Skip to main content

Advertisement

Log in

Functional molecular switches of mammalian G protein-coupled bitter-taste receptors

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Bitter taste receptors (TAS2Rs) are a poorly understood subgroup of G protein-coupled receptors (GPCRs). The experimental structure of these receptors has yet to be determined, and key-residues controlling their function remain mostly unknown. We designed an integrative approach to improve comparative modeling of TAS2Rs. Using current knowledge on class A GPCRs and existing experimental data in the literature as constraints, we pinpointed conserved motifs to entirely re-align the amino-acid sequences of TAS2Rs. We constructed accurate homology models of human TAS2Rs. As a test case, we examined the accuracy of the TAS2R16 model with site-directed mutagenesis and in vitro functional assays. This combination of in silico and in vitro results clarifies sequence-function relationships and proposes functional molecular switches that encode agonist sensing and downstream signaling mechanisms within mammalian TAS2Rs sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from PDB code 5JQH

Similar content being viewed by others

Code and data availability

The scripts used to generate and analyze the models as well as PDB files of TAS2Rs 3D models with the highest meta-score have been deposited on GitHub. (https://github.com/chemosim-lab/TAS2R_data).

References

  1. Lindemann B (2001) Receptors and transduction in taste. Nature 413(6852):219–225

    CAS  PubMed  Google Scholar 

  2. Meyerhof W (2005) Elucidation of mammalian bitter taste. In: Reviews of physiology, biochemistry and pharmacology. Springer, Berlin, Heidelberg, pp 37–72

    Google Scholar 

  3. Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ (2005) The receptors and coding logic for bitter taste. Nature 434(7030):225–229

    CAS  PubMed  Google Scholar 

  4. Lee S-J, Depoortere I, Hatt H (2019) Therapeutic potential of ectopic olfactory and taste receptors. Nat Rev Drug Discovery 18(2):116–138

    CAS  PubMed  Google Scholar 

  5. Foster S, Blank K, See Hoe L, Behrens M, Meyerhof W, Peart J, Thomas W (2014) Novel bitter taste receptor ligands elicit G protein-dependent negative inotropic effects in mouse heart (LB572). FASEB J. https://doi.org/10.1096/fasebj.28.1_supplement.lb572

    Article  PubMed  Google Scholar 

  6. Malki A, Fiedler J, Fricke K, Ballweg I, Pfaffl MW, Krautwurst D (2015) Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol 97(3):533–545

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100(6):693–702

    CAS  PubMed  Google Scholar 

  8. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272

    CAS  PubMed  Google Scholar 

  9. Nordström KJ, Sällman Almén M, Edstam MM, Fredriksson R, Schiöth HB (2011) Independent HHsearch, Needleman–Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol 28(9):2471–2480

    PubMed  Google Scholar 

  10. Krishnan A, Almén MS, Fredriksson R, Schiöth HB (2012) The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS ONE 7(1):9817

    Google Scholar 

  11. Di Pizio A, Levit A, Slutzki M, Behrens M, Karaman R, Niv MY (2016) Comparing Class A GPCRs to bitter taste receptors: structural motifs, ligand interactions and agonist-to-antagonist ratios. Methods Cell Biol 132:401–427

    PubMed  Google Scholar 

  12. Cvicek V, Goddard WA III, Abrol R (2016) Structure-based sequence alignment of the transmembrane domains of all human GPCRs: phylogenetic, structural and functional implications. PLoS Comput Biol 12(3):e1004805

    PubMed  PubMed Central  Google Scholar 

  13. Munk C, Isberg V, Mordalski S, Harpsøe K, Rataj K, Hauser A, Kolb P, Bojarski A, Vriend G, Gloriam D (2016) GPCRdb: the G protein-coupled receptor database–an introduction. Br J Pharmacol 173(14):2195–2207

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Deupi X, Standfuss J (2011) Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr Opin Struct Biol 21(4):541–551

    CAS  PubMed  Google Scholar 

  15. Zhou Q, Yang D, Wu M, Guo Y, Guo W, Zhong L, Cai X, Dai A, Jang W, Shakhnovich EI (2019) Common activation mechanism of class A GPCRs. Elife. https://doi.org/10.7554/eLife.50279

    Article  PubMed  PubMed Central  Google Scholar 

  16. de March CA, Yu Y, Ni MJ, Adipietro KA, Matsunami H, Ma M, Golebiowski J (2015) Conserved residues control activation of mammalian G protein-coupled odorant receptors. J Am Chem Soc 137(26):8611–8616

    PubMed  PubMed Central  Google Scholar 

  17. Schönegge A-M, Gallion J, Picard L-P, Wilkins AD, Le Gouill C, Audet M, Stallaert W, Lohse MJ, Kimmel M, Lichtarge O (2017) Evolutionary action and structural basis of the allosteric switch controlling β 2 AR functional selectivity. Nat Commun 8(1):1–12

    Google Scholar 

  18. de March CA, Topin J, Bruguera E, Novikov G, Ikegami K, Matsunami H, Golebiowski J (2018) Odorant receptor 7D4 activation dynamics. Angew Chem 130(17):4644–4648

    Google Scholar 

  19. Sakurai T, Misaka T, Ishiguro M, Masuda K, Sugawara T, Ito K, Kobayashi T, Matsuo S, Ishimaru Y, Asakura T (2010) Characterization of the β-d-glucopyranoside binding site of the human bitter taste receptor hTAS2R16. J Biol Chem 285(36):28373–28378

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brockhoff A, Behrens M, Niv MY, Meyerhof W (2010) Structural requirements of bitter taste receptor activation. Proc Natl Acad Sci 107(24):11110–11115

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh N, Pydi SP, Upadhyaya J, Chelikani P (2011) Structural basis of activation of bitter taste receptor T2R1 and comparison with Class A G-protein-coupled receptors (GPCRs). J Biol Chem 286(41):36032–36041

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Karaman R, Nowak S, Di Pizio A, Kitaneh H, Abu-Jaish A, Meyerhof W, Niv MY, Behrens M (2016) Probing the binding pocket of the broadly tuned human bitter taste receptor TAS2R14 by chemical modification of cognate agonists. Chem Biol Drug Des 88(1):66–75

    CAS  PubMed  Google Scholar 

  23. Fierro F, Giorgetti A, Carloni P, Meyerhof W, Alfonso-Prieto M (2019) Dual binding mode of “bitter sugars” to their human bitter taste receptor target. Sci Rep 9(1):1–16

    Google Scholar 

  24. Sandal M, Behrens M, Brockhoff A, Musiani F, Giorgetti A, Carloni P, Meyerhof W (2015) Evidence for a transient additional ligand binding site in the TAS2R46 bitter taste receptor. J Chem Theory Comput 11(9):4439–4449

    CAS  PubMed  Google Scholar 

  25. Di Pizio A, Kruetzfeldt L-M, Cheled-Shoval S, Meyerhof W, Behrens M, Niv MY (2017) Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case. Sci Rep 7(1):1–11

    Google Scholar 

  26. Thomas A, Sulli C, Davidson E, Berdougo E, Phillips M, Puffer BA, Paes C, Doranz BJ, Rucker JB (2017) The Bitter Taste Receptor TAS2R16 Achieves High Specificity and Accommodates Diverse Glycoside Ligands by using a Two-faced Binding Pocket. Sci Rep 7(1):7753

    PubMed  PubMed Central  Google Scholar 

  27. Biarnés X, Marchiori A, Giorgetti A, Lanzara C, Gasparini P, Carloni P, Born S, Brockhoff A, Behrens M, W, (2010) Meyerhof, Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS ONE 5(8):e12394

    PubMed  PubMed Central  Google Scholar 

  28. Prasad Pydi S, Upadhyaya J, Singh N, Pal Bhullar R, Chelikani P (2012) Recent advances in structure and function studies on human bitter taste receptors. Curr Prot Pept Sci 13(6):501–508

    Google Scholar 

  29. Slack JP, Brockhoff A, Batram C, Menzel S, Sonnabend C, Born S, Galindo MM, Kohl S, Thalmann S, Ostopovici-Halip L (2010) Modulation of bitter taste perception by a small molecule hTAS2R antagonist. Curr Biol 20(12):1104–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Zajac AL, Lei W, Christensen CM, Margolskee RF, Bouysset C, Golebiowski J, Zhao H, Fiorucci S, Jiang P (2019) Metal ions activate the human taste receptor TAS2R7. Chem Senses 44(5):339–347

    PubMed  PubMed Central  Google Scholar 

  31. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7(1):539

    PubMed  PubMed Central  Google Scholar 

  32. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40(D1):D370–D376

    CAS  PubMed  Google Scholar 

  34. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fredriksson R, Schiöth HB (2005) The repertoire of G-protein–coupled receptors in fully sequenced genomes. Mol Pharmacol 67(5):1414–1425

    CAS  PubMed  Google Scholar 

  36. Yang S, Wu Y, Xu T-H, de Waal PW, He Y, Pu M, Chen Y, DeBruine ZJ, Zhang B, Zaidi SA (2018) Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature 560(7720):666–670

    CAS  PubMed  Google Scholar 

  37. Zhang X, Zhao F, Wu Y, Yang J, Han GW, Zhao S, Ishchenko A, Ye L, Lin X, Ding K (2017) Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nat Commun 8(1):1–10

    Google Scholar 

  38. Tsai C-J, Pamula F, Nehmé R, Mühle J, Weinert T, Flock T, Nogly P, Edwards PC, Carpenter B, Gruhl T (2018) Crystal structure of rhodopsin in complex with a mini-Go sheds light on the principles of G protein selectivity. Sci Adv 4(9):eaat7052

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Miller-Gallacher JL, Nehme R, Warne T, Edwards PC, Schertler GF, Leslie AG, Tate CG (2014) The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS ONE 9(3):e92727

    PubMed  PubMed Central  Google Scholar 

  40. Staus DP, Strachan RT, Manglik A, Pani B, Kahsai AW, Kim TH, Wingler LM, Ahn S, Chatterjee A, Masoudi A (2016) Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535(7612):448–452

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang H, Unal H, Gati C, Han GW, Liu W, Zatsepin NA, James D, Wang D, Nelson G, Weierstall U (2015) Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161(4):833–844

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Peng Y, McCorvy JD, Harpsøe K, Lansu K, Yuan S, Popov P, Qu L, Pu M, Che T, Nikolajsen LF (2018) 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172(4):719-730.e14

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform 54(1):5.6.1-5.6.37

    Google Scholar 

  45. Sandal M, Duy TP, Cona M, Zung H, Carloni P, Musiani F, Giorgetti A (2013) GOMoDo: a GPCRs online modeling and docking webserver. PLoS ONE 8(9):e74092

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gowers RJ, Linke M, Barnoud J, Reddy TJE, Melo MN, Seyler SL, Domanski J, Dotson DL, Buchoux S, Kenney IM (2019) MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations. Los Alamos National Lab(LANL), Los Alamos

    Google Scholar 

  47. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Method 17(3):261–272

    CAS  Google Scholar 

  48. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ (2020) Array programming with NumPy. Nature 585(7825):357–362

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mannige RV, Kundu J, Whitelam S (2016) The Ramachandran number: an order parameter for protein geometry. PLoS ONE 11(8):e0160023

    PubMed  PubMed Central  Google Scholar 

  50. Studer G, Biasini M, Schwede T (2014) Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). Bioinformatics 30(17):i505–i511

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ueda T, Ugawa S, Yamamura H, Imaizumi Y, Shimada S (2003) Functional interaction between T2R taste receptors and G-protein α subunits expressed in taste receptor cells. J Neurosci 23(19):7376–7380

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Di Pizio A, Levit A, Slutzki M, et al (2016) Comparing Class A GPCRs to bitter taste receptors. In: Methods in Cell Biology. Elsevier Ltd, pp 401–427.

  53. Behrens M, Ziegler F (2020) Structure-function analyses of human bitter taste receptors—where do we stand? Molecules 25(19):4423

    CAS  PubMed Central  Google Scholar 

  54. Pydi SP, Bhullar RP, Chelikani P (2012) Constitutively active mutant gives novel insights into the mechanism of bitter taste receptor activation. J Neurochem 122(3):537–544

    CAS  PubMed  Google Scholar 

  55. Pydi SP, Singh N, Upadhyaya J, Bhullar RP, Chelikani P (2014) The third intracellular loop plays a critical role in bitter taste receptor activation. Biochimica et Biophysica Acta (BBA) Biomembr 1838(1):231–236

    Google Scholar 

  56. Pydi SP, Sobotkiewicz T, Billakanti R, Bhullar RP, Loewen MC, Chelikani P (2014) Amino acid derivatives as bitter taste receptor (T2R) blockers. J Biol Chem 289(36):25054–25066

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Upadhyaya J, Singh N, Bhullar RP, Chelikani P (2015) The structure–function role of C-terminus in human bitter taste receptor T2R4 signaling. Biochimica et Biophysica Acta (BBA) Biomembr 1848(7):1502–1508

    CAS  Google Scholar 

  58. Jaggupilli A, Singh N, De Jesus VC, Gounni MS, Dhanaraj P, Chelikani P (2019) Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics. FASEB J 33(1):501–517

    CAS  PubMed  Google Scholar 

  59. Liu K, Jaggupilli A, Premnath D, Chelikani P (2018) Plasticity of the ligand binding pocket in the bitter taste receptor T2R7. Biochimica et Biophysica Acta (BBA) Biomembr 1860(5):991–999

    CAS  Google Scholar 

  60. Dotson CD, Zhang L, Xu H, Shin Y-K, Vigues S, Ott SH, Elson AE, Choi HJ, Shaw H, Egan JM (2008) Bitter taste receptors influence glucose homeostasis. PLoS ONE 3(12):e3974

    PubMed  PubMed Central  Google Scholar 

  61. Born S, Levit A, Niv MY, Meyerhof W, Behrens M (2013) The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands. J Neurosci 33(1):201–213

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nowak S, Di Pizio A, Levit A, Niv MY, Meyerhof W, Behrens M (2018) Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. Biochimica et Biophysica Acta (BBA) Gen Subj 1862(10):2162–2173

    CAS  Google Scholar 

  63. Shaik FA, Jaggupilli A, Chelikani P (2019) Highly conserved intracellular H208 residue influences agonist selectivity in bitter taste receptor T2R14. Biochimica et Biophysica Acta (BBA) Biomembr 1861(12):183057

    CAS  Google Scholar 

  64. Soranzo N, Bufe B, Sabeti PC, Wilson JF, Weale ME, Marguerie R, Meyerhof W, Goldstein DB (2005) Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr Biol 15(14):1257–1265

    CAS  PubMed  Google Scholar 

  65. Greene TA, Alarcon S, Thomas A, Berdougo E, Doranz BJ, Breslin PA, Rucker JB (2011) Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin. PLoS ONE 6(5):e20123

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Thomas A, Sulli C, Davidson E, Berdougo E, Phillips M, Puffer BA, Paes C, Doranz BJ, Rucker JB (2017) The bitter taste receptor TAS2R16 achieves high specificity and accommodates diverse glycoside ligands by using a two-faced binding pocket. Sci Rep 7(1):1–15

    Google Scholar 

  67. Biarnés X, Marchiori A, Giorgetti A, Lanzara C, Gasparini P, Carloni P, Born S, Brockhoff A, Behrens M, Meyerhof W (2010) Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS ONE 5(8):e12394

    PubMed  PubMed Central  Google Scholar 

  68. Marchiori A, Capece L, Giorgetti A, Gasparini P, Behrens M, Carloni P, Meyerhof W (2013) Coarse-grained/molecular mechanics of the TAS2R38 bitter taste receptor: experimentally-validated detailed structural prediction of agonist binding. PLoS ONE 8(5):e64675

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Charlier L, Topin J, Ronin C, Kim S-K, Goddard WA, Efremov R, Golebiowski J (2012) How broadly tuned olfactory receptors equally recognize their agonists. Human OR1G1 as a test case. Cell Mol Life Sci 69(24):4205–4213

    CAS  PubMed  Google Scholar 

  70. Bushdid C, Claire A, Topin J, Do M, Matsunami H, Golebiowski J (2019) Mammalian class I odorant receptors exhibit a conserved vestibular-binding pocket. Cell Mol Life Sci 76(5):995–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fierro F, Suku E, Alfonso-Prieto M, Giorgetti A, Cichon S, Carloni P (2017) Agonist binding to chemosensory receptors: a systematic bioinformatics analysis. Front Mol Biosci 4:63

    PubMed  PubMed Central  Google Scholar 

  72. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39(5):233–244

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Miao Y, Nichols SE, Gasper PM, Metzger VT, McCammon JA (2013) Activation and dynamic network of the M2 muscarinic receptor. Proc Natl Acad Sci 110(27):10982–10987

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Venkatakrishnan A, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194

    CAS  PubMed  Google Scholar 

  75. Dalton JA, Lans I, Giraldo J (2015) Quantifying conformational changes in GPCRs: glimpse of a common functional mechanism. BMC Bioinformatics 16(1):1–15

    CAS  Google Scholar 

  76. Levit A, Beuming T, Krilov G, Sherman W, Niv MY (2014) Predicting GPCR promiscuity using binding site features. J Chem Inf Model 54(1):184–194

    CAS  PubMed  Google Scholar 

  77. Kim D, Cho S, Castaño MA, Panettieri RA, Woo JA, Liggett SB (2019) Biased TAS2R bronchodilators inhibit airway smooth muscle growth by downregulating phosphorylated extracellular signal–regulated kinase 1/2. Am J Respir Cell Mol Biol 60(5):532–540

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Flock T, Hauser AS, Lund N, Gloriam DE, Balaji S, Babu MM (2017) Selectivity determinants of GPCR–G-protein binding. Nature 545(7654):317–322

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Xiaojing Cong for fruitful discussion and critical review of the manuscript. This work was funded by the French Ministry of Higher Education and Research [PhD Fellowship to CB], by the National Research Foundation of Korea (NRF) [grant number NRF2020R1A2C2004661], by GIRACT (Geneva, Switzerland) [9th European PhD in Flavor Research Bursaries for first year students to CB], and the Gen Foundation (Registered UK Charity No. 1071026), a charitable trust that primarily funds research in natural sciences, particularly food sciences/technology [grant to CB and JT]. We also benefited from funding by the French government through the UCAJEDI “Investments in the Future” project, managed by the ANR [grant No. ANR-15-IDEX-01 to SF and JG]. Computation for the work described in this paper was supported by the Université Côte d’Azur’s Center for High-Performance Computing.

Author information

Authors and Affiliations

Authors

Contributions

JT, CB, and JP performed numerical modeling. YK and MR conducted functional assays. JT, CB, and SF performed data curation. JT, CB, JP, YK, and MR conducted formal analyses. JT, SF, and JG supervised and managed the study and wrote the paper. MR and JG provided resources for this study.

Corresponding authors

Correspondence to Jérémie Topin or Sébastien Fiorucci.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3048 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topin, J., Bouysset, C., Pacalon, J. et al. Functional molecular switches of mammalian G protein-coupled bitter-taste receptors. Cell. Mol. Life Sci. 78, 7605–7615 (2021). https://doi.org/10.1007/s00018-021-03968-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03968-7

Keywords

Navigation