Skip to main content

Advertisement

Log in

microRNA dynamic expression regulates invariant NKT cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Invariant natural killer T cells (iNKT) are a prevalent population of innate-like T cells in mice, but quite rare in humans that are critical for regulation of the innate and adaptive immune responses during antimicrobial immunity, tumor rejection, and inflammatory diseases. Multiple transcription factors and signaling molecules that contribute to iNKT cell selection and functional differentiation have been identified. However, the full molecular network responsible for regulating and maintaining iNKT populations remains unclear. MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved, small, non-coding RNAs that regulate gene expression post-transcriptionally. Previous reports uncovered the important roles of miRNAs in iNKT cell development and function using Dicer mutant mice. In this review, we discuss the emerging roles of individual miRNAs in iNKT cells reported by our group and other groups, including miR-150, miR-155, miR-181, let-7, miR-17 ~ 92 cluster, and miR-183-96-182 cluster. It is likely that iNKT cell development, differentiation, homeostasis, and functions are orchestrated through a multilayered network comprising interactions among master transcription factors, signaling molecules, and dynamically expressed miRNAs. We provide a comprehensive view of the molecular mechanisms underlying iNKT cell differentiation and function controlled by dynamically expressed miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Mehta A, Baltimore D (2016) MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 16:279–294

    Article  CAS  PubMed  Google Scholar 

  2. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68-73

    Article  CAS  PubMed  Google Scholar 

  3. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Article  PubMed  CAS  Google Scholar 

  4. Lee Y, Kim M, Han JJ, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lund E, Dahlberg JE (2006) Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 71:59–66

    Article  CAS  PubMed  Google Scholar 

  6. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  7. Das R, Sant’Angelo DB, Nichols KE (2010) Transcriptional control of invariant NKT cell development. Immunol Rev 238:195–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gapin L, Matsuda JL, Surh CD, Kronenberg M (2001) NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2:971–978

    Article  CAS  PubMed  Google Scholar 

  9. Chung Y, Nurieva R, Esashi E, Wang YH, Zhou D, Gapin L, Dong C (2008) A critical role of costimulation during intrathymic development of invariant NK T cells. J Immunol 180:2276–2283

    Article  CAS  PubMed  Google Scholar 

  10. Benlagha K, Wei DG, Veiga J, Teyton L, Bendelac A (2005) Characterization of the early stages of thymic NKT cell development. J Exp Med 202:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  CAS  PubMed  Google Scholar 

  12. Godfrey DI, Berzins SP (2007) Control points in NKT-cell development. Nat Rev Immunol 7:505–518

    Article  CAS  PubMed  Google Scholar 

  13. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900

    Article  CAS  PubMed  Google Scholar 

  14. Treiner E, Lantz O (2006) CD1d- and MR1-restricted invariant T cells: of mice and men. Curr Opin Immunol 18:519–526

    Article  CAS  PubMed  Google Scholar 

  15. Klibi J, Amable L, Benlagha K (2020) A focus on natural killer T-cell subset characterization and developmental stages. Immunol Cell Biol 98:358–368

    Article  CAS  PubMed  Google Scholar 

  16. Michel ML, Mendes-da-Cruz D, Keller AC, Lochner M, Schneider E, Dy M, Eberl G, Leite-de-Moraes MC (2008) Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc Natl Acad Sci USA 105:19845–19850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB, Wong CH, Schneider E, Dy M, Leite-de-Moraes MC (2007) Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204:995–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA (2013) Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol 14:1146–1154

    Article  CAS  PubMed  Google Scholar 

  19. Watarai H, Sekine-Kondo E, Shigeura T, Motomura Y, Yasuda T, Satoh R, Yoshida H, Kubo M, Kawamoto H, Koseki H et al (2012) Development and function of invariant natural killer T cells producing T(h)2- and T(h)17-cytokines. PLoS Biol 10:e1001255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krovi SH, Zhang J, Michaels-Foster MJ, Brunetti T, Loh L, Scott-Browne J, Gapin L (2020) Thymic iNKT single cell analyses unmask the common developmental program of mouse innate T cells. Nat Commun 11:6238

    Article  CAS  Google Scholar 

  21. Baranek T, Lebrigand K, de Amat Herbozo C, Gonzalez L, Bogard G, Dietrich C, Magnone V, Boisseau C, Jouan Y, Trottein F et al (2020) High dimensional single-cell analysis reveals iNKT cell developmental trajectories and effector fate decision. Cell Rep 32:108116

    Article  CAS  PubMed  Google Scholar 

  22. Lee M, Lee E, Han SK, Choi YH, Kwon DI, Choi H, Lee K, Park ES, Rha MS, Joo DJ et al (2020) Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells. Nat Commun 11:4367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bronevetsky Y, Ansel KM (2013) Regulation of miRNA biogenesis and turnover in the immune system. Immunol Rev 253:304–316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Simpson LJ, Ansel KM (2015) MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest 125:2242–2249

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khan IS, Taniguchi RT, Fasano KJ, Anderson MS, Jeker LT (2014) Canonical microRNAs in thymic epithelial cells promote central tolerance. Eur J Immunol 44:1313–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kirigin FF, Lindstedt K, Sellars M, Ciofani M, Low SL, Jones L, Bell F, Pauli F, Bonneau R, Myers RM et al (2012) Dynamic microRNA gene transcription and processing during T cell development. J Immunol 188:3257–3267

    Article  CAS  PubMed  Google Scholar 

  28. Ghisi M, Corradin A, Basso K, Frasson C, Serafin V, Mukherjee S, Mussolin L, Ruggero K, Bonanno L, Guffanti A et al (2011) Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood 117:7053–7062

    Article  CAS  PubMed  Google Scholar 

  29. Kuchen S, Resch W, Yamane A, Kuo N, Li Z, Chakraborty T, Wei L, Laurence A, Yasuda T, Peng S et al (2010) Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32:828–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, Bonnal RJ, Birolo RS, Moro M, Crosti MC, Gruarin P et al (2011) Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol 12:796–803

    Article  CAS  PubMed  Google Scholar 

  31. Fedeli M, Napolitano A, Wong MP, Marcais A, de Lalla C, Colucci F, Merkenschlager M, Dellabona P, Casorati G (2009) Dicer-dependent microRNA pathway controls invariant NKT cell development. J Immunol 183:2506–2512

    Article  CAS  PubMed  Google Scholar 

  32. Fedeli M, Riba M, Manteiga JMG, Tian L, Vigano V, Rossetti G, Pagani M, Xiao C, Liston A, Stupka E et al (2016) miR-17 approximately 92 family clusters control iNKT cell ontogenesis via modulation of TGF-beta signaling. Proc Natl Acad Sci USA 113:E8286–E8295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J, Li G, Wu X, Liu Q, Yin C, Brown SL, Xu S, Mi QS, Zhou L (2019) miR-183-96-182 cluster is involved in invariant NKT cell development, maturation, and effector function. J Immunol 203:3256–3267

    Article  CAS  PubMed  Google Scholar 

  34. Li K, Seo KH, Gao T, Zheng Q, Qi RQ, Wang H, Weiland M, Dong Z, Mi QS, Zhou L (2011) Invariant NKT cell development and function in microRNA-223 knockout mice. Int Immunopharmacol 11:561–568

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Li K, Zhang X, Li G, Liu T, Wu X, Brown SL, Zhou L, Mi QS (2020) MicroRNA-155 controls iNKT cell development and lineage differentiation by coordinating multiple regulating pathways. Front Cell Dev Biol 8:619220

    Article  PubMed  Google Scholar 

  36. Burocchi A, Pittoni P, Tili E, Rigoni A, Costinean S, Croce CM, Colombo MP (2015) Regulated expression of miR-155 is required for iNKT cell development. Front Immunol 6:140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zheng Q, Zhou L, Mi QS (2012) MicroRNA miR-150 is involved in Valpha14 invariant NKT cell development and function. J Immunol 188:2118–2126

    Article  CAS  PubMed  Google Scholar 

  38. Bezman NA, Chakraborty T, Bender T, Lanier LL (2011) miR-150 regulates the development of NK and iNKT cells. J Exp Med 208:2717–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zietara N, Lyszkiewicz M, Witzlau K, Naumann R, Hurwitz R, Langemeier J, Bohne J, Sandrock I, Ballmaier M, Weiss S et al (2013) Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells. Proc Natl Acad Sci USA 110:7407–7412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou L, Seo KH, He HZ, Pacholczyk R, Meng DM, Li CG, Xu J, She JX, Dong Z, Mi QS (2009) Tie2cre-induced inactivation of the miRNA-processing enzyme Dicer disrupts invariant NKT cell development. Proc Natl Acad Sci USA 106:10266–10271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  CAS  PubMed  Google Scholar 

  43. Seo KH, Zhou L, Meng DM, Xu JR, Dong Z, Mi QS (2010) Loss of microRNAs in thymus perturbs invariant NKT cell development and function. Cell Mol Immunol 7:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O’Connor E, Godwin J, Wilson CB, Brockdorff N, Fisher AG, Smale ST et al (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201:1367–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cobb BS, Hertweck A, Smith J, O’Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG et al (2006) A role for Dicer in immune regulation. J Exp Med 203:2519–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K (2005) Aberrant T cell differentiation in the absence of Dicer. J Exp Med 202:261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  CAS  PubMed  Google Scholar 

  48. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Massirer KB, Pasquinelli AE (2006) The evolving role of microRNAs in animal gene expression. BioEssays 28:449–452

    Article  CAS  PubMed  Google Scholar 

  50. Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9:831–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Monticelli S, Ansel KM, Xiao CC, Socci ND, Krichevsky AM, Thai TH, Rajewsky N, Marks DS, Sander C, Rajewsky K et al (2005) MicroRNA profiling of the murine hematopoietic system. Genome Biol 6:R71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhou BY, Wang S, Mayr C, Bartel DP, Lodish HF (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 104:7080–7085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146–159

    Article  CAS  PubMed  Google Scholar 

  54. Hu T, Simmons A, Yuan J, Bender TP, Alberola-Ila J (2010) The transcription factor c-Myb primes CD4+CD8+ immature thymocytes for selection into the iNKT lineage. Nat Immunol 11:435–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J, Pretz J, Schlanger R, Wang JY, Mak RH et al (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14:843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu TS, Simmons A, Yuan J, Bender TP, Alberola-Ila J (2010) The transcription factor c-Myb primes CD4(+)CD8(+) immature thymocytes for selection into the iNKT lineage. Nat Immunol 11:435-U498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ji JF, Yamashita T, Budhu A, Forgues M, Jia HL, Li CL, Deng CX, Wauthier E, Reid LM, Ye QH et al (2009) Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50:472–480

    Article  CAS  PubMed  Google Scholar 

  58. Li QJ, Chau J, Ebert PJR, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161

    Article  CAS  PubMed  Google Scholar 

  59. Cichocki F, Felices M, McCullar V, Presnell SR, Al-Attar A, Lutz CT, Miller JS (2011) Cutting edge: microRNA-181 promotes human NK cell development by regulating notch signaling. J Immunol 187:6171–6175

    Article  CAS  PubMed  Google Scholar 

  60. Henao-Mejia J, Williams A, Goff LA, Staron M, Licona-Limon P, Kaech SM, Nakayama M, Rinn JL, Flavell RA (2013) The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity 38:984–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. D’Cruz LM, Knell J, Fujimoto JK, Goldrath AW (2010) An essential role for the transcription factor HEB in thymocyte survival, Tcra rearrangement and the development of natural killer T cells. Nat Immunol 11:240–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dose M, Sleckman BP, Han J, Bredemeyer AL, Bendelac A, Gounari F (2009) Intrathymic proliferation wave essential for Valpha14+ natural killer T cell development depends on c-Myc. Proc Natl Acad Sci USA 106:8641–8646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blume J, Zur Lage S, Witzlau K, Georgiev H, Weiss S, Lyszkiewicz M, Zietara N, Krueger A (2016) Overexpression of Valpha14Jalpha18 TCR promotes development of iNKT cells in the absence of miR-181a/b-1. Immunol Cell Biol 94:741–746

    Article  CAS  PubMed  Google Scholar 

  64. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K et al (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30:80–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Piconese S, Pittoni P, Burocchi A, Gorzanelli A, Care A, Tripodo C, Colombo MP (2010) A non-redundant role for OX40 in the competitive fitness of Treg in response to IL-2. Eur J Immunol 40:2902–2913

    Article  PubMed  Google Scholar 

  66. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Haasch D, Chen YW, Reilly RM, Chiou XG, Koterski S, Smith ML, Kroeger P, McWeeny K, Halbert DN, Mollison KW et al (2002) T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene. BIC Cell Immunol 217:78–86

    Article  CAS  PubMed  Google Scholar 

  68. Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R, Papavasiliou FN (2008) MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28:621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baumjohann D, Ansel KM (2013) MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 13:666–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Belver L, Papavasiliou FN, Ramiro AR (2011) MicroRNA control of lymphocyte differentiation and function. Curr Opin Immunol 23:368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jeker LT, Bluestone JA (2013) MicroRNA regulation of T-cell differentiation and function. Immunol Rev 253:65–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Inacio DP, Amado T, Silva-Santos B, Gomes AQ (2018) Control of T cell effector functions by miRNAs. Cancer Lett 427:63–73

    Article  CAS  PubMed  Google Scholar 

  73. Hsin JP, Lu Y, Loeb GB, Leslie CS, Rudensky AY (2018) The effect of cellular context on miR-155-mediated gene regulation in four major immune cell types. Nat Immunol 19:1137–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen L, Gao D, Shao Z, Zheng Q, Yu Q (2020) miR-155 indicates the fate of CD4(+) T cells. Immunol Lett 224:40–49

    Article  CAS  PubMed  Google Scholar 

  75. Wells AC, Pobezinskaya EL, Pobezinsky LA (2020) Non-coding RNAs in CD8 T cell biology. Mol Immunol 120:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E mu-miR155 transgenic mice. Proc Natl Acad Sci USA 103:7024–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dadi S, Le Noir S, Payet-Bornet D, Lhermitte L, Zacarias-Cabeza J, Bergeron J, Villarese P, Vachez E, Dik WA, Millien C et al (2012) TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRalpha gene expression. Cancer Cell 21:563–576

    Article  CAS  PubMed  Google Scholar 

  79. Zhu N, Zhang DZ, Chen SF, Liu XM, Lin L, Huang XM, Guo ZF, Liu JA, Wang YR, Yuan WJ et al (2011) Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 215:286–293

    Article  CAS  PubMed  Google Scholar 

  80. Das LM, Torres-Castillo MD, Gill T, Levine AD (2013) TGF-beta conditions intestinal T cells to express increased levels of miR-155, associated with down-regulation of IL-2 and itk mRNA. Mucosal Immunol 6:167–176

    Article  CAS  PubMed  Google Scholar 

  81. Choi HJ, Geng YB, Cho H, Li S, Giri PK, Felio K, Wang CR (2011) Differential requirements for the Ets transcription factor Elf-1 in the development of NKT cells and NK cells. Blood 117:1880–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Walunas TL, Wang B, Wang CR, Leiden JM (2000) Cutting edge: the Ets1 transcription factor is required for the development of NK T cells in mice. J Immunol 164:2857–2860

    Article  CAS  PubMed  Google Scholar 

  83. Felices M, Berg LJ (2008) The Tec kinases Itk and Rlk regulate NKT cell maturation, cytokine production, and survival. J Immunol 180:3007–3018

    Article  CAS  PubMed  Google Scholar 

  84. Pereira RM, Martinez GJ, Engel I, Cruz-Guilloty F, Barboza BA, Tsagaratou A, Lio CW, Berg LJ, Lee Y, Kronenberg M et al (2014) Jarid2 is induced by TCR signalling and controls iNKT cell maturation. Nat Commun 5:4540

    Article  CAS  PubMed  Google Scholar 

  85. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  86. Wei J, Yang K, Chi H (2014) Cutting edge: discrete functions of mTOR signaling in invariant NKT cell development and NKT17 fate decision. J Immunol 193:4297–4301

    Article  CAS  PubMed  Google Scholar 

  87. Sklarz T, Guan P, Gohil M, Cotton RM, Ge MQ, Haczku A, Das R, Jordan MS (2017) mTORC2 regulates multiple aspects of NKT-cell development and function. Eur J Immunol 47:516–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tan B, Mu R, Chang Y, Wang YB, Wu M, Tu HQ, Zhang YC, Guo SS, Qin XH, Li T et al (2015) RNF4 negatively regulates NF-kappaB signaling by down-regulating TAB2. FEBS Lett 589:2850–2858

    Article  CAS  PubMed  Google Scholar 

  89. Frias AB Jr, Buechel HM, Neupane A, D’Cruz LM (2018) Invariant natural killer T-cell development and function with loss of microRNA-155. Immunology 153:238–245

    Article  CAS  PubMed  Google Scholar 

  90. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18:505–516

    Article  CAS  PubMed  Google Scholar 

  91. Arteaga-Vazquez M, Caballero-Perez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18:3355–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  CAS  PubMed  Google Scholar 

  93. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    Article  CAS  PubMed  Google Scholar 

  94. Pobezinsky LA, Etzensperger R, Jeurling S, Alag A, Kadakia T, McCaughtry TM, Kimura MY, Sharrow SO, Guinter TI, Feigenbaum L et al (2015) Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function. Nat Immunol 16:517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, Chua K, Eidson M, Kim HJ, Im JS et al (2008) The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat Immunol 9:1055–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alonzo ES, Sant’Angelo DB (2011) Development of PLZF-expressing innate T cells. Curr Opin Immunol 23:220–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Seiler MP, Mathew R, Liszewski MK, Spooner CJ, Barr K, Meng F, Singh H, Bendelac A (2012) Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat Immunol 13:264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29:391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dambal S, Shah M, Mihelich B, Nonn L (2015) The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res 43:7173–7188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Carter JH, Lefebvre JM, Wiest DL, Tourtellotte WG (2007) Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival. J Immunol 178:6796–6805

    Article  CAS  PubMed  Google Scholar 

  101. Thompson MG, Larson M, Vidrine A, Barrios K, Navarro F, Meyers K, Simms P, Prajapati K, Chitsike L, Hellman LM et al (2015) FOXO3-NF-kappaB RelA protein complexes reduce proinflammatory cell signaling and function. J Immunol 195:5637–5647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stankovic S, Gugasyan R, Kyparissoudis K, Grumont R, Banerjee A, Tsichlis P, Gerondakis S, Godfrey DI (2011) Distinct roles in NKT cell maturation and function for the different transcription factors in the classical NF-kappaB pathway. Immunol Cell Biol 89:294–303

    Article  CAS  PubMed  Google Scholar 

  103. Ichiyama K, Gonzalez-Martin A, Kim BS, Jin HY, Jin W, Xu W, Sabouri-Ghomi M, Xu S, Zheng P, Xiao C et al (2016) The microRNA-183-96-182 cluster promotes T Helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity 44:1284–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339:327–335

    Article  CAS  PubMed  Google Scholar 

  105. Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY, Furth E, Enders GH, El-Deiry W, Schelter JM et al (2010) The myc-miR-17~92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res 70:8233–8246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mestdagh P, Fredlund E, Pattyn F, Schulte JH, Muth D, Vermeulen J, Kumps C, Schlierf S, De Preter K, Van Roy N et al (2010) MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 29:1394–1404

    Article  CAS  PubMed  Google Scholar 

  107. Gruszka R, Zakrzewski K, Liberski PP, Zakrzewska M (2021) mRNA and miRNA expression analyses of the MYC/E2F/miR-17-92 network in the most common pediatric brain tumors. Int J Mol Sci 22:543

    Article  CAS  PubMed Central  Google Scholar 

  108. Di Pietro C, De Giorgi L, Cosorich I, Sorini C, Fedeli M, Falcone M (2016) MicroRNA-133b regulation of Th-POK expression and dendritic cell signals affect NKT17 cell differentiation in the thymus. J Immunol 197:3271–3280

    Article  PubMed  CAS  Google Scholar 

  109. Kunze-Schumacher H, Winter SJ, Imelmann E, Krueger A (2018) miRNA miR-21 is largely dispensable for intrathymic T-cell development. Front Immunol 9:2497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Fischer S, Handrick R, Aschrafi A, Otte K (2015) Unveiling the principle of microRNA-mediated redundancy in cellular pathway regulation. RNA Biol 12:238–247

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tuttle KD, Krovi SH, Zhang J, Bedel R, Harmacek L, Peterson LK, Dragone LL, Lefferts A, Halluszczak C, Riemondy K et al (2018) TCR signal strength controls thymic differentiation of iNKT cell subsets. Nat Commun 9:2650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Georgiev H, Ravens I, Benarafa C, Forster R, Bernhardt G (2016) Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun 7:13116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hogquist K, Georgiev H (2020) Recent advances in iNKT cell development. F1000Research 9:127

    Article  CAS  Google Scholar 

  114. Zhao M, Svensson MND, Venken K, Chawla A, Liang S, Engel I, Mydel P, Day J, Elewaut D, Bottini N et al (2018) Altered thymic differentiation and modulation of arthritis by invariant NKT cells expressing mutant ZAP70. Nat Commun 9:2627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Rodriguez-Galan A, Fernandez-Messina L, Sanchez-Madrid F (2018) Control of immunoregulatory molecules by miRNAs in T cell activation. Front Immunol 9:2148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Salou M, Legoux F, Gilet J, Darbois A, du Halgouet A, Alonso R, Richer W, Goubet AG, Daviaud C, Menger L et al (2019) A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J Exp Med 216:133–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Koay HF, Gherardin NA, Enders A, Loh L, Mackay LK, Almeida CF, Russ BE, Nold-Petry CA, Nold MF, Bedoui S et al (2016) A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat Immunol 17:1300–1311

    Article  CAS  PubMed  Google Scholar 

  118. Winter SJ, Kunze-Schumacher H, Imelmann E, Grewers Z, Osthues T, Krueger A (2019) MicroRNA miR-181a/b-1 controls MAIT cell development. Immunol Cell Biol 97:190–202

    Article  CAS  PubMed  Google Scholar 

  119. Liu T, Wang J, Subedi K, Yi Q, Zhou L, Mi Q-S (2021) MicroRNA-155 regulates MAIT1 and MAIT17 cell differentiation. Front Cell Dev Biol 9:670531

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research is partially supported by the US National Institutes of Health grants R01AI119041, R01AR063611, R61AR076803 and R01AR069681 to  Q-SM, and R01AR072046 t0 LZ; and the Henry Ford Immunology Program grants (T71016, Q-SM; T71017, LZ).

Author information

Authors and Affiliations

Authors

Contributions

LZ and Q-SM had the idea for the review article; JW, QL, XW, LZ, and Q-SM performed the literature search; Q-SM, JW, QL, and LZ drafted manuscript; LZ and Q-SM critically revised manuscript.

Corresponding authors

Correspondence to Qing-Sheng Mi or Li Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, QS., Wang, J., Liu, Q. et al. microRNA dynamic expression regulates invariant NKT cells. Cell. Mol. Life Sci. 78, 6003–6015 (2021). https://doi.org/10.1007/s00018-021-03895-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03895-7

Keywords

Navigation