Non-coding RNAs in chromatin folding and nuclear organization

Abstract

One of the most intriguing questions facing modern biology concerns how the genome directs the construction of cells, tissues, and whole organisms. It is tempting to suggest that the part of the genome that does not encode proteins contains architectural plans. We are still far from understanding how these plans work at the level of building tissues and the body as a whole. However, the results of recent studies demonstrate that at the cellular level, special non-coding RNAs serve as scaffolds for the construction of various intracellular structures. The term “architectural RNAs” was proposed to designate this subset of non-coding RNAs. In this review, we discuss the role of architectural RNAs in the construction of the cell nucleus and maintenance of the three-dimensional organization of the genome.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945. https://doi.org/10.1038/nature03001

    CAS  Article  Google Scholar 

  2. 2.

    Djebali S et al (2012) Landscape of transcription in human cells. Nature 489:101–108. https://doi.org/10.1038/nature11233

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Encode Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816. https://doi.org/10.1038/nature05874

    CAS  Article  Google Scholar 

  4. 4.

    He D, Nickerson JA, Penman S (1990) Core filaments of the nuclear matrix. J Cell Biol 110:569–580. https://doi.org/10.1083/jcb.110.3.569

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    He DC, Martin T, Penman S (1991) Localization of heterogeneous nuclear ribonucleoprotein in the interphase nuclear matrix core filaments and on perichromosomal filaments at mitosis. Proc Natl Acad Sci U S A 88:7469–7473. https://doi.org/10.1016/s0309-1651(05)80024-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Nickerson JA, Krochmalnic G, Wan KM, Penman S (1989) Chromatin architecture and nuclear RNA. Proc Natl Acad Sci USA 86:177–181. https://doi.org/10.1073/pnas.86.1.177

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Barboro P, D’Arrigo C, Diaspro A, Mormino M, Alberti I, Parodi S, Patrone E, Balbi C (2002) Unraveling the organization of the internal nuclear matrix: RNA-dependent anchoring of NuMA to a lamin scaffold. Exp Cell Res 279:202–218. https://doi.org/10.1006/excr.2002.5605

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Ioudinkova E, Razin SV, Borunova V, de Conto F, Rynditch A, Scherrer K (2005) RNA-dependent nuclear matrix contains a 33 kb globin full domain transcript as well as prosomes but no 26S proteasomes. J Cell Biochem 94:529–539. https://doi.org/10.1002/jcb.20306

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Razin SV, Iarovaia OV, Vassetzky YS (2014) A requiem to the nuclear matrix: from a controversial concept to 3D organization of the nucleus. Chromosoma 123:217–224. https://doi.org/10.1007/s00412-014-0459-8

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301. https://doi.org/10.1038/35066075

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schrock E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Scherthan H, Ried T, Cremer C, Lichter P (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58:777–792. https://doi.org/10.1101/sqb.1993.058.01.085

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosome Res 1:93–106. https://doi.org/10.1007/BF00710032

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Cremer T, Cremer M, Hubner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C (2015) The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 589(20 Pt A):2931–2943. https://doi.org/10.1016/j.febslet.2015.05.037

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U, Cremer C, Reid G (2015) A transient ischemic environment induces reversible compaction of chromatin. Genome Biol 16:246. https://doi.org/10.1186/s13059-015-0802-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Szczurek A, Birk U, Knecht H, Dobrucki J, Mai S, Cremer C (2018) Super-resolution binding activated localization microscopy through reversible change of DNA conformation. Nucleus 9:182–189. https://doi.org/10.1080/19491034.2017.1419846

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cremer M, Cremer T (2018) Nuclear compartmentalization, dynamics, and function of regulatory DNA sequences. Genes Chromosomes Cancer 58:427–436. https://doi.org/10.1002/gcc.22714

    CAS  Article  Google Scholar 

  17. 17.

    Cremer T, Cremer M, Cremer C (2018) The 4D nucleome: genome compartmentalization in an evolutionary context. Biochemistry (Mosc) 83:313–325. https://doi.org/10.1134/S000629791804003X

    CAS  Article  Google Scholar 

  18. 18.

    Cremer T, Cremer M, Hubner B, Silahtaroglu A, Hendzel M, Lanctot C, Strickfaden H, Cremer C (2020) The interchromatin compartment participates in the structural and functional organization of the cell nucleus. BioEssays 42:e1900132. https://doi.org/10.1002/bies.201900132

    Article  PubMed  Google Scholar 

  19. 19.

    Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P, Bridges AA, Brangwynne CP, Gladfelter AS (2015) RNA controls PolyQ protein phase transitions. Mol Cell 60:220–230. https://doi.org/10.1016/j.molcel.2015.09.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Scherrer K (2018) Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review. Exp Cell Res 373:1–33. https://doi.org/10.1016/j.yexcr.2018.09.011

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Palazzo AF, Lee ES (2018) Sequence determinants for nuclear retention and cytoplasmic export of mRNAs and lncRNAs. Front Genet 9:440. https://doi.org/10.3389/fgene.2018.00440

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334. https://doi.org/10.1038/ng843

    Article  PubMed  Google Scholar 

  23. 23.

    Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E, Choo KH (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160. https://doi.org/10.1101/gr.6022807

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Caudron-Herger M, Muller-Ott K, Mallm JP, Marth C, Schmidt U, Fejes-Toth K, Rippe K (2011) Coding RNAs with a non-coding function: maintenance of open chromatin structure. Nucleus 2:410–424. https://doi.org/10.4161/nucl.2.5.17736

    Article  PubMed  Google Scholar 

  25. 25.

    Barutcu AR, Blencowe BJ, Rinn JL (2019) Differential contribution of steady-state RNA and active transcription in chromatin organization. EMBO Rep 20:e48068. https://doi.org/10.15252/embr.201948068

  26. 26.

    Razin SV, Gavrilov AA (2020) The Role of liquid-liquid phase separation in the compartmentalization of cell nucleus and spatial genome organization. Biochemistry (Mosc) 85:643–650. https://doi.org/10.1134/S0006297920060012

    CAS  Article  Google Scholar 

  27. 27.

    Razin SV, Ulianov SV (2020) Divide and rule: phase separation in eukaryotic genome functioning. Cells. https://doi.org/10.3390/cells9112480

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Garcia-Jove Navarro M, Kashida S, Chouaib R, Souquere S, Pierron G, Weil D, Gueroui Z (2019) RNA is a critical element for the sizing and the composition of phase-separated RNA-protein condensates. Nat Commun 10:3230. https://doi.org/10.1038/s41467-019-11241-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Roden C, Gladfelter AS (2021) RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 22:183–195. https://doi.org/10.1038/s41580-020-0264-6

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Adekunle DA, Hubstenberger A (2020) The multiscale and multiphase organization of the transcriptome. Emerg Top Life Sci 4:265–280. https://doi.org/10.1042/ETLS20190187

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Alshareedah I, Moosa MM, Raju M, Potoyan DA, Banerjee PR (2020) Phase transition of RNA-protein complexes into ordered hollow condensates. Proc Natl Acad Sci U S A 117:15650–15658. https://doi.org/10.1073/pnas.1922365117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Jain A, Vale RD (2017) RNA phase transitions in repeat expansion disorders. Nature 546:243–247. https://doi.org/10.1038/nature22386

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Van Treeck B, Parker R (2018) Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell 174:791–802. https://doi.org/10.1016/j.cell.2018.07.023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Van Treeck B, Protter DSW, Matheny T, Khong A, Link CD, Parker R (2018) RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc Natl Acad Sci U S A 115:2734–2739. https://doi.org/10.1073/pnas.1800038115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Langdon EM, Qiu Y, Ghanbari Niaki A, McLaughlin GA, Weidmann CA, Gerbich TM, Smith JA, Crutchley JM, Termini CM, Weeks KM, Myong S, Gladfelter AS (2018) mRNA structure determines specificity of a polyQ-driven phase separation. Science 360:922–927. https://doi.org/10.1126/science.aar7432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Strickfaden H, Tolsma TO, Sharma A, Underhill DA, Hansen JC, Hendzel MJ (2020) Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells. Cell 183(1772–1784):e1713. https://doi.org/10.1016/j.cell.2020.11.027

    CAS  Article  Google Scholar 

  37. 37.

    Stephens AD, Liu PZ, Kandula V, Chen H, Almassalha LM, Herman C, Backman V, O’Halloran T, Adam SA, Goldman RD, Banigan EJ, Marko JF (2019) Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation. Mol Biol Cell 30:2320–2330. https://doi.org/10.1091/mbc.E19-05-0286

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Erdel F, Rademacher A, Vlijm R, Tunnermann J, Frank L, Weinmann R, Schweigert E, Yserentant K, Hummert J, Bauer C, Schumacher S, Al Alwash A, Normand C, Herten DP, Engelhardt J, Rippe K (2020) Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid-liquid phase separation. Mol Cell 78:236-249.e7. https://doi.org/10.1016/j.molcel.2020.02.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Erdel F, Rippe K (2018) Formation of chromatin subcompartments by phase separation. Biophys J 114:2262–2270. https://doi.org/10.1016/j.bpj.2018.03.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Rhine K, Vidaurre V, Myong S (2020) RNA Droplets. Annu Rev Biophys 49:247–265. https://doi.org/10.1146/annurev-biophys-052118-115508

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Razin SV, Gavrilov AA, Pichugin A, Lipinski M, Iarovaia OV, Vassetzky YS (2011) Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res 39:9085–9092. https://doi.org/10.1093/nar/gkr683

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sutherland H, Bickmore WA (2009) Transcription factories: gene expression in unions? Nat Rev Genet 10:457–466. https://doi.org/10.1038/nrg2592

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Cook PR, Marenduzzo D (2018) Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations. Nucleic Acids Res 46:9895–9906. https://doi.org/10.1093/nar/gky763

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Gavrilov AA, Shevelyov YY, Ulianov SV, Khrameeva EE, Kos P, Chertovich A, Razin SV (2016) Unraveling the mechanisms of chromatin fibril packaging. Nucleus 7:319–324. https://doi.org/10.1080/19491034.2016.1190896

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Agalarov SC, Zheleznyakova EN, Selivanova OM, Zheleznaya LA, Matvienko NI, Vasiliev VD, Spirin AS (1998) In vitro assembly of a ribonucleoprotein particle corresponding to the platform domain of the 30S ribosomal subunit. Proc Natl Acad Sci U S A 95:999–1003. https://doi.org/10.1073/pnas.95.3.999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Culver GM, Noller HF (1999) Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins. RNA 5:832–843. https://doi.org/10.1017/s1355838299990714

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Khaitovich P, Tenson T, Kloss P, Mankin AS (1999) Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Biochemistry 38:1780–1788. https://doi.org/10.1021/bi9822473

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Chujo T, Hirose T (2017) Nuclear bodies built on architectural long noncoding RNAs: unifying principles of their construction and function. Mol Cells 40:889–896. https://doi.org/10.14348/molcells.2017.0263

  49. 49.

    Chujo T, Yamazaki T, Hirose T (2016) Architectural RNAs (arcRNAs): A class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim Biophys Acta 1859:139–146. https://doi.org/10.1016/j.bbagrm.2015.05.007

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Mao YS, Sunwoo H, Zhang B, Spector DL (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13:95–101. https://doi.org/10.1038/ncb2140

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13:167–173. https://doi.org/10.1038/ncb2157

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Ip JY, Nakagawa S (2012) Long non-coding RNAs in nuclear bodies. Dev Growth Differ 54:44–54. https://doi.org/10.1111/j.1440-169X.2011.01303.x

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Chen LL, Carmichael GG (2012) Nuclear Editing of mRNA 3’-UTRs. Curr Top Microbiol Immunol 353:111–121. https://doi.org/10.1007/82_2011_149

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, Kato A, Kawaguchi Y, Sato H, Yoneda M, Kai C, Yada T, Suzuki Y, Yamada T, Ozawa T, Kaneki K, Inoue T, Kobayashi M, Kodama T, Wada Y, Sekimizu K, Akimitsu N (2014) Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53:393–406. https://doi.org/10.1016/j.molcel.2014.01.009

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, Yokoi T, Nakagawa S, Benard M, Fox AH, Pierron G (2014) NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell 25:169–183. https://doi.org/10.1091/mbc.E13-09-0558

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Jiang L, Shao C, Wu QJ, Chen G, Zhou J, Yang B, Li H, Gou LT, Zhang Y, Wang Y, Yeo GW, Zhou Y, Fu XD (2017) NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing. Nat Struct Mol Biol 24:816–824. https://doi.org/10.1038/nsmb.3455

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Fox AH, Bond CS, Lamond AI (2005) P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol Biol Cell 16:5304–5315. https://doi.org/10.1091/mbc.e05-06-0587

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186:637–644. https://doi.org/10.1083/jcb.200906113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726. https://doi.org/10.1016/j.molcel.2009.01.026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Fox AH, Nakagawa S, Hirose T, Bond CS (2018) Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci 43:124–135. https://doi.org/10.1016/j.tibs.2017.12.001

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Yamazaki T, Souquere S, Chujo T, Kobelke S, Chong YS, Fox AH, Bond CS, Nakagawa S, Pierron G, Hirose T (2018) Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol Cell 70(1038–1053):e1037. https://doi.org/10.1016/j.molcel.2018.05.019

    CAS  Article  Google Scholar 

  62. 62.

    Hirose T, Yamazaki T, Nakagawa S (2019) Molecular anatomy of the architectural NEAT1 noncoding RNA: The domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. Wiley Interdisciplin Rev RNA 10:e1545. https://doi.org/10.1002/wrna.1545

    Article  Google Scholar 

  63. 63.

    Biamonti G, Vourc’h C (2010) Nuclear stress bodies. Cold Spring Harb Perspect Biol 2:a000695. https://doi.org/10.1101/cshperspect.a000695

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Goenka A, Sengupta S, Pandey R, Parihar R, Mohanta GC, Mukerji M, Ganesh S (2016) Human satellite-III non-coding RNAs modulate heat-shock-induced transcriptional repression. J Cell Sci 129:3541–3552. https://doi.org/10.1242/jcs.189803

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Yap K, Mukhina S, Zhang G, Tan JSC, Ong HS, Makeyev EV (2018) A short tandem repeat-enriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol Cell 72(525–540):e513. https://doi.org/10.1016/j.molcel.2018.08.041

    CAS  Article  Google Scholar 

  66. 66.

    Prasanth KV, Rajendra TK, Lal AK, Lakhotia SC (2000) Omega speckles - a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J Cell Sci 113(Pt 19):3485–3497

    CAS  Article  Google Scholar 

  67. 67.

    Ninomiya K, Hirose T (2020) Short tandem repeat-enriched architectural RNAs in nuclear bodies: functions and associated diseases. Non-coding RNA. https://doi.org/10.3390/ncrna6010006

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Niimi Y, Takahashi M, Sugawara E, Umeda S, Obayashi M, Sato N, Ishiguro T, Higashi M, Eishi Y, Mizusawa H, Ishikawa K (2013) Abnormal RNA structures (RNA foci) containing a penta-nucleotide repeat (UGGAA)n in the Purkinje cell nucleus is associated with spinocerebellar ataxia type 31 pathogenesis. Neuropathology 33:600–611. https://doi.org/10.1111/neup.12032

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, Takahashi M, Matsuura T, Flanigan KM, Iwasaki S, Ishino F, Saito Y, Murayama S, Yoshida M, Hashizume Y, Takahashi Y, Tsuji S, Shimizu N, Toda T, Ishikawa K, Mizusawa H (2009) Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 85:544–557. https://doi.org/10.1016/j.ajhg.2009.09.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Swinnen B, Robberecht W, Van Den Bosch L (2020) RNA toxicity in non-coding repeat expansion disorders. EMBO J 39:e101112. https://doi.org/10.15252/embj.2018101112

  71. 71.

    Castro AF, Loureiro JR, Bessa J, Silveira I (2020) Antisense transcription across nucleotide repeat expansions in neurodegenerative and neuromuscular diseases: progress and mysteries. Genes 11:1418. https://doi.org/10.3390/genes11121418

    CAS  Article  PubMed Central  Google Scholar 

  72. 72.

    Zhang N, Ashizawa T (2017) RNA toxicity and foci formation in microsatellite expansion diseases. Curr Opin Genet Dev 44:17–29. https://doi.org/10.1016/j.gde.2017.01.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Michelini F, Pitchiaya S, Vitelli V, Sharma S, Gioia U, Pessina F, Cabrini M, Wang Y, Capozzo I, Iannelli F, Matti V, Francia S, Shivashankar GV, Walter NG, d’Adda di Fagagna F (2017) Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol 19:1400–1411. https://doi.org/10.1038/ncb3643

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V, Galbiati A, Barozzi S, Garre M, Oldani A, Flaus A, Cerbino R, Parazzoli D, Rothenberg E, d’Adda di Fagagna F (2019) Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol 21:1286–1299. https://doi.org/10.1038/s41556-019-0392-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Francia S, Michelini F, Saxena A, Tang D, de Hoon M, Anelli V, Mione M, Carninci P, d’Adda di Fagagna F (2012) Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488:231–235. https://doi.org/10.1038/nature11179

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Pryde F, Khalili S, Robertson K, Selfridge J, Ritchie AM, Melton DW, Jullien D, Adachi Y (2005) 53BP1 exchanges slowly at the sites of DNA damage and appears to require RNA for its association with chromatin. J Cell Sci 118(Pt 9):2043–2055. https://doi.org/10.1242/jcs.02336

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Arnold PR, Wells AD, Li XC (2020) Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Front Cell Develop Biol 7:377. https://doi.org/10.3389/fcell.2019.00377

    Article  Google Scholar 

  78. 78.

    Peng A, Weber SC (2019) Evidence for and against Liquid-Liquid Phase Separation in the Nucleus. Non-coding RNA 5:50. https://doi.org/10.3390/ncrna5040050

    CAS  Article  Google Scholar 

  79. 79.

    Sehgal PB, Westley J, Lerea KM, DiSenso-Browne S, Etlinger JD (2020) Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs). Anal Biochem 597:113691. https://doi.org/10.1016/j.ab.2020.113691

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Lesne A, Baudement MO, Rebouissou C, Forne T (2019) Exploring mammalian genome within phase-separated nuclear bodies: experimental methods and implications for gene expression. Genes 10:1049. https://doi.org/10.3390/genes10121049

    CAS  Article  PubMed Central  Google Scholar 

  81. 81.

    Palikyras S, Papantonis A (2019) Modes of phase separation affecting chromatin regulation. Open Biol 9:190167. https://doi.org/10.1098/rsob.190167

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Ilik I, Akhtar A (2009) roX RNAs: non-coding regulators of the male X chromosome in flies. RNA Biol 6:113–121. https://doi.org/10.4161/rna.6.2.8060

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Maenner S, Muller M, Frohlich J, Langer D, Becker PB (2013) ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol Cell 51:174–184. https://doi.org/10.1016/j.molcel.2013.06.011

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R, Chang HY, Akhtar A (2013) Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell 51:156–173. https://doi.org/10.1016/j.molcel.2013.07.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Lucchesi JC, Kuroda MI (2015) Dosage compensation in Drosophila. Cold Spring Harb Perspect Biol 7:a019398. https://doi.org/10.1101/cshperspect.a019398

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Valsecchi CIK, Basilicata MF, Georgiev P, Gaub A, Seyfferth J, Kulkarni T, Panhale A, Semplicio G, Manjunath V, Holz H, Dasmeh P, Akhtar A (2021) RNA nucleation by MSL2 induces selective X chromosome compartmentalization. Nature 589:137–142. https://doi.org/10.1038/s41586-020-2935-z

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Almeida M, Pintacuda G, Masui O, Koseki Y, Gdula M, Cerase A, Brown D, Mould A, Innocent C, Nakayama M, Schermelleh L, Nesterova TB, Koseki H, Brockdorff N (2017) PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356:1081–1084. https://doi.org/10.1126/science.aal2512

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Pintacuda G, Wei G, Roustan C, Kirmizitas BA, Solcan N, Cerase A, Castello A, Mohammed S, Moindrot B, Nesterova TB, Brockdorff N (2017) hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish polycomb-mediated chromosomal silencing. Mol Cell 68(955–969):e910. https://doi.org/10.1016/j.molcel.2017.11.013

    CAS  Article  Google Scholar 

  89. 89.

    Colognori D, Sunwoo H, Kriz AJ, Wang CY, Lee JT (2019) Xist deletional analysis reveals an interdependency between Xist RNA and polycomb complexes for spreading along the inactive X. Mol Cell 74(101–117):e110. https://doi.org/10.1016/j.molcel.2019.01.015

    CAS  Article  Google Scholar 

  90. 90.

    Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973. https://doi.org/10.1126/science.1237973

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Pandya-Jones A, Markaki Y, Serizay J, Chitiashvili T, Mancia Leon WR, Damianov A, Chronis C, Papp B, Chen CK, McKee R, Wang XJ, Chau A, Sabri S, Leonhardt H, Zheng S, Guttman M, Black DL, Plath K (2020) A protein assembly mediates Xist localization and gene silencing. Nature 587:145–151. https://doi.org/10.1038/s41586-020-2703-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Thakur N, Tiwari VK, Thomassin H, Pandey RR, Kanduri M, Gondor A, Grange T, Ohlsson R, Kanduri C (2004) An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol Cell Biol 24:7855–7862. https://doi.org/10.1128/MCB.24.18.7855-7862.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246. https://doi.org/10.1016/j.molcel.2008.08.022

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813. https://doi.org/10.1038/415810a

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Andergassen D, Muckenhuber M, Bammer PC, Kulinski TM, Theussl HC, Shimizu T, Penninger JM, Pauler FM, Hudson QJ (2019) The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLoS Genet 15:e1008268. https://doi.org/10.1371/journal.pgen.1008268

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672. https://doi.org/10.1073/pnas.0904715106

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693. https://doi.org/10.1126/science.1192002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323. https://doi.org/10.1016/j.cell.2007.05.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Ma M, Zhang Y, Weng M, Hu Y, Xuan Y, Hu Y, Lv K (2018) lncRNA GCAWKR promotes gastric cancer development by scaffolding the chromatin modification factors WDR5 and KAT2A. Mol Ther 26:2658–2668. https://doi.org/10.1016/j.ymthe.2018.09.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, Xie M, Xu L, De W, Wang Z, Wang J (2016) LncRNA HOXA11-as promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res 76:6299–6310. https://doi.org/10.1158/0008-5472.CAN-16-0356

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Kuo CC, Hanzelmann S, Senturk Cetin N, Frank S, Zajzon B, Derks JP, Akhade VS, Ahuja G, Kanduri C, Grummt I, Kurian L, Costa IG (2019) Detection of RNA-DNA binding sites in long noncoding RNAs. Nucleic Acids Res 47:e32. https://doi.org/10.1093/nar/gkz037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Kalwa M, Hanzelmann S, Otto S, Kuo CC, Franzen J, Joussen S, Fernandez-Rebollo E, Rath B, Koch C, Hofmann A, Lee SH, Teschendorff AE, Denecke B, Lin Q, Widschwendter M, Weinhold E, Costa IG, Wagner W (2016) The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res 44:10631–10643. https://doi.org/10.1093/nar/gkw802

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    O’Leary VB, Ovsepian SV, Carrascosa LG, Buske FA, Radulovic V, Niyazi M, Moertl S, Trau M, Atkinson MJ, Anastasov N (2015) PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep 11:474–485. https://doi.org/10.1016/j.celrep.2015.03.043

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Zhao H, Xu Q (2020) Long non-coding RNA DLX6-AS1 mediates proliferation, invasion and apoptosis of endometrial cancer cells by recruiting p300/E2F1 in DLX6 promoter region. J Cell Mol Med 24:12572–12584. https://doi.org/10.1111/jcmm.15810

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Blank-Giwojna A, Postepska-Igielska A, Grummt I (2019) lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators. Cell Rep 26(2904–2915):e2904. https://doi.org/10.1016/j.celrep.2019.02.059

    CAS  Article  Google Scholar 

  106. 106.

    Ariel F, Lucero L, Christ A, Mammarella MF, Jegu T, Veluchamy A, Mariappan K, Latrasse D, Blein T, Liu C, Benhamed M, Crespi M (2020) R-Loop Mediated trans Action of the APOLO Long Noncoding RNA. Mol Cell 77(1055–1065):e1054. https://doi.org/10.1016/j.molcel.2019.12.015

    CAS  Article  Google Scholar 

  107. 107.

    Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR, Morse M, Engreitz J, Lander ES, Guttman M, Lodish HF, Flavell R, Raj A, Rinn JL (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21:198–206. https://doi.org/10.1038/nsmb.2764

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Long Y, Hwang T, Gooding AR, Goodrich KJ, Rinn JL, Cech TR (2020) RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat Genet 52:931–938. https://doi.org/10.1038/s41588-020-0662-x

    CAS  Article  PubMed  Google Scholar 

  109. 109.

    Wani AH, Boettiger AN, Schorderet P, Ergun A, Munger C, Sadreyev RI, Zhuang X, Kingston RE, Francis NJ (2016) Chromatin topology is coupled to Polycomb group protein subnuclear organization. Nat Commun 7:10291. https://doi.org/10.1038/ncomms10291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Seif E, Kang JJ, Sasseville C, Senkovich O, Kaltashov A, Boulier EL, Kapur I, Kim CA, Francis NJ (2020) Phase separation by the polyhomeotic sterile alpha motif compartmentalizes Polycomb Group proteins and enhances their activity. Nat Commun 11:5609. https://doi.org/10.1038/s41467-020-19435-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Tatavosian R, Kent S, Brown K, Yao T, Duc HN, Huynh TN, Zhen CY, Ma B, Wang H, Ren X (2019) Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J Biol Chem 294:1451–1463. https://doi.org/10.1074/jbc.RA118.006620

    CAS  Article  PubMed  Google Scholar 

  112. 112.

    Pirrotta V, Li HB (2012) A view of nuclear polycomb bodies. Curr Opin Genet Dev 22:101–109. https://doi.org/10.1016/j.gde.2011.11.004

    CAS  Article  PubMed  Google Scholar 

  113. 113.

    Smigova J, Juda P, Krejci J, Raska I (2014) Structural basis of polycomb bodies. Folia Biol (Praha) 60(Suppl 1):13–20

    Google Scholar 

  114. 114.

    De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384. https://doi.org/10.1371/journal.pbio.1000384

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187. https://doi.org/10.1038/nature09033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Rahnamoun H, Lee J, Sun Z, Lu H, Ramsey KM, Komives EA, Lauberth SM (2018) RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nat Struct Mol Biol 25:687–697. https://doi.org/10.1038/s41594-018-0102-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X, Oh S, Kim HS, Glass CK, Rosenfeld MG (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516–520. https://doi.org/10.1038/nature12210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494:497–501. https://doi.org/10.1038/nature11884

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Nair SJ, Yang L, Meluzzi D, Oh S, Yang F, Friedman MJ, Wang S, Suter T, Alshareedah I, Gamliel A, Ma Q, Zhang J, Hu Y, Tan Y, Ohgi KA, Jayani RS, Banerjee PR, Aggarwal AK, Rosenfeld MG (2019) Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat Struct Mol Biol 26:193–203. https://doi.org/10.1038/s41594-019-0190-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Pnueli L, Rudnizky S, Yosefzon Y, Melamed P (2015) RNA transcribed from a distal enhancer is required for activating the chromatin at the promoter of the gonadotropin alpha-subunit gene. Proc Natl Acad Sci U S A 112:4369–4374. https://doi.org/10.1073/pnas.1414841112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Yang Y, Su Z, Song X, Liang B, Zeng F, Chang X, Huang D (2016) Enhancer RNA-driven looping enhances the transcription of the long noncoding RNA DHRS4-AS1, a controller of the DHRS4 gene cluster. Sci Rep 6:20961. https://doi.org/10.1038/srep20961

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Hsieh CL, Fei T, Chen Y, Li T, Gao Y, Wang X, Sun T, Sweeney CJ, Lee GS, Chen S, Balk SP, Liu XS, Brown M, Kantoff PW (2014) Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci U S A 111:7319–7324. https://doi.org/10.1073/pnas.1324151111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Saldana-Meyer R, Gonzalez-Buendia E, Guerrero G, Narendra V, Bonasio R, Recillas-Targa F, Reinberg D (2014) CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53. Genes Dev 28:723–734. https://doi.org/10.1101/gad.236869.113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Saldana-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jacome-Lopez K, Nora EP, Bruneau BG, Tsirigos A, Furlan-Magaril M, Skok J, Reinberg D (2019) RNA interactions are essential for CTCF-mediated genome organization. Mol Cell 76(412–422):e415. https://doi.org/10.1016/j.molcel.2019.08.015

    CAS  Article  Google Scholar 

  125. 125.

    Hansen AS, Hsieh TS, Cattoglio C, Pustova I, Saldana-Meyer R, Reinberg D, Darzacq X, Tjian R (2019) Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol Cell 76(395–411):e313. https://doi.org/10.1016/j.molcel.2019.07.039

    CAS  Article  Google Scholar 

  126. 126.

    Amaral PP, Leonardi T, Han N, Vire E, Gascoigne DK, Arias-Carrasco R, Buscher M, Pandolfini L, Zhang A, Pluchino S, Maracaja-Coutinho V, Nakaya HI, Hemberg M, Shiekhattar R, Enright AJ, Kouzarides T (2018) Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol 19:32. https://doi.org/10.1186/s13059-018-1405-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Rowley MJ, Corces VG (2018) Organizational principles of 3D genome architecture. Nat Rev Genet 19:789–800. https://doi.org/10.1038/s41576-018-0060-8

    CAS  Article  PubMed  Google Scholar 

  128. 128.

    Kojic A, Cuadrado A, De Koninck M, Gimenez-Llorente D, Rodriguez-Corsino M, Gomez-Lopez G, Le Dily F, Marti-Renom MA, Losada A (2018) Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization. Nat Struct Mol Biol 25:496–504. https://doi.org/10.1038/s41594-018-0070-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Pan H, Jin M, Ghadiyaram A, Kaur P, Miller HE, Ta HM, Liu M, Fan Y, Mahn C, Gorthi A, You C, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H (2020) Cohesin SA1 and SA2 are RNA binding proteins that localize to RNA containing regions on DNA. Nucleic Acids Res 48:5639–5655. https://doi.org/10.1093/nar/gkaa284

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Chu C, Qu K, Zhong FL, Artandi SE, Chang HY (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678. https://doi.org/10.1016/j.molcel.2011.08.027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Simon MD, Wang CI, Kharchenko PV, West JA, Chapman BA, Alekseyenko AA, Borowsky ML, Kuroda MI, Kingston RE (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci U S A 108:20497–20502. https://doi.org/10.1073/pnas.1113536108

    Article  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Chu C, Spitale RC, Chang HY (2015) Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Struct Mol Biol 22:29–35. https://doi.org/10.1038/nsmb.2921

    CAS  Article  PubMed  Google Scholar 

  133. 133.

    Sridhar B, Rivas-Astroza M, Nguyen TC, Chen W, Yan Z, Cao X, Hebert L, Zhong S (2017) Systematic mapping of RNA-chromatin interactions in vivo. Curr Biol 27:602–609. https://doi.org/10.1016/j.cub.2017.01.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Li X, Zhou B, Chen L, Gou LT, Li H, Fu XD (2017) GRID-seq reveals the global RNA-chromatin interactome. Nat Biotechnol 35:940–950. https://doi.org/10.1038/nbt.3968

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Bell JC, Jukam D, Teran NA, Risca VI, Smith OK, Johnson WL, Skotheim JM, Greenleaf WJ, Straight AF (2018) Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. eLife 7:e27024. https://doi.org/10.7554/eLife.27024

  136. 136.

    Bonetti A, Agostini F, Suzuki AM, Hashimoto K, Pascarella G, Gimenez J, Roos L, Nash AJ, Ghilotti M, Cameron CJF, Valentine M, Medvedeva YA, Noguchi S, Agirre E, Kashi K, Samudyata LJ, Cazzoli R, Agrawal S, Luscombe NM, Blanchette M, Kasukawa T, Hoon M, Arner E, Lenhard B, Plessy C, Castelo-Branco G, Orlando V, Carninci P (2020) RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions. Nat Commun 11:1018. https://doi.org/10.1038/s41467-020-14337-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Gavrilov AA, Zharikova AA, Galitsyna AA, Luzhin AV, Rubanova NM, Golov AK, Petrova NV, Logacheva MD, Kantidze OL, Ulianov SV, Magnitov MD, Mironov AA, Razin SV (2020) Studying RNA-DNA interactome by Red-C identifies noncoding RNAs associated with various chromatin types and reveals transcription dynamics. Nucleic Acids Res 48:6699–6714. https://doi.org/10.1093/nar/gkaa457

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Hampsey M, Singh BN, Ansari A, Laine JP, Krishnamurthy S (2011) Control of eukaryotic gene expression: gene loops and transcriptional memory. Adv Enzyme Regul 51:118–125. https://doi.org/10.1016/j.advenzreg.2010.10.001

    CAS  Article  PubMed  Google Scholar 

  139. 139.

    Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai MM, Shishkin AA, Bhat P, Takei Y, Trinh V, Aznauryan E, Russell P, Cheng C, Jovanovic M, Chow A, Cai L, McDonel P, Garber M, Guttman M (2018) Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174(744–757):e724. https://doi.org/10.1016/j.cell.2018.05.024

    CAS  Article  Google Scholar 

  140. 140.

    Quinodoz S, Bhat P, Ollikainen N, Jachowicz J, AK B, Chovanec P, Blanco M, Chow A, Markaki Y, Plath K, Guttman M (2020) RNA promotes the formation of spatial compartments in the nucleus. bioRxiv. https://doi.org/10.1101/2020.08.25.267435

  141. 141.

    Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas LM, Branco MR, Fraser J, Dostie J, Game L, Dillon N, Edwards PA, Nicodemi M, Pombo A (2017) Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543:519–524. https://doi.org/10.1038/nature21411

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Gilbert C, Svejstrup JQ (2006) RNA immunoprecipitation for determining RNA-protein associations in vivo. Curr Protoc Mol Biol 75:27.4.1–27.4.11. https://doi.org/10.1002/0471142727.mb2704s75

  143. 143.

    Hendrickson DG, Kelley DR, Tenen D, Bernstein B, Rinn JL (2016) Widespread RNA binding by chromatin-associated proteins. Genome Biol 17:28. https://doi.org/10.1186/s13059-016-0878-3

    CAS  Article  Google Scholar 

  144. 144.

    Gavrilov A, Razin SV, Cavalli G (2015) In vivo formaldehyde cross-linking: it is time for black box analysis. Brief Funct Genomics 14:163–165. https://doi.org/10.1093/bfgp/elu037

    CAS  Article  PubMed  Google Scholar 

  145. 145.

    Cheetham SW, Brand AH (2018) RNA-DamID reveals cell-type-specific binding of roX RNAs at chromatin-entry sites. Nat Struct Mol Biol 25:109–114. https://doi.org/10.1038/s41594-017-0006-4

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was done in frame of the Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”.

Funding

This work was supported by grant 075-15-2019-1661 from the Ministry of Science and Higher Education of the Russian Federation.

Author information

Affiliations

Authors

Contributions

Both authors contributed to the literature review and writing of the manuscript.

Corresponding author

Correspondence to Sergey V. Razin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Razin, S.V., Gavrilov, A.A. Non-coding RNAs in chromatin folding and nuclear organization. Cell. Mol. Life Sci. 78, 5489–5504 (2021). https://doi.org/10.1007/s00018-021-03876-w

Download citation

Keywords

  • Non-coding RNA
  • Nucleus
  • 3D genome
  • Liquid condensate
  • Transcription