Skip to main content

Advertisement

Log in

Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data and material used are available in the author’s labs.

Code availability (software application or custom code)

Not applicable.

References

  1. Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, Angeloni D (2017) Human pathophysiological adaptations to the space environment. Front Physiol 8:547

    Article  Google Scholar 

  2. Strollo F, Gentile S, Strollo G, Mambro A, Vernikos J (2018) Recent progress in space physiology and aging. Front Physiol 9:1551

    Article  Google Scholar 

  3. Stavnichuk M, Mikolajewicz N, Corlett T, Morris M, Komarova SV (2020) A systematic review and meta-analysis of bone loss in space travelers. NPJ microgravity 6:13

    Article  CAS  Google Scholar 

  4. Norsk P (2020) Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions. Acta Physiol (Oxf) 228 (3):e13434.

  5. Crucian BE, Chouker A, Simpson RJ, Mehta S, Marshall G, Smith SM, Zwart SR, Heer M, Ponomarev S, Whitmire A, Frippiat JP, Douglas GL, Lorenzi H, Buchheim JI, Makedonas G, Ginsburg GS, Ott CM, Pierson DL, Krieger SS, Baecker N, Sams C (2018) Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front Immunol 9:1437

    Article  Google Scholar 

  6. Grigoriev AI, Bugrov SA, Bogomolov VV, Egorov AD, Polyakov VV, Tarasov IK, Shulzhenko EB (1993) Main medical results of extended flights on space station Mir in 1986–1990. Acta astronautica 29 (8).

  7. Bradbury P, Wu H, Choi JU, Rowan AE, Zhang H, Poole K, Lauko J, Chou J (2020) Modeling the impact of microgravity at the cellular level: implications for human disease. Front Cell Dev Biol 8:96

    Article  Google Scholar 

  8. Beck M, Moreels M, Quintens R, Abou-El-Ardat K, El-Saghire H, Tabury K, Michaux A, Janssen A, Neefs M, Van Oostveldt P, De Vos WH, Baatout S (2014) Chronic exposure to simulated space conditions predominantly affects cytoskeleton remodeling and oxidative stress response in mouse fetal fibroblasts. Int J Mol Med 34(2):606–615

    Article  CAS  Google Scholar 

  9. Mao XW, Boerma M, Rodriguez D, Campbell-Beachler M, Jones T, Stanbouly S, Sridharan V, Nishiyama NC, Wroe A, Nelson GA (2018) Combined Effects of Low-Dose Proton Radiation and Simulated Microgravity on the Mouse Retina and the Hematopoietic System. Radiation research.

  10. Mao XW, Pecaut MJ, Stodieck LS, Ferguson VL, Bateman TA, Bouxsein M, Jones TA, Moldovan M, Cunningham CE, Chieu J, Gridley DS (2013) Spaceflight environment induces mitochondrial oxidative damage in ocular tissue. Radiat Res 180(4):340–350

    Article  CAS  Google Scholar 

  11. Kast J, Yu Y, Seubert CN, Wotring VE, Derendorf H (2017) Drugs in Space: Pharmacokinetics and Pharmacodynamics in Astronauts. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences 109S.

  12. Eyal S, Derendorf H (2019) Medications in Space: In Search of a Pharmacologist's Guide to the Galaxy. Pharm Res 36 (10):148.

  13. Mao XW, Boerma M, Rodriguez D, Campbell-Beachler M, Jones T, Stanbouly S, Sridharan V, Wroe A, Nelson GA (2018) Acute effect of low-dose space radiation on mouse retina and retinal endothelial cells. Radiat Res 190(1):45–52

    Article  CAS  Google Scholar 

  14. Zhao HW, Zhao J, Hu LN, Liang JN, Shi YY, Nie C, Qiu CY, Nan XS, Li YX, Gao FL, Liu Y, Dong Y, Luo L (2016) Effect of long-term weightlessness on retina and optic nerve in tail-suspension rats. Int J Ophthalmol 9(6):825–830

    PubMed  PubMed Central  Google Scholar 

  15. Tombran-Tink J, Barnstable CJ (2006) Space flight environment induces degeneration in the retina of rat neonates. Adv Exp Med Biol 572:417–424

    Article  Google Scholar 

  16. Tombran-Tink J, Barnstable CJ (2005) Space shuttle flight environment induces degeneration in the retina of rat neonates. Gravitational Space Biol Bull 18(2):97–98

    CAS  Google Scholar 

  17. Roberts JE, Kukielczak BM, Chignell CF, Sik BH, Hu DN, Principato MA (2006) Simulated microgravity induced damage in human retinal pigment epithelial cells. Mol Vis 12:633–638

    CAS  PubMed  Google Scholar 

  18. Mader TH, Gibson CR, Caputo M, Hunter N, Taylor G, Charles J, Meehan RT (1993) Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am J Ophthalmol 115(3):347–350

    Article  CAS  Google Scholar 

  19. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, Tarver WJ, Dervay JP, Hamilton DR, Sargsyan A, Phillips JL, Tran D, Lipsky W, Choi J, Stern C, Kuyumjian R, Polk JD (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118(10):2058–2069

    Article  Google Scholar 

  20. Mader TH, Gibson CR, Otto CA, Sargsyan AE, Miller NR, Subramanian PS, Hart SF, Lipsky W, Patel NB, Lee AG (2017) Persistent Asymmetric Optic Disc Swelling After Long-Duration Space Flight: Implications for Pathogenesis. J Neuro-Ophthalmol 37(2):133–139

    Article  Google Scholar 

  21. Zhang LF, Hargens AR (2018) Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev 98(1):59–87

    Article  Google Scholar 

  22. Lee AG, Mader TH, Gibson CR, Tarver W (2017) Space flight-associated neuro-ocular syndrome. JAMA Ophthalmol 135(9):992–994

    Article  Google Scholar 

  23. Lee AG, Mader TH, Gibson CR, Tarver W, Rabiei P, Riascos RF, Galdamez LA, Brunstetter T (2020) Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. NPJ Microgravity 6:7

    Article  Google Scholar 

  24. Tymko MM, Boulet LM, Donnelly J (2017) Intracranial pressure in outer space: preparing for the mission to Mars. J Physiol 595(14):4587–4588

    Article  CAS  Google Scholar 

  25. Alwood JS, Ronca AE, Mains RC, Shelhamer MJ, Smith JD, Goodwin TJ (2017) From the bench to exploration medicine: NASA life sciences translational research for human exploration and habitation missions. NPJ Microgravity 3:5

    Article  Google Scholar 

  26. Lulli M, Cialdai F, Vignali L, Monici M, Luzzi S, Cicconi A, Cacchione S, Magi A, Di Gesualdo F, Balsamo M, Vukich M, Neri G, Donati A, Capaccioli S (2019) The coenzyme Q10 (CoQ10) as countermeasure for retinal damage onboard the international space station: the CORM Project | SpringerLink. Microgravity Sci Technol 30(6):925–931

    Article  Google Scholar 

  27. Lulli M, Witort E, Papucci L, Torre E, Schiavone N, Dal Monte M, Capaccioli S (2012) Coenzyme Q10 protects retinal cells from apoptosis induced by radiation in vitro and in vivo. J Radiat Res 53(5):695–703

    Article  CAS  Google Scholar 

  28. Lulli M, Witort E, Papucci L, Torre E, Schipani C, Bergamini C, Dal Monte M, Capaccioli S (2012) Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage. Invest Ophthalmol Vis Sci 53(13):8295–8302

    Article  CAS  Google Scholar 

  29. Papucci L, Schiavone N, Witort E, Donnini M, Lapucci A, Tempestini A, Formigli L, Zecchi-Orlandini S, Orlandini G, Carella G, Brancato R, Capaccioli S (2003) Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 278(30):28220–28228

    Article  CAS  Google Scholar 

  30. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 29 (1).

  31. Liao Y, Smyth G, Shi K (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics (Oxford, England) 30 (7).

  32. Love M, Huber W, Anders I (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 15 (12).

  33. Ashan S, Drăghici S (2017) Identifying Significantly Impacted Pathways and Putative Mechanisms With iPathwayGuide. Current protocols in bioinformatics 57.

  34. Corydon TJ, Mann V, Slumstrup L, Kopp S, Sahana J, Askou AL, Magnusson NE, Echegoyen D, Bek T, Sundaresan A, Riwaldt S, Bauer J, Infanger M, Grimm D (2016) Reduced Expression of Cytoskeletal and Extracellular Matrix Genes in Human Adult Retinal Pigment Epithelium Cells Exposed to Simulated Microgravity. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 40 (1–2).

  35. Krüger M, Pietsch J, Bauer J, Kopp S, Carvalho DTO, Baatout S, Moreels M, Melnik D, Wehland M, Egli M, Jayashree S, Kobberø SD, Corydon TJ, Nebuloni S, Gass S, Evert M, Infanger M, Grimm D (2019) Growth of Endothelial Cells in Space and in Simulated Microgravity - a Comparison on the Secretory Level. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 52 (5).

  36. Wuest SL, Richard S, Kopp S, Grimm D, Egli M (2015) Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture BioMed research international 2015.

  37. Moreno-Villanueva M, Wong M, Lu T, Zhang Y, Wu H (2017) Interplay of space radiation and microgravity in DNA damage and DNA damage response. NPJ microgravity 3.

  38. Larrayoz IM, Rey-Funes M, Contartese DS, Rolón F, Sarotto A, Dorfman VB, Loidl CF, Martínez A (2016) Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures. PloS one 11 (8).

  39. Rey-Funes M, Larrayoz IM, Contartese DS, Soliño M, Sarotto A, Bustelo M, Bruno M, Dorfman VB, Loidl CF, Martínez A (2017) Hypothermia Prevents Retinal Damage Generated by Optic Nerve Trauma in the Rat. Scientific reports 7 (1).

  40. Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12 (11).

  41. Locatelli L, Cazzaniga A, De Palma C, Castiglioni S, Maier J (2020) Mitophagy contributes to endothelial adaptation to simulated microgravity. FASEB J 34 (1).

  42. Maier JA, Cialdai F, Monici M, Morbidelli L (2015) The impact of microgravity and hypergravity on endothelial cells. BioMed Res Int 2015.

  43. Prasad B, Grimm D, Strauch SM, Erzinger GS, Corydon TJ, Lebert M, Magnusson NE, Infanger M, Richter P, Krüger M (2020) Influence of microgravity on apoptosis in cells, tissues, and other systems in vivo and in vitro. Int J Mol Sci 21 (24).

  44. Schatten H, Lewis ML, Chakrabarti A (2001) Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronautica 49 (3–10).

  45. Carlsson SI, Bertilaccio MT, Ballabio E, Maier J (2003) Endothelial stress by gravitational unloading: effects on cell growth and cytoskeletal organization. Biochimica et Biophysica Acta 1642 (3).

  46. Monici M, Fusi F, Paglierani M, Marziliano N, Cogoli A, Pratesi R, Bernabei PA (2006) Modeled gravitational unloading triggers differentiation and apoptosis in preosteoclastic cells. J Cell Biochem 98 (1).

  47. Kopp S, Slumstrup L, Corydon TJ, Sahana J, Aleshcheva G, Islam T, Magnusson NE, Wehland M, Bauer J, Infanger M, Grimm D (2016) Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the Random Positioning Machine. Sci Rep 6.

  48. Aleshcheva G, Sahana J, Ma X, Hauslage J, Hemmersbach R, Egli M, Infanger M, Bauer J, Grimm D (2013) Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine. PloS One 8 (11).

  49. Grimm D, Bauer J, Kossmehl P, Shakibaei M, Schöberger J, Pickenhahn H, Schulze-Tanzil G, Vetter R, Eilles C, Paul M, Cogoli A (2002) Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J 16 (6).

  50. Morrow CS, Moore DL (2020) Vimentin's side gig: Regulating cellular proteostasis in mammalian systems. Cytoskeleton (Hoboken, NJ) 77 (11).

  51. Hu J, Li Y, Hao Y, Zheng T, Gupta SK, Parada GA, Wu H, Lin S, Wang S, Zhao X, Goldman RD, Cai S, Guo M (2019) High stretchability, strength, and toughness of living cells enabled by hyperelastic vimentin intermediate filaments. Proceedings of the National Academy of Sciences of the United States of America 116 (35).

  52. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10 (12).

  53. Koksal AR, Verne GN, Zhou Q (2021) Endoplasmic reticulum stress in biological processing and disease. J Investigative Med 69 (2).

  54. Li CF, Pan YK, Gao Y, Shi F, Wang YC, Sun XQ (2019) Autophagy protects HUVECs against ER stress-mediated apoptosis under simulated microgravity. Apoptosis 24 (9–10).

  55. Jiang M, Wang H, Liu Z, Lin L, Wang L, Xie M, Li D, Zhang J, Zhang R (2020) Endoplasmic reticulum stress-dependent activation of iNOS/NO-NF-κB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity. FASEB J 34 (8).

  56. Zhang R, Jiang M, Zhang J, Qiu Y, Li D, Li S, Liu J, Liu C, Fang Z, Cao F (2020) Regulation of the cerebrovascular smooth muscle cell phenotype by mitochondrial oxidative injury and endoplasmic reticulum stress in simulated microgravity rats via the PERK-eIF2α-ATF4-CHOP pathway. Biochimica et Biophysica Acta Molecular Basis of Disease 1866 (8).

  57. Cazzaniga A, Locatelli L, Castiglioni S, Maier JAM (2019) The dynamic adaptation of primary human endothelial cells to simulated microgravity. FASEB J 33 (5).

  58. Roca-Portoles A, Tait SWG (2021) Mitochondrial quality control: from molecule to organelle. Cel Mol Life Sci 78 (8).

  59. Gertz ML, Chin CR, Tomoiaga D, MacKay M, Chang C, Butler D, Afshinnekoo E, Bezdan D, Schmidt MA, Mozsary C, Melnick A, Garrett-Bakelman F, Crucian B, Lee SMC, Zwart SR, Smith SM, Meydan C, Mason CE (2020) Multi-omic, single-cell, and biochemical profiles of astronauts guide pharmacological strategies for returning to gravity. Cell Rep 33 (10).

  60. Nezich CL, Wang C, Fogel AI, Youle RJ (2015) MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol 210 (3).

  61. Ma X, Li H, Chen Y, Yang J, Chen H, Arnheiter H, Hou L (2019) The transcription factor MITF in RPE function and dysfunction. Progress Retinal Eye Res 73.

  62. Han S, Chen J, Hua J, Hu X, Jian S, Zheng G, Wang J, Li H, Yang J, Hejtmancik JF, Qu J, Ma X, Hou L (2020) MITF protects against oxidative damage-induced retinal degeneration by regulating the NRF2 pathway in the retinal pigment epithelium. Redox Biol 34.

  63. Beheshti A, Ray S, Fogle H, Berrios D, Costes SV (2018) A microRNA signature and TGF-beta1 response were identified as the key master regulators for spaceflight response. PloS One 13 (7):e0199621.

  64. Pluquet O, Hainaut P (2001) Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett 174 (1).

  65. Shi L, Tian H, Wang P, Li L, Zhang Z, Zhang J, Zhao Y (2020) Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFκB and metabolic pathways. Cell Mol Immunol.

  66. Dietz C, Infanger M, Romswinkel A, Strube F, Kraus A (2019) Apoptosis Induction and alteration of cell adherence in human lung cancer cells under simulated microgravity. Int J Mol Sci 20 (14).

  67. Fukazawa T, Tanimoto K, Shrestha L, Imura T, Takahashi S, Sueda T, Hirohashi N, Hiyama E, Yuge L (2019) Simulated microgravity enhances CDDP-induced apoptosis signal via p53-independent mechanisms in cancer cells. PloS One 14 (7).

  68. Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9.

  69. Massagué J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13 (10).

  70. Zhou M, Geathers JS, Grillo SL, Weber SR, Wang W, Zhao Y, Sundstrom JM (2020) Role of epithelial-mesenchymal transition in retinal pigment epithelium dysfunction. Front Cell Dev Biol 8.

  71. Ranieri D, Proietti S, Dinicola S, Masiello MG, Rosato B, Ricci G, Cucina A, Catizone A, Bizzarri M, Torrisi MR (2017) Simulated microgravity triggers epithelial mesenchymal transition in human keratinocytes. Sci Rep 7 (1).

  72. Chen Z, Shao Y, Li X (2015) The roles of signaling pathways in epithelial-to-mesenchymal transition of PVR. Mol Vis 21.

  73. Chen Y, Wu B, He JF, Chen J, Kang ZW, Liu D, Luo J, Fang K, Leng X, Tian H, Xu J, Jin C, Zhang J, Wang J, Zhang J, Ou Q, Lu L, Gao F, Xu GT (2021) Effectively intervening epithelial-mesenchymal transition of retinal pigment epithelial cells with a combination of ROCK and TGF-β signaling inhibitors. Investigative Ophthalmol Vis Sc 62 (4).

  74. Du Y, Chen Q, Huang L, Wang S, Yin X, Zhou L, Ye Z, Ren X, Cai Y, Ding X, Ouyang H, Li X, Ju H (2018) VEGFR2 and VEGF-C Suppresses the epithelial-mesenchymal transition Via YAP in Retinal Pigment Epithelial Cells. Curr Mol Med 18 (5).

  75. Wilson SE (2021) TGF beta -1, -2 and -3 in the modulation of fibrosis in the cornea and other organs. Experimental eye research 207.

  76. Moon S, Lee S, Caesar JA, Pruchenko S, Leask A, Knowles JA, Sinon J, Chaqour B (2020) A CTGF-YAP Regulatory Pathway Essential for Angiogenesis and Barriergenesis in the Retina. iScience 23 (6).

  77. Lau LF (2016) Cell surface receptors for CCN proteins. J Cell Commun Signal 10 (2).

  78. Hinton DR, He S, Jin ML, Barron E, Ryan SJ (2002) Novel growth factors involved in the pathogenesis of proliferative vitreoretinopathy. Eye (London, England) 16 (4).

  79. Di Gesualdo F, Capaccioli S, Lulli M (2014) A pathophysiological view of the long non-coding RNA world. Oncotarget 5(22):10976–10996

    Article  Google Scholar 

  80. Wang Y, Wang K, Zhang L, Tan Y, Hu Z, Dang L, Zhou H, Li G, Wang H, Zhang S, Shi F, Cao X, Zhang G (2020) Targeted overexpression of the long noncoding RNA ODSM can regulate osteoblast function in vitro and in vivo. Cell death & disease 11 (2).

  81. Fu H, Su F, Zhu J, Zheng X, Ge C (2020) Effect of simulated microgravity and ionizing radiation on expression profiles of miRNA, lncRNA, and mRNA in human lymphoblastoid cells. Life sciences in space research 24.

  82. Thiel CS, Hauschild S, Huge A, Tauber S, Lauber BA, Polzer J, Paulsen K, Lier H, Engelmann F, Schmitz B, Schütte A, Layer LE, Ullrich O (2017) Dynamic gene expression response to altered gravity in human T cells. Scientific reports 7 (1).

  83. Luo R, Li L, Hu YX, Xiao F (2021) LncRNA H19 inhibits high glucose-induced inflammatory responses of human retinal epithelial cells by targeting miR-19b to increase SIRT1 expression. Kaohsiung J Med Sci 37 (2).

  84. Thomas AA, Biswas S, Feng B, Chen S, Gonder J, Chakrabarti S (2019) lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy. Diabetologia 62 (3).

  85. Liang J, Liao J, Liu T, Wang Y, Wen J, Cai N, Huang Z, Xu W, Li G, Ding Z, Zhang B (2020) Comprehensive analysis of TGF-β-induced mRNAs and ncRNAs in hepatocellular carcinoma. Aging 12 (19).

  86. Zhang LC, Wei ZB, Tang SF (2020) Knockdown of the long noncoding RNA LUCAT1 inhibits high-glucose-induced epithelial-mesenchymal transition through the miR-199a-5p-ZEB1 axis in human renal tubular epithelial cells. BioMed Res Int 2020.

  87. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 (2).

  88. Witort E, Lulli M, Carloni V, Capaccioli S (2013) Anticancer activity of an antisense oligonucleotide targeting TRADD combined with proteasome inhibitors in chemoresistant hepatocellular carcinoma cells. J Chemotherapy (Florence, Italy) 25 (5).

  89. Malkani S, Chin CR, Cekanaviciute E, Mortreux M, Okinula H, Tarbier M, Schreurs AS, Shirazi-Fard Y, Tahimic CGT, Rodriguez DN, Sexton BS, Butler D, Verma A, Bezdan D, Durmaz C, MacKay M, Melnick A, Meydan C, Li S, Garrett-Bakelman F, Fromm B, Afshinnekoo E, Langhorst BW, Dimalanta ET, Cheng-Campbell M, Blaber E, Schisler JC, Vanderburg C, Friedländer MR, McDonald JT, Costes SV, Rutkove S, Grabham P, Mason CE, Beheshti A (2020) Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure Development. Cell Rep 33 (10).

  90. Kasiviswanathan D, Chinnasamy Perumal R, Bhuvaneswari S, Kumar P, Sundaresan L, Philip M, Puthenpurackal Krishnankutty S, Chatterjee S (2020) Interactome of miRNAs and transcriptome of human umbilical cord endothelial cells exposed to short-term simulated microgravity. NPJ Microgravity 6.

  91. Qin W, Liu L, Wang Y, Wang Z, Yang A, Wang T (2019) Mir-494 inhibits osteoblast differentiation by regulating BMP signaling in simulated microgravity. Endocrine 65 (2).

  92. Gong L, Wu X, Li X, Ni X, Gu W, Wang X, Ji H, Hu L, Zhu L (2020) S1PR3 deficiency alleviates radiation-induced pulmonary fibrosis through the regulation of epithelial-mesenchymal transition by targeting miR-495–3p. J Cell Physiol 235 (3).

  93. Ma Y, Duan J, Hao X (2020) Down-regulated HDAC3 elevates microRNA-495–3p to restrain epithelial-mesenchymal transition and oncogenicity of melanoma cells via reducing TRAF5. J Cell Mol Med 24 (22).

  94. Jiang H, Huang G, Zhao N, Zhang T, Jiang M, He Y, Zhou X, Jiang X (2018) Long non-coding RNA TPT1-AS1 promotes cell growth and metastasis in cervical cancer via acting AS a sponge for miR-324–5p. J Exp Clin Cancer Res CR 37 (1).

  95. Zhang Q, Liu H, Zhang J, Shan L, Yibureyimu B, Nurlan A, Aerxiding P, Luo Q (2020) MiR-142–5p suppresses lung cancer cell metastasis by targeting Yin Yang 1 to regulate epithelial-mesenchymal transition. Cell Reprogramming 22 (6).

  96. Qu J, Kaufman Y, Washington I (2009) Coenzyme Q10 in the human retina. Investigative Ophthalmol Vis Sci 50 (4).

  97. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol (Bethesda, Md: 1985) 88 (4).

  98. Li WY, Zhou HZ, Chen Y, Cai XF, Tang H, Ren JH, Wai Wong VK, Kwan Law BY, Cheng ST, Yu HB, Cai HY, Chen WX, Tang N, Zhang WL, Tao NN, Yang QX, Ren F, He L, Jiang H, Huang AL, Chen J (2019) NAD(P)H: quinone oxidoreductase 1 overexpression in hepatocellular carcinoma potentiates apoptosis evasion through regulating stabilization of X-linked inhibitor of apoptosis protein. Cancer Lett 451:156–167

    Article  CAS  Google Scholar 

  99. Vogel J, Thiel CS, Tauber S, Stockmann C, Gassmann M, Ullrich O (2019) Expression of Hypoxia-Inducible Factor 1α (HIF-1α) and Genes of Related Pathways in Altered Gravity. Int J Mol Sci 20 (2).

  100. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149 (5).

  101. Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K, Possemato R (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551 (7682).

  102. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS, Stockwell BR (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3.

  103. Santoro M (2020) The Antioxidant Role of Non-mitochondrial CoQ10: Mystery Solved! Cell metabolism 31 (1).

  104. Yang S, Zhou J, Li D (2021) Functions and diseases of the retinal pigment epithelium. Front Pharmacol 12.

  105. Zarbin M (2016) Cell-Based Therapy for degenerative retinal disease. Trends Mol Med 22 (2).

  106. Xia T, Rizzolo LJ (2017) Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vis Res 139.

  107. Overbey EG, da Silveira WA, Stanbouly S, Nishiyama NC, Roque-Torres GD, Pecaut MJ, Zawieja DC, Wang C, Willey JS, Delp MD, Hardiman G, Mao XW (2019) Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina. Scientific reports 9 (1).

  108. Patel ZS, Brunstetter TJ, Tarver WJ, Whitmire AM, Zwart SR, Smith SM, Huff JL (2020) Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 6 (1).

  109. Iosim S, MacKay M, Westover C, Mason CE (2019) Translating current biomedical therapies for long duration, deep space missions. Precision clinical medicine 2 (4).

  110. Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, Imbriani M, Visai L, Rizzo AM (2016) Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics 137.

Download references

Funding

This project was coordinated and funded by the Italian Space Agency (ASI, grant 2016–6-U0 to M.L.) for space s tation experimentation within the national ISS utilization rights. The authors thank Fondazione Cassa di Risparmio Di Firenze (Italy) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Lulli.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest/competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cialdai, F., Bolognini, D., Vignali, L. et al. Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment. Cell. Mol. Life Sci. 78, 7795–7812 (2021). https://doi.org/10.1007/s00018-021-03989-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03989-2

Keywords

Navigation