://doi.org/10.7554/eLife.30919

    Article  PubMed  PubMed Central  Google Scholar 

  87. Smith BE, Braun RE (2012) Germ cell migration across sertoli cell tight junctions. Science (80-) 338:798–802. https://doi.org/10.1126/science.1219969

    Article  CAS  Google Scholar 

  88. Morgan M, Kabayama Y, Much C et al (2019) A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis. Cell Res 29:221–232. https://doi.org/10.1038/s41422-018-0128-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu D, Brockman JM, Dass B et al (2007) Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis. Nucl Acids Res 35:234–246. https://doi.org/10.1093/nar/gkl919

    Article  CAS  PubMed  Google Scholar 

  90. Wallace AM, Dass B, Ravnik SE et al (1999) Two distinct forms of the 64,000 Mr protein of the cleavage stimulation factor are expressed in mouse male germ cells. Proc Natl Acad Sci USA 96:6763–6768. https://doi.org/10.1073/pnas.96.12.6763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fanourgakis G, Lesche M, Akpinar M et al (2016) Chromatoid body protein TDRD6 supports long 3’ UTR triggered nonsense mediated mRNA decay. PLOS Genet 12:e1005857. https://doi.org/10.1371/journal.pgen.1005857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bao J, Vitting-Seerup K, Waage J et al (2016) UPF2-dependent Nonsense-Mediated mRNA decay pathway is essential for spermatogenesis by selectively eliminating longer 3’UTR transcripts. PLOS Genet 12:e1005863. https://doi.org/10.1371/journal.pgen.1005863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Proudfoot NJ (2011) Ending the message: poly (A) signals then and now. Genes Dev 25:1770–1782. https://doi.org/10.1101/gad.17268411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Keller W, Bienroth S, Lang KM, Christofori G (1991) Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3’ processing signal AAUAAA. EMBO J 10:4241–4249. https://doi.org/10.1002/j.1460-2075.1991.tb05002.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. MacDonald CC, Wilusz J, Shenk T (1994) The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 14:6647–6654. https://doi.org/10.1128/mcb.14.10.6647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Takagaki Y, Manley JL, MacDonald CC et al (1990) A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev 4:2112–2120. https://doi.org/10.1101/gad.4.12a.2112

    Article  CAS  PubMed  Google Scholar 

  97. Dass B, Tardif S, Park JY et al (2007) Loss of polyadenylation protein τCstF-64 causes spermatogenic defects and male infertility. Proc Natl Acad Sci 104:20374–20379. https://doi.org/10.1073/PNAS.0707589104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hogg JR, Goff SP (2010) Upf1 senses 3’UTR length to potentiate mRNA decay. Cell 143:379–389. https://doi.org/10.1016/j.cell.2010.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hosokawa M, Shoji M, Kitamura K et al (2007) Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: Domain composition, intracellular localization, and function in male germ cells in mice. Dev Biol 301:38–52. https://doi.org/10.1016/j.ydbio.2006.10.046

    Article  CAS  PubMed  Google Scholar 

  100. Vasileva A, Tiedau D, Firooznia A et al (2009) Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr Biol 19:630–639. https://doi.org/10.1016/j.cub.2009.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tang C, Klukovich R, Peng H et al (2017) ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. Proc Natl Acad Sci 115:E325–E333. https://doi.org/10.1073/pnas.1717794115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lin Z, Hsu PJ, Xing X et al (2017) Mettl3-/Mettl14-mediated mRNA N 6-methyladenosine modulates murine spermatogenesis. Cell Res 27:1216–1230. https://doi.org/10.1038/cr.2017.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu K, Yang Y, Feng G-H et al (2017) Mettl3-mediated m 6 A regulates spermatogonial differentia-tion and meiosis initiation. Cell Res 27:1100–1114. https://doi.org/10.1038/cr.2017.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zheng G, Dahl JA, Niu Y et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29. https://doi.org/10.1016/j.molcel.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  105. Tang C, Xie Y, Yu T et al (2020) m6A-dependent biogenesis of circular RNAs in male germ cells. Cell Res 30:211–228. https://doi.org/10.1038/s41422-020-0279-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene sry in adult mouse testis. Cell 73:1019–1030. https://doi.org/10.1016/0092-8674(93)90279-Y

    Article  CAS  PubMed  Google Scholar 

  107. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  108. Oliva R, Dixon GH (1991) Vertebrate protamine genes and the Histone-to-Protamine replacement reaction. Prog Nucleic Acid Res Mol Biol 40:25–94. https://doi.org/10.1016/S0079-6603(08)60839-9

    Article  CAS  PubMed  Google Scholar 

  109. Iatrou K, Dixon GH (1977) The distribution of poly(A)+ and poly(A)− protamine messenger RNA sequences in the developing trout testis. Cell 10:433–441. https://doi.org/10.1016/0092-8674(77)90030-7

    Article  CAS  PubMed  Google Scholar 

  110. Kleene KC, Distel RJ, Hecht NB (1984) Translational regulation and deadenylation of a protamine mRNA during spermiogenesis in the mouse. Dev Biol 105:71–79. https://doi.org/10.1016/0012-1606(84)90262-8

    Article  CAS  PubMed  Google Scholar 

  111. Kleene KC (1989) Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse. Development 106:367–373. https://doi.org/10.1242/dev.106.2.367

    Article  CAS  PubMed  Google Scholar 

  112. Braun RE, Peschon JJ, Behringer RR et al (1989) Protamine 3’-untranslated sequences regulate temporal translational control and subcellular localization of growth hormone in spermatids of transgenic mice. Genes Dev 3:793–802. https://doi.org/10.1101/gad.3.6.793

    Article  CAS  PubMed  Google Scholar 

  113. Zhong J, Peters AHFM, Kafer K, Braun RE (2001) A highly conserved sequence essential for translational repression of the Protamine 1 messenger RNA in murine spermatids. Biol Reprod 64:1784–1789. https://doi.org/10.1095/biolreprod64.6.1784

    Article  CAS  PubMed  Google Scholar 

  114. Bagarova J, Chowdhury TA, Kimura M, Kleene KC (2010) Identification of elements in the Smcp 5′ and 3′ UTR that repress translation and promote the formation of heavy inactive mRNPs in spermatids by analysis of mutations in transgenic mice. Reproduction 140:853–864. https://doi.org/10.1530/REP-10-0323

    Article  CAS  PubMed  Google Scholar 

  115. Kleene KC (2016) Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay. Mol Reprod Dev 83:190–207. https://doi.org/10.1002/mrd.22616

    Article  CAS  PubMed  Google Scholar 

  116. Yang J, Medvedev S, Yu J et al (2005) Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc Natl Acad Sci USA 102:5755–5760. https://doi.org/10.1073/pnas.0408718102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cullinane DL, Chowdhury TA, Kleene KC (2015) Mechanisms of translational repression of the Smcp mRNA in round spermatids. Reproduction 149:43–54. https://doi.org/10.1530/REP-14-0394

    Article  CAS  PubMed  Google Scholar 

  118. Gou LT, Dai P, Yang JH et al (2014) Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 24:680–700. https://doi.org/10.1038/cr.2014.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu P-H, Fu Y, Cecchini K et al (2020) The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat Genet 527(52):728–739. https://doi.org/10.1038/s41588-020-0657-7

    Article  CAS  Google Scholar 

  120. Zhang P, Kang J-Y, Gou L-T et al (2015) MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res 25:193–207. https://doi.org/10.1038/cr.2015.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goh WSS, Falciatori I, Tam OH et al (2015) PiRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev 29:1032–1044. https://doi.org/10.1101/gad.260455.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dai P, Wang X, Gou LT et al (2019) A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell 179:1566-1581.e16. https://doi.org/10.1016/j.cell.2019.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kashiwabara SI, Zhuang T, Yamagata K et al (2000) Identification of a novel isoform of poly(A) polymerase, TPAP, specifically present in the cytoplasm of spermatogenic cells. Dev Biol 228:106–115. https://doi.org/10.1006/dbio.2000.9894

    Article  CAS  PubMed  Google Scholar 

  124. Kashiwabara S, Noguchi J, Zhuang T et al (2002) Regulation of spermatogenesis by testis-specific, cytoplasmic poly(A) polymerase TPAP. Science (80-) 298:1999–2002. https://doi.org/10.1126/science.1074632

    Article  CAS  Google Scholar 

  125. Barnard DC, Ryan K, Manley JL, Richter JD (2004) Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119:641–651. https://doi.org/10.1016/j.cell.2004.10.029

    Article  CAS  PubMed  Google Scholar 

  126. Nakanishi T, Kumagai S, Kimura M et al (2007) Disruption of mouse poly(A) polymerase mGLD-2 does not alter polyadenylation status in oocytes and somatic cells. Biochem Biophys Res Commun 364:14–19. https://doi.org/10.1016/j.bbrc.2007.09.096

    Article  CAS  PubMed  Google Scholar 

  127. Zheng C, Ouyang Y-C, Jiang B et al (2019) Non-canonical RNA polyadenylation polymerase FAM46C is essential for fastening sperm head and flagellum in mice. Biol Reprod 100:1673–1685. https://doi.org/10.1093/biolre/ioz083

    Article  PubMed  Google Scholar 

  128. Morgan M, Much C, DiGiacomo M et al (2017) mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 548:347–351. https://doi.org/10.1038/nature23318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim VN (2006) Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev 20:1993–1997. https://doi.org/10.1101/gad.1456106

    Article  CAS  PubMed  Google Scholar 

  130. Aravin AA, Sachidanandam R, Girard A et al (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science (80-) 316:744–747. https://doi.org/10.1126/science.1142612

    Article  CAS  Google Scholar 

  131. Lau NC, Seto AG, Kim J et al (2006) Characterization of the piRNA complex from rat testes. Science (80-) 313:363–367. https://doi.org/10.1126/science.1130164

    Article  CAS  Google Scholar 

  132. Aravin AA, Sachidanandam R, Bourc’his D et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–99. https://doi.org/10.1016/j.molcel.2008.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kuramochi-Miyagawa S, Watanabe T, Gotoh K et al (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22:908–917. https://doi.org/10.1101/gad.1640708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830. https://doi.org/10.1016/S1534-5807(02)00165-X

    Article  CAS  PubMed  Google Scholar 

  135. Carmell MA, Girard A, van de Kant HJG et al (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514. https://doi.org/10.1016/J.DEVCEL.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  136. Kuramochi-Miyagawa S, Kimura T, Ijiri TW et al (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131:839–849. https://doi.org/10.1242/dev.00973

    Article  CAS  PubMed  Google Scholar 

  137. De Fazio S, Bartonicek N, Di Giacomo M et al (2011) The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480:259–263. https://doi.org/10.1038/nature10547

    Article  CAS  PubMed  Google Scholar 

  138. Watanabe T, Cui X, Yuan Z et al (2018) MIWI 2 targets RNAs transcribed from pi RNA -dependent regions to drive DNA methylation in mouse prospermatogonia. EMBO J 37:e95329. https://doi.org/10.15252/embj.201695329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Reuter M, Berninger P, Chuma S et al (2011) Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480:264–267. https://doi.org/10.1038/nature10672

    Article  CAS  PubMed  Google Scholar 

  140. Di Giacomo M, Comazzetto S, Saini H et al (2013) Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell 50:601–608. https://doi.org/10.1016/j.molcel.2013.04.026

    Article  CAS  PubMed  Google Scholar 

  141. Watanabe T, Chuma S, Yamamoto Y et al (2011) MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev Cell 20:364–375. https://doi.org/10.1016/j.devcel.2011.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Huang H, Gao Q, Peng X et al (2011) PiRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20:376–387. https://doi.org/10.1016/j.devcel.2011.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ipsaro JJ, Haase AD, Knott SR et al (2012) The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491:279–282. https://doi.org/10.1038/nature11502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang W, Yoshikawa M, Han BW et al (2014) The initial uridine of primary piRNAs does not create the tenth adenine that is the hallmark of secondary piRNAs. Mol Cell 56:708–716. https://doi.org/10.1016/j.molcel.2014.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sun YH, Zhu J, Xie LH et al (2020) Ribosomes guide pachytene piRNA formation on long intergenic piRNA precursors. Nat Cell Biol 22:200–212. https://doi.org/10.1038/s41556-019-0457-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Robine N, Lau NC, Balla S et al (2009) A broadly conserved pathway generates 3′UTR-directed primary piRNAs. Curr Biol 19:2066–2076. https://doi.org/10.1016/j.cub.2009.11.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yabuta Y, Ohta H, Abe T et al (2011) TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice. J Cell Biol 192:781–795. https://doi.org/10.1083/jcb.201009043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ding D, Liu J, Midic U et al (2018) TDRD5 binds piRNA precursors and selectively enhances pachytene piRNA processing in mice. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-017-02622-w

    Article  CAS  Google Scholar 

  149. Zheng K, Wang PJ (2012) Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet 8:e1003038. https://doi.org/10.1371/journal.pgen.1003038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zheng K, Xiol J, Reuter M et al (2010) Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc Natl Acad Sci USA 107:11841–11846. https://doi.org/10.1073/pnas.1003953107

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zhang Y, Guo R, Cui Y et al (2017) An essential role for PNLDC1 in piRNA 3′ end trimming and male fertility in mice. Cell Res 27:1392–1396. https://doi.org/10.1038/cr.2017.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ding D, Liu J, Dong K et al (2017) PNLDC1 is essential for piRNA 3′ end trimming and transposon silencing during spermatogenesis in mice. Nat Commun 8:819. https://doi.org/10.1038/s41467-017-00854-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nishimura T, Nagamori I, Nakatani T et al (2018) PNLDC 1, mouse pre-pi RNA Trimmer, is required for meiotic and post-meiotic male germ cell development. EMBO Rep 19:e44957. https://doi.org/10.15252/embr.201744957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Izumi N, Shoji K, Sakaguchi Y et al (2016) Identification and functional analysis of the pre-piRNA 3′ trimmer in silkworms. Cell 164:962–973. https://doi.org/10.1016/j.cell.2016.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lim SL, Qu ZP, Kortschak RD et al (2015) HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet 11:e1005620. https://doi.org/10.1371/journal.pgen.1005620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Payer LM, Burns KH (2019) Transposable elements in human genetic disease. Nat Rev Genet 20:760–772. https://doi.org/10.1038/s41576-019-0165-8

    Article  CAS  PubMed  Google Scholar 

  157. Beck CR, Luis Garcia-Perez J, Badge RM (2011) Moran J V (2011) LINE-1 elements in structural variation and disease. Annu Rev Genom Hum Genet 12:187–215. https://doi.org/10.1146/annurev-genom-082509-141802

    Article  CAS  Google Scholar 

  158. Flemr M, Malik R, Franke V et al (2013) A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155:807–816. https://doi.org/10.1016/j.cell.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  159. Watanabe T, Totoki Y, Toyoda A et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543. https://doi.org/10.1038/nature06908

    Article  CAS  PubMed  Google Scholar 

  160. Song R, Hennig GW, Wu Q et al (2011) Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci USA 108:13159–13164. https://doi.org/10.1073/pnas.1108567108

    Article  PubMed  PubMed Central  Google Scholar 

  161. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. https://doi.org/10.1038/35053110

    Article  CAS  PubMed  Google Scholar 

  162. Soifer HS, Sano M, Sakurai K et al (2008) A role for the Dicer helicase domain in the processing of thermodynamically unstable hairpin RNAs. Nucl Acids Res 36:6511–6522. https://doi.org/10.1093/nar/gkn687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441. https://doi.org/10.1126/science.1102513

    Article  CAS  PubMed  Google Scholar 

  164. Stein P, Rozhkov NV, Li F et al (2015) Essential role for endogenous siRNAs during meiosis in mouse oocytes. PLOS Genet 11:e1005013. https://doi.org/10.1371/journal.pgen.1005013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lim AK, Lorthongpanich C, Chew TG et al (2013) The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Development 140:3819–3825. https://doi.org/10.1242/dev.099184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kabayama Y, Toh H, Katanaya A et al (2017) Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucl Acids Res 45:5387–5398. https://doi.org/10.1093/nar/gkx027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Suh N, Baehner L, Moltzahn F et al (2010) MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20:271–277. https://doi.org/10.1016/j.cub.2009.12.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ma J, Flemr M, Stein P et al (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20:265–270. https://doi.org/10.1016/j.cub.2009.12.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Korhonen HM, Meikar O, Yadav RP et al (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS One 6:e24821. https://doi.org/10.1371/journal.pone.0024821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zimmermann C, Romero Y, Warnefors M et al (2014) Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility. PLoS One 9:e107023. https://doi.org/10.1371/journal.pone.0107023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Romero Y, Meikar O, Papaioannou MD et al (2011) Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 6:e25241. https://doi.org/10.1371/journal.pone.0025241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Maatouk DM, Loveland KL, McManus MT et al (2008) Dicer1 is required for differentiation of the mouse male germline. Biol Reprod 79:696–703. https://doi.org/10.1095/biolreprod.108.067827

    Article  CAS  PubMed  Google Scholar 

  173. Korhonen HM, Yadav RP, Da RM et al (2015) DICER regulates the formation and maintenance of cell–cell junctions in the mouse seminiferous epithelium. Biol Reprod 93:1–13. https://doi.org/10.1095/biolreprod.115.131938

    Article  CAS  Google Scholar 

  174. Hayashi K, de Sousa C, Lopes SM, Kaneda M et al (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3:e1738. https://doi.org/10.1371/journal.pone.0001738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bartel DP (2018) Metazoan MicroRNAs. Cell 173:20–51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Grishok A, Pasquinelli AE, Conte D et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34. https://doi.org/10.1016/S0092-8674(01)00431-7

    Article  CAS  PubMed  Google Scholar 

  177. Ketting RF, Fischer SEJ, Bernstein E et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659. https://doi.org/10.1101/gad.927801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hutvágner G, McLachlan J, Pasquinelli AE et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838. https://doi.org/10.1126/science.1062961

    Article  PubMed  Google Scholar 

  179. Park JE, Heo I, Tian Y et al (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475:201–205. https://doi.org/10.1038/nature10198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Heo I, Ha M, Lim J et al (2012) Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151:521–532. https://doi.org/10.1016/j.cell.2012.09.022

    Article  CAS  PubMed  Google Scholar 

  181. Kim B, Ha M, Loeff L et al (2015) TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. EMBO J 34:1801–1815. https://doi.org/10.15252/embj.201590931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Heo I, Joo C, Kim Y-KK et al (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138:696–708. https://doi.org/10.1016/j.cell.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  183. Ustianenko D, Hrossova D, Potesil D et al (2013) Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19:1632–1638. https://doi.org/10.1261/rna.040055.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chang H-M, Triboulet R, Thornton JE, Gregory RI (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497:244–248. https://doi.org/10.1038/nature12119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wyman SK, Knouf EC, Parkin RK et al (2011) Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res 21:1450–1461. https://doi.org/10.1101/gr.118059.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yu S, Kim VN (2020) A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol 21:542–556. https://doi.org/10.1038/s41580-020-0246-8

    Article  CAS  PubMed  Google Scholar 

  187. Heo I, Joo C, Cho J et al (2008) Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol Cell 32:276–284. https://doi.org/10.1016/j.molcel.2008.09.014

    Article  CAS  PubMed  Google Scholar 

  188. Hagan JP, Piskounova E, Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16:1021–1025. https://doi.org/10.1038/nsmb.1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gaytan F, Sangiao-Alvarellos S, Manfredi-Lozano M et al (2013) Distinct expression patterns predict differential roles of the mirna-binding proteins, lin28 and lin28b, in the mouse testis: Studies during postnatal development and in a model of hypogonadotropic hypogonadism. Endocrinology 154:1321–1336. https://doi.org/10.1210/en.2012-1745

    Article  CAS  PubMed  Google Scholar 

  190. Shinoda G, De Soysa TY, Seligson MT et al (2013) Lin28a regulates germ cell pool size and fertility. Stem Cells 31:1001–1009. https://doi.org/10.1002/stem.1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chakraborty P, Buaas FW, Sharma M et al (2014) LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells 32:860–873. https://doi.org/10.1002/stem.1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107. https://doi.org/10.1016/0168-9525(89)90039-5

    Article  CAS  PubMed  Google Scholar 

  193. Pace JK, Feschotte C (2007) The evolutionary history of human DNA transposons: Evidence for intense activity in the primate lineage. Genome Res 17:422–432. https://doi.org/10.1101/gr.5826307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Batzer MA, Kilroy GE, Richard PE et al (1990) Structure and variability of recently inserted Alu family members. Nucl Acids Res 18:6793–6798. https://doi.org/10.1093/nar/18.23.6793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sassaman DM, Dombroski BA, Moran JV et al (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 161(16):37–43. https://doi.org/10.1038/ng0597-37

    Article  Google Scholar 

  196. Molaro A, Falciatori I, Hodges E et al (2014) Two waves of de novo methylation during mouse germ cell development. Genes Dev 28:1544–1549. https://doi.org/10.1101/GAD.244350.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wolf G, de Iaco A, Sun MA et al (2020) Krab-zinc finger protein gene expansion in response to active retrotransposons in the murine lineage. Elife 9:1–22. https://doi.org/10.7554/eLife.56337

    Article  Google Scholar 

  198. Vasiliauskaitė L, Berrens RV, Ivanova I et al (2018) Defective germline reprogramming rewires the spermatogonial transcriptome. Nat Struct Mol Biol 25:394–404. https://doi.org/10.1038/s41594-018-0058-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Di Giacomo M, Comazzetto S, Sampath SC et al (2014) G9a co-suppresses LINE1 elements in spermatogonia. Epigen Chromatin 7:24. https://doi.org/10.1186/1756-8935-7-24

    Article  CAS  Google Scholar 

  200. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605. https://doi.org/10.1016/0092-8674(93)90078-5

    Article  CAS  PubMed  Google Scholar 

  201. Martin SL (1991) Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 11:4804–4807. https://doi.org/10.1128/mcb.11.9.4804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Doucet AJJ, Wilusz JEE, Miyoshi T et al (2015) A 3’ poly(A) tract is required for LINE-1 retrotransposition. Mol Cell 60:728–741. https://doi.org/10.1016/J.MOLCEL.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Feng Q, Moran JV, Kazazian HH, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916. https://doi.org/10.1016/S0092-8674(00)81997-2

    Article  CAS  PubMed  Google Scholar 

  204. Mathias SL, Scott AF, Kazazian HH et al (1991) Reverse transcriptase encoded by a human transposable element. Science (80-) 254:1808–1810. https://doi.org/10.1126/science.1722352

    Article  CAS  Google Scholar 

  205. Warkocki Z, Krawczyk PS, Adamska D et al (2018) Uridylation by TUT4/7 restricts retrotransposition of human LINE-1s. Cell 174:1537-1548.e29. https://doi.org/10.1016/j.cell.2018.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wei W, Gilbert N, Ooi SL et al (2001) Human L1 retrotransposition: cisPreference versus trans complementation. Mol Cell Biol 21:1429–1439. https://doi.org/10.1128/mcb.21.4.1429-1439.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Dewannieux M, Heidmann T (2005) Role of poly(A) tail length in Alu retrotransposition. Genomics 86:378–381. https://doi.org/10.1016/j.ygeno.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  208. Liu W-M, Maraia RJ, Rubin CM, Schmid CW (1994) Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res 22:1087–1095. https://doi.org/10.1093/NAR/22.6.1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chu WM, Liu WM, Schmid CW (1995) RNA polymerase III promoter and terminator elements affect Alu RNA expression. Nucl Acids Res 23:1750–1757. https://doi.org/10.1093/NAR/23.10.1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Roy-Engel AM (2002) Active Alu element “A-tails”: size does matter. Genome Res 12:1333–1344. https://doi.org/10.1101/gr.384802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Feusier J, Watkins WS, Thomas J et al (2019) Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res 29:1567–1577. https://doi.org/10.1101/gr.247965.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Henras AK, Plisson-Chastang C, O’Donohue M-F et al (2015) An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA 6:225–242. https://doi.org/10.1002/WRNA.1269

    Article  CAS  PubMed  Google Scholar 

  213. Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 83(8):209–220. https://doi.org/10.1038/nrm2124

    Article  CAS  Google Scholar 

  214. Didychuk AL, Butcher SE, Brow DA (2018) The life of U6 small nuclear RNA, from cradle to grave. RNA 24:437–460. https://doi.org/10.1261/rna.065136.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wang X, Li ZT, Yan Y et al (2020) LARP7-mediated U6 snRNA modification ensures splicing fidelity and spermatogenesis in mice. Mol Cell 77:999-1013.e6. https://doi.org/10.1016/j.molcel.2020.01.002

    Article  CAS  PubMed  Google Scholar 

  216. Markert A, Grimm M, Martinez J et al (2008) The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep 9:569–575. https://doi.org/10.1038/embor.2008.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. He N, Jahchan NS, Hong E et al (2008) A La-related protein modulates 7SK snRNP integrity to suppress P-TEFb-dependent transcriptional elongation and tumorigenesis. Mol Cell 29:588–599. https://doi.org/10.1016/j.molcel.2008.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Okamura D, Maeda I, Taniguchi H et al (2012) Cell cycle gene-specific control of transcription has a critical role in proliferation of primordial germ cells. Genes Dev 26:2477–2482. https://doi.org/10.1101/gad.202242.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hussain S, Tuorto F, Menon S et al (2013) The mouse Cytosine-5 RNA Methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation. Mol Cell Biol 33:1561–1570. https://doi.org/10.1128/mcb.01523-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Anderson C, Davies JH, Lamont L, Foulds N (2011) Early pontocerebellar hypoplasia with vanishing testes: a new syndrome? Am J Med Genet Part A 155:667–672. https://doi.org/10.1002/ajmg.a.33897

    Article  Google Scholar 

  221. Lardelli RM, Schaffer AE, Eggens VRC et al (2017) Biallelic mutations in the 3’ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat Genet 49:457–464. https://doi.org/10.1038/ng.3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Son A, Park JE, Kim VN (2018) PARN and TOE1 constitute a 3′ end maturation module for nuclear non-coding RNAs. Cell Rep 23:888–898. https://doi.org/10.1016/j.celrep.2018.03.089

    Article  CAS  PubMed  Google Scholar 

  223. Deng T, Huang Y, Weng K et al (2018) TOE1 acts as a 3 exonuclease for telomerase RNA and regulates telomere maintenance. Nucl Acids Res 47:391–405. https://doi.org/10.1093/nar/gky1019

    Article  CAS  PubMed Central  Google Scholar 

  224. Tummala H, Vulliamy T, Dokal I (2015) Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest 125:2151–2160. https://doi.org/10.1172/JCI78963

    Article  PubMed  PubMed Central  Google Scholar 

  225. Ansel KM, Pastor WA, Rath N et al (2008) Mouse Eri1 interacts with the ribosome and catalyzes 5.8S rRNA processing. Nat Struct Mol Biol 15:523–530. https://doi.org/10.1038/nsmb.1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Smith L (2011) Good planning and serendipity: exploiting the Cre/Lox system in the testis. Reproduction 141:151–161. https://doi.org/10.1530/REP-10-0404

    Article  CAS  PubMed  Google Scholar 

  227. Guo J, Grow EJ, Mlcochova H et al (2018) The adult human testis transcriptional cell atlas. Cell Res 28:1141–1157. https://doi.org/10.1038/s41422-018-0099-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Green CD, Ma Q, Manske GL et al (2018) A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-Seq. Dev Cell 46:651-667.e10. https://doi.org/10.1016/J.DEVCEL.2018.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hermann BP, Cheng K, Singh A et al (2018) The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep 25:1650-1667.e8. https://doi.org/10.1016/j.celrep.2018.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chen Y, Zheng Y, Gao Y et al (2018) Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res 28:879–896. https://doi.org/10.1038/s41422-018-0074-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Svensson V, Vento-Tormo R, Teichmann SA (2018) Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 13:599–604. https://doi.org/10.1038/nprot.2017.149

    Article  CAS  PubMed  Google Scholar 

  232. Vitsios DM, Enright AJ (2015) Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics 31:3365–3367. https://doi.org/10.1093/bioinformatics/btv380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Lee FCY, Ule J (2018) Advances in CLIP technologies for studies of protein-RNA interactions. Mol Cell 69:354–369. https://doi.org/10.1016/j.molcel.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  234. Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  236. Cramer P, Pesce CG, Baralle FE, Kornblihtt AR (1997) Functional association between promoter structure and transcript alternative splicing. Proc Natl Acad Sci USA 94:11456–11460. https://doi.org/10.1073/pnas.94.21.11456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Legnini I, Alles J, Karaiskos N et al (2019) FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat Methods 16:879–886. https://doi.org/10.1038/s41592-019-0503-y

    Article  CAS  PubMed  Google Scholar 

  238. Kim D, Lee JY, Yang JS et al (2020) The Architecture of SARS-CoV-2 Transcriptome. Cell 181:914-921.e10. https://doi.org/10.1016/j.cell.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Carlsen E, Giwercman A, Keiding N, Skakkebaek NE (1992) Evidence for decreasing quality of semen during past 50 years. Br Med J 305:609–613. https://doi.org/10.1136/bmj.305.6854.609

    Article  CAS  Google Scholar 

  240. Levine H, Jørgensen N, Martino-Andrade A et al (2017) Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum Reprod Update 23:646–659. https://doi.org/10.1093/humupd/dmx022

    Article  PubMed  PubMed Central  Google Scholar 

  241. Sengupta P, Borges E, Dutta S, Krajewska-Kulak E (2018) Decline in sperm count in European men during the past 50 years. Hum Exp Toxicol 37:247–255. https://doi.org/10.1177/0960327117703690

    Article  CAS  PubMed  Google Scholar 

  242. Sasani TA, Pedersen BS, Gao Z et al (2019) Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. Elife 8:e46922. https://doi.org/10.7554/eLife.46922

    Article  PubMed  PubMed Central  Google Scholar 

  243. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  244. Rabbani B, Tekin M, Mahdieh N (2013) The promise of whole-exome sequencing in medical genetics. J Hum Genet 591(59):5–15. https://doi.org/10.1038/jhg.2013.114

    Article  CAS  Google Scholar 

  245. Stankiewicz P, Beaudet AL (2007) Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev 17:182–192

    Article  CAS  Google Scholar 

  246. Miga KH, Koren S, Rhie A et al (2020) Telomere-to-telomere assembly of a complete human X chromosome. Nature 585:79–84. https://doi.org/10.1038/s41586-020-2547-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Paula Stein for the insightful comments on the manuscript and Joelle A. Mornini, NIH Library Editing Service, for editing assistance. This study was supported by the research Project ZIAES103339 founded by the Division of Intramural Research of the National Institutes of Health, National Institute of Environmental Health Sciences, which was awarded to MM.

Funding

This study was supported by the research Project ZIAES103339 founded by the Division of Intramural Research of the National Institutes of Health, National Institute of Environmental Health Sciences, which was awarded to MM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Morgan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, M., Kumar, L., Li, Y. et al. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell. Mol. Life Sci. 78, 8049–8071 (2021). https://doi.org/10.1007/s00018-021-04012-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-04012-4

Keywords

Navigation