Skip to main content

Venom chemistry underlying the painful stings of velvet ants (Hymenoptera: Mutillidae)

Abstract

Velvet ants (Hymenoptera: Mutillidae) are a family of solitary parasitoid wasps that are renowned for their painful stings. We explored the chemistry underlying the stings of mutillid wasps of the genus Dasymutilla Ashmead. Detailed analyses of the venom composition of five species revealed that they are composed primarily of peptides. We found that two kinds of mutillid venom peptide appear to be primarily responsible for the painful effects of envenomation. These same peptides also have defensive utility against invertebrates, since they were able to incapacitate and kill honeybees. Both act directly on cell membranes where they directly increase ion conductivity. The defensive venom peptides of Dasymutilla bear a striking similarity, in structure and mode of action, to those of the ant Myrmecia gulosa (Fabricius), suggesting either retention of ancestral toxins, or convergence driven by similar life histories and defensive selection pressures. Finally, we propose that other highly expressed Dasymutilla venom peptides may play a role in parasitisation, possible in delay or arrest of host development. This study represents the first detailed account of the composition and function of the venoms of the Mutillidae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and materials

Precursor sequences of venom peptides have been deposited with GenBank under accessions MW323130–MW323158 (D. klugii), MW323159–MW323187 (D. bioculata), MW323188–MW323215 (D. gloriosa), MW323216–MW323243 (D. occidentalis), and MW323244–MW323300 (D. sicheliana). Raw sequencing data have been deposited in the NCBI sequence read archive under accessions SRR13038346 (D. klugii), SRR13038345 (D. gloriosa), SRR13038344 (D. bioculata), SRR13038343 (D. sicheliana), and SRR13038342 (D. occidentalis).

References

  1. Brothers DJ, Lelej AS (2017) Phylogeny and higher classification of Mutillidae (Hymenoptera) based on morphological reanalyses. J Hymenopt Res 60:1–97

    Google Scholar 

  2. Schmidt JO, Blum MS (1977) Adaptations and responses of Dasymutilla occidentalis (Hymenoptera: Mutillidae) to predators. Entomol Exp Appl 21(2):99–111

    Google Scholar 

  3. Vitt LJ, Cooper WE (1988) Feeding responses of skinks (Eumeces laticeps) to velvet ants (Dasymutilla occidentalis). J Herpetol 22(4):485–488

    Google Scholar 

  4. Schmidt JO (2016) The sting of the wild. Johns Hopkins University Press, Baltimore

    Google Scholar 

  5. Schmidt JO, Blum MS, Overal WL (1983) Hemolytic activities of stinging insect venoms. Arch Insect Biochem Physiol 1(2):155–160

    Google Scholar 

  6. Gall BG, Spivey KL, Chapman TL, Delph RJ, Brodie ED Jr, Wilson JS (2018) The indestructible insect: velvet ants from across the United States avoid predation by representatives from all major tetrapod clades. Ecol Evol 8(11):5852–5862

    PubMed  PubMed Central  Google Scholar 

  7. Wilson JS, Jahner JP, Forister ML, Sheehan ES, Williams KA, Pitts JP (2015) North American velvet ants form one of the world’s largest known Mullerian mimicry complexes. Curr Biol 25(16):R704-706

    CAS  PubMed  Google Scholar 

  8. John HA (1988) Mimetic tiger beetles and the puzzle of cicindelid coloration (Coleoptera: Cicindelidae). Coleopt Bull 42(1):28–33

    Google Scholar 

  9. Jonathan RM (1994) Mimicry in Cleridae (Coleoptera). Coleopt Bull 48(2):115–125

    Google Scholar 

  10. Analia AL, Río MGD (2005) Taxonomy of the monotypic genus Trichaptus Pascoe (Coleoptera: Curculionidae: Entiminae), a potential weevil mimic of Mutillidae. Coleopt Bull 59(1):47–54

    Google Scholar 

  11. Edwards G (1984) Mimicry of velvet ants (Hymenoptera: Mutillidae) by jumping spiders (Araneae: Salticidae). Peckhamia 2(4):46–49

    Google Scholar 

  12. Nentwig W (1985) A mimicry complex between multillid wasps (Hymenoptera: Mutillidae) and spiders (Araneae). Studies on neotropical fauna and environment 20(2):113–116

    Google Scholar 

  13. Williams KA, Manley DG, Pilgrim EM, Von Dohlen CD, Pitts JP (2011) Multifaceted assessment of species validity in the Dasymutilla bioculata species group (Hymenoptera: Mutillidae). Syst Entomol 36(1):180–191

    Google Scholar 

  14. Schmidt JO, Blum MS, Overal WL (1986) Comparative enzymology of venoms from stinging Hymenoptera. Toxicon 24(9):907–921

    CAS  PubMed  Google Scholar 

  15. Baek JH, Lee SH (2010) Differential gene expression profiles in the venom gland/sac of Eumenes pomiformis (Hymenoptera: Eumenidae). Toxicon 55(6):1147–1156

    CAS  PubMed  Google Scholar 

  16. Touchard A, Tene N, Song PCT, Lefranc B, Leprince J, Treilhou M, Bonnafe E (2018) Deciphering the molecular diversity of an ant venom peptidome through a venomics approach. J Proteome Res 17(10):3503–3516

    CAS  PubMed  Google Scholar 

  17. Lin N (1964) Increased parasitic pressure as a major factor in the evolution of social behavior in halictine bees. Insectes Soc 11(2):187–192

    Google Scholar 

  18. Jordan R (1935) Die spinnenameise, Mutilla europaea, ein Bienenschadling! Deutsche Imker 48:421–427

    Google Scholar 

  19. Brothers D (1972) Biology and immature stages of Pseudomethoca f. frigida, with notes on other species (Hymenoptera: Mutillidae). Univ Kansas Sci Bull 50:1–38

    Google Scholar 

  20. Piek T (1986) Venoms of the hymenoptera: biochemical, pharmacological, and behavioural aspects. Academic Press, London, Orlando

    Google Scholar 

  21. Hoffer E (1886) Zur biologie der Mutilla europaea L. Zoologische Jahrbücher 1:679–686

    Google Scholar 

  22. Mickel CE (1928) Biological and taxonomic investigations on the mutillid wasps. Bull US Natl Mus 143:1–351

    Google Scholar 

  23. Katayama E (2008) Oviposition behavior of Mutilla mikado Cameron (Hymenoptera, Mutillidae), an ectoparasitoid of bumblebees (Hymenoptera, Apidae). Japanese Journal of Entomology 11(2):57–68

    Google Scholar 

  24. Tosteson MT, Tosteson DC (1981) The sting. Melittin forms channels in lipid bilayers. Biophys J 36(1):109–116

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Okumura K, Inui K-I, Hirai Y, Nakajima T (1981) The effect of mastoparan on ion movement in black lipid membrane. Biomed Res 2(4):450–452

    CAS  Google Scholar 

  26. Bazzo R, Tappin MJ, Pastore A, Harvey TS, Carver JA, Campbell ID (1988) The structure of melittin: a 1H-NMR study in methanol. Eur J Biochem 173(1):139–146

    CAS  PubMed  Google Scholar 

  27. Inagaki F, Shimada I, Kawaguchi K, Hirano M, Terasawa I, Ikura T, Gō N (1989) Structure of melittin bound to perdeuterated dodecylphosphocholine micelles as studied by two-dimensional NMR and distance geometry calculations. Biochemistry 28(14):5985–5991

    CAS  Google Scholar 

  28. Higashijima T, Wakamatsu K, Takemitsu M, Fujino M, Nakajima T, Miyazawa T (1983) Conformational change of mastoparan from wasp venom on binding with phospholipid membrane. FEBS Lett 152(2):227–230

    CAS  PubMed  Google Scholar 

  29. Robinson SD, Mueller A, Clayton D, Starobova H, Hamilton BR, Payne RJ, Vetter I, King GF, Undheim EAB (2018) A comprehensive portrait of the venom of the giant red bull ant, Myrmecia gulosa, reveals a hyperdiverse hymenopteran toxin gene family. Sci Adv 4(9):eaau4640

    PubMed  PubMed Central  Google Scholar 

  30. Kazandjian TD, Petras D, Robinson SD, van Thiel J, Greene HW, Arbuckle K, Barlow A, Carter DA, Wouters RM, Whiteley G, Wagstaff SC, Arias AS, Albulescu LO, Plettenberg Laing A, Hall C, Heap A, Penrhyn-Lowe S, McCabe CV, Ainsworth S, da Silva RR, Dorrestein PC, Richardson MK, Gutiérrez JM, Calvete JJ, Harrison RA, Vetter I, Undheim EAB, Wüster W, Casewell NR (2021) Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science 371(6527):386

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brothers DJ (1989) Alternative life-history styles of mutillid wasps (Insecta, Hymenoptera). In: Bruton MN (ed) Alternative life-history styles of animals. Springer, Netherlands, Dordrecht, pp 279–291

    Google Scholar 

  32. Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, Kozlov A, Podsiadlowski L, Petersen M, Lanfear R, Diez PA, Heraty J, Kjer KM, Klopfstein S, Meier R, Polidori C, Schmitt T, Liu S, Zhou X, Wappler T, Rust J, Misof B, Niehuis O (2017) Evolutionary history of the Hymenoptera. Curr Biol 27(7):1013–1018

    CAS  PubMed  Google Scholar 

  33. Mickel CE (1936) New species and records of nearctic mutillid wasps of the genus Dasymutilla (Hymenoptera). Ann Entomol Soc Am 29(1):29–60

    Google Scholar 

  34. Manley DG, Pitts JP (2007) Tropical and subtropical velvet ants of the genus Dasymutilla Ashmead (Hymenoptera: Mutillidae) with descriptions of 45 new species. Zootaxa 1487(1):1–128

    Google Scholar 

  35. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    CAS  PubMed  Google Scholar 

  37. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  38. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):1–16

    Google Scholar 

  39. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    PubMed  PubMed Central  Google Scholar 

  40. Hale JE, Butler JP, Gelfanova V, You JS, Knierman MD (2004) A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Anal Biochem 333(1):174–181

    CAS  PubMed  Google Scholar 

  41. Vetter I, Lewis RJ (2010) Characterization of endogenous calcium responses in neuronal cell lines. Biochem Pharmacol 79(6):908–920

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Australian Research Council (Discovery Project DP190103787 to G.F.K., S.D.R, I.V.) and a National Geographic Society early career grant (EC-58468R-19 to S.D.R.). GFK is supported by Principal Research Fellowship APP1136889 from the Australian National Health & Medical Research Council. Henrik Y. O’Brien assisted with specimen collection. Apis mellifera were provided by Peter Ryan.

Funding

This work was funded by the Australian Research Council (Discovery Project DP190103787 to G.F.K., S.D.R, I.V.) and a National Geographic Society early career grant (EC-58468R-19 to S.D.R.). GFK is supported by Principal Research Fellowship APP1136889 from the Australian National Health & Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, JOS, SDR; methodology, IV, JOS and SDR; investigation, TJ, AA, SHN, AHJ, JRD, JOS and SDR; writing—original draft, TJ, SDR; writing—review and editing, all authors; funding acquisition, IV, GFK and SDR; resources, IV, GFK, JOS and SDR; supervision, IV, GFK and SDR.

Corresponding author

Correspondence to Samuel D. Robinson.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Experiments involving animals or animal tissue were approved by The University of Queensland animal ethics committee (UQ AEC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 833 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jensen, T., Walker, A.A., Nguyen, S.H. et al. Venom chemistry underlying the painful stings of velvet ants (Hymenoptera: Mutillidae). Cell. Mol. Life Sci. 78, 5163–5177 (2021). https://doi.org/10.1007/s00018-021-03847-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03847-1

Keywords

  • Dasymutilla
  • Cow killer
  • Wasp
  • Pain
  • Parasitoid