Skip to main content

Advertisement

Log in

Gremlin: a complex molecule regulating wound healing and fibrosis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Gremlin-1 is part of the TGF-β superfamily and is a BMP antagonist that blocks BMP signalling to precisely control BMP gradients. Gremlin-1 is primarily involved in organogenesis and limb patterning however, has recently been described as being involved in fibrotic diseases. Initially described as a key factor involved in diabetic kidney fibrosis due to being induced by high glucose, it has now been described as being associated with lung, liver, eye, and skin fibrosis. This suggests that it is a key conserved molecule mediating fibrotic events irrespective of organ. It appears that Gremlin-1 may have effects mediated by BMP-dependent and independent pathways. The aim of this review is to evaluate the role of Gremlin-1 in fibrosis, its mechanisms and if this can be targeted therapeutically in fibrotic diseases, which currently have very limited treatment options and are highly prevalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

NA.

References

  1. Brazil DP et al (2015) BMP signalling: agony and antagony in the family. Trends Cell Biol 25(5):249–264

    CAS  PubMed  Google Scholar 

  2. Sneddon JB et al (2006) Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc Natl Acad Sci U S A 103(40):14842–14847

    CAS  PubMed  PubMed Central  Google Scholar 

  3. McMahon R et al (2000) IHG-2, a Mesangial Cell Gene induced by high glucose, is human gremlin: regulation by extracellular glucose concentration, cyclic mechanical strain, and transforming growth factor-β1. J Biol Chem 275(14):9901–9904

    CAS  PubMed  Google Scholar 

  4. Koli K et al (2006) Bone morphogenetic protein-4 inhibitor gremlin is overexpressed in idiopathic pulmonary fibrosis. Am J Pathol 169(1):61–71

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Boers W et al (2006) Transcriptional profiling reveals novel markers of liver fibrogenesis: gremlin and insulin-like growth factor-binding proteins. J Biol Chem 281(24):16289–16295

    CAS  PubMed  Google Scholar 

  6. O’Reilly S et al (2014) Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J Biol Chem 289(14):9952–9960

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Topol LZ et al (1997) Identification of drm, a novel gene whose expression is suppressed in transformed cells and which can inhibit growth of normal but not transformed cells in culture. Mol Cell Biol 17(8):4801–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Church RH et al (2015) Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem J 466(1):55–68

    CAS  PubMed  Google Scholar 

  9. Allendorph GP, Vale WW, Choe S (2006) Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc Natl Acad Sci U S A 103(20):7643–7648

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeller R, López-Ríos J, Zuniga A (2009) Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet 10(12):845–858

    CAS  PubMed  Google Scholar 

  11. Roxburgh SA et al (2009) Allelic depletion of grem1 attenuates diabetic kidney disease. Diabetes 58(7):1641–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Khokha MK et al (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34(3):303–307

    CAS  PubMed  Google Scholar 

  13. Michos O et al (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131(14):3401–3410

    CAS  PubMed  Google Scholar 

  14. Zhang Q et al (2010) In vivo delivery of Gremlin siRNA plasmid reveals therapeutic potential against diabetic nephropathy by recovering bone morphogenetic protein-7. PLoS ONE 5(7):e11709

    PubMed  PubMed Central  Google Scholar 

  15. Mitola S et al (2010) Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood 116(18):3677–3680

    CAS  PubMed  Google Scholar 

  16. Park SA et al (2020) Gremlin-1 augments the oestrogen-related receptor α signalling through EGFR activation: implications for the progression of breast cancer. Br J Cancer 123(6):988–999

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dutton LR et al (2019) No evidence of Gremlin1-mediated activation of VEGFR2 signaling in endothelial cells. J Biol Chem 294(48):18041–18045

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ji C et al (2016) Gremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling. Oncotarget 7(51):84748–84757

    PubMed  PubMed Central  Google Scholar 

  19. Müller I et al (2013) Gremlin-1 is an inhibitor of macrophage migration inhibitory factor and attenuates atherosclerotic plaque growth in ApoE-/- Mice. J Biol Chem 288(44):31635–31645

    PubMed  PubMed Central  Google Scholar 

  20. Worthley DL et al (2015) Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160(1–2):269–284

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Clark KC et al (2020) Targeted disruption of bone marrow stromal cell-derived Gremlin1 limits multiple myeloma disease progression in vivo. Cancers 12(8):2149

    CAS  PubMed Central  Google Scholar 

  22. Hinz B, Lagares D (2020) Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 16(1):11–31

    CAS  PubMed  Google Scholar 

  23. Hinchcliff M, O’Reilly S (2020) Current and potential new targets in systemic sclerosis therapy: a new hope. Curr Rheumatol Rep 22(8):42

    PubMed  PubMed Central  Google Scholar 

  24. Henderson J, Distler J, O’Reilly S (2019) The role of epigenetic modifications in systemic sclerosis: a druggable target. Trends Mol Med 25(5):395–411

    CAS  PubMed  Google Scholar 

  25. Dolan V et al (2005) Expression of gremlin, a bone morphogenetic protein antagonist, in human diabetic nephropathy. Am J Kidney Dis 45(6):1034–1039

    CAS  PubMed  Google Scholar 

  26. McKnight AJ et al (2010) A GREM1 gene variant associates with diabetic nephropathy. J Am Soc Nephrol 21(5):773–781

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Walsh DW et al (2008) Co-regulation of Gremlin and Notch signalling in diabetic nephropathy. Biochimica et Biophysica Acta Mol Basis Dis 1782(1):10–21

    CAS  Google Scholar 

  28. Church RH et al (2017) Gremlin1 plays a key role in kidney development and renal fibrosis. Am J Physiol Renal Physiol 312(6):F1141–F1157

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Marchant V et al (2015) Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy. Am J Physiol Renal Physiol 309(6):F559–F568

    CAS  PubMed  Google Scholar 

  30. Murphy M et al (2008) IHG-1 amplifies TGF-beta1 signaling and is increased in renal fibrosis. J Am Soc Nephrol 19(9):1672–1680

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Marquez-Exposito L et al (2018) Gremlin regulates tubular epithelial to mesenchymal transition via VEGFR2: potential role in renal fibrosis. Front Pharmacol 9:1195

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodrigues-Diez R et al (2014) Gremlin activates the Smad pathway linked to Epithelial Mesenchymal Transdifferentiation in cultured Tubular Epithelial cells. BioMed Res Int 2014:802841

    PubMed  PubMed Central  Google Scholar 

  33. Lavoz C et al (2015) Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J Pathol 236(4):407–420

    CAS  PubMed  Google Scholar 

  34. Myllärniemi M et al (2008) Gremlin localization and expression levels partially differentiate idiopathic interstitial pneumonia severity and subtype. J Pathol 214(4):456–463

    PubMed  Google Scholar 

  35. Myllärniemi M et al (2008) Gremlin-mediated decrease in bone morphogenetic protein signaling promotes pulmonary fibrosis. Am J Respir Crit Care Med 177(3):321–329

    PubMed  Google Scholar 

  36. Farkas L et al (2011) Transient overexpression of Gremlin results in Epithelial activation and reversible fibrosis in rat lungs. Am J Respir Cell Mol Biol 44(6):870–878

    CAS  PubMed  Google Scholar 

  37. Murphy N et al (2016) Altered expression of bone morphogenetic protein accessory proteins in murine and human pulmonary fibrosis. Am J Pathol 186(3):600–615

    CAS  PubMed  Google Scholar 

  38. Epstein Shochet G et al (2020) TGF-β pathway activation by idiopathic pulmonary fibrosis (IPF) fibroblast derived soluble factors is mediated by IL-6 trans-signaling. Respir Res 21(1):56

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Duffy L et al (2021) Bone Morphogenetic Protein Antagonist Gremlin-1 Increases Myofibroblast Transition in Dermal Fibroblasts: implications for systemic sclerosis. Front Cell Dev Biol 9:1451

    Google Scholar 

  40. Oreilly S (2021) Circulating Gremlin-1 is elevated in systemic sclerosis patients. J Scleroderma Relat Disord. https://doi.org/10.1177/23971983211036571

    Article  Google Scholar 

  41. Zeng X-Y et al (2016) Suppression of hepatic stellate cell activation through downregulation of gremlin1 expression by the miR-23b/27b cluster. Oncotarget 7(52):86198–86210

    PubMed  PubMed Central  Google Scholar 

  42. O’Reilly S (2016) MicroRNAs in fibrosis: opportunities and challenges. Arthritis Res Ther 18(1):11

    PubMed  PubMed Central  Google Scholar 

  43. Yang T et al (2012) Bone morphogenetic protein 7 suppresses the progression of hepatic fibrosis and regulates the expression of gremlin and transforming growth factor β1. Mol Med Rep 6(1):246–252

    CAS  PubMed  Google Scholar 

  44. Staloch D et al (2015) Gremlin is a key pro-fibrogenic factor in chronic pancreatitis. J Mol Med 93(10):1085–1093

    CAS  PubMed  Google Scholar 

  45. Yang Y et al (2021) Targeting Gremlin 1 prevents Intestinal Fibrosis Progression by inhibiting the fatty acid oxidation of fibroblast cells. Front Pharmacol 12:663774

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee H et al (2007) The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48(9):4291–4299

    PubMed  Google Scholar 

  47. Qin D, Jin X, Jiang Y (2020) Gremlin mediates the TGF-β-induced induction of profibrogenic genes in human retinal pigment epithelial cells. Exp Ther Med 19(3):2353–2359

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li D et al (2019) Gremlin-1: An endogenous BMP antagonist induces epithelial-mesenchymal transition and interferes with redifferentiation in fetal RPE cells with repeated wounds. Mol Vis 25:625–635

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rowan SC et al (2018) EXPRESS: Gremlin1 blocks vascular endothelial growth factor signalling in the pulmonary microvascular endothelium. Pulm Circ 10(1):2045894018807205

    Google Scholar 

  50. Tamminen JA et al (2013) Gremlin-1 associates with fibrillin microfibrils in vivo and regulates mesothelioma cell survival through transcription factor slug. Oncogenesis 2(8):e66–e66

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen B et al (2004) Cutting edge: bone morphogenetic protein Antagonists Drm/Gremlin and Dan interact with Slits and act as negative regulators of Monocyte Chemotaxis. J Immunol 173(10):5914

    CAS  PubMed  Google Scholar 

  52. Sung NJ et al (2020) Gremlin-1 promotes metastasis of breast cancer cells by activating STAT3-MMP13 signaling pathway. Int J Mol Sci 21(23):9227

    CAS  PubMed Central  Google Scholar 

  53. Meng L et al (2020) Vital roles of Gremlin-1 in pulmonary arterial hypertension induced by systemic-to-pulmonary shunts. J Am Heart Assoc 9(15):e016586

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ciuclan L et al (2013) Treatment with anti-gremlin 1 antibody ameliorates chronic hypoxia/SU5416-induced pulmonary arterial hypertension in mice. Am J Pathol 183(5):1461–1473

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bond MJ, Crews CM (2021) Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chem Biol 2(3):725–742

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schapira M et al (2019) Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discovery 18(12):949–963

    CAS  PubMed  Google Scholar 

  57. Bai L et al (2019) A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 36(5):498-511.e17

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4(8):583–594

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

SOR designed, conceived and wrote this work solely.

Corresponding author

Correspondence to Steven O’Reilly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

NA.

Consent for publication

NA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Reilly, S. Gremlin: a complex molecule regulating wound healing and fibrosis. Cell. Mol. Life Sci. 78, 7917–7923 (2021). https://doi.org/10.1007/s00018-021-03964-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03964-x

Keywords

Navigation