Skip to main content
Log in

SUMOylation modulates the stability and function of PI3K-p110β

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Class I PI3K are heterodimers composed of a p85 regulatory subunit and a p110 catalytic subunit involved in multiple cellular functions. Recently, the catalytic subunit p110β has emerged as a class I PI3K isoform playing a major role in tumorigenesis. Understanding its regulation is crucial for the control of the PI3K pathway in p110β-driven cancers. Here we sought to evaluate the putative regulation of p110β by SUMO. Our data show that p110β can be modified by SUMO1 and SUMO2 in vitro, in transfected cells and under completely endogenous conditions, supporting the physiological relevance of p110β SUMOylation. We identify lysine residue 952, located at the activation loop of p110β, as essential for SUMOylation. SUMOylation of p110β stabilizes the protein increasing its activation of AKT which promotes cell growth and oncogenic transformation. Finally, we show that the regulatory subunit p85β counteracts the conjugation of SUMO to p110β. In summary, our data reveal that SUMO is a novel p110β interacting partner with a positive effect on the activation of the PI3K pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article. The materials used in this study are available from the corresponding authors, CR, upon reasonable request.

Code availability

Not applicable.

Abbreviations

CHX:

Cycloheximide

PI3Ks:

Phosphatidylinositol-4,5,bisphosphate 3-kinases

SUMO:

Small ubiquitin-related modifier

SENP1:

SUMO specific protease 1

References

  1. Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B (2007) Class IA phosphoinositide 3-kinases are obligate p85–p110 heterodimers. Proc Natl Acad Sci USA 104:7809–7814

    Article  CAS  PubMed  Google Scholar 

  2. Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM (2005) The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA 102:18443–18448

    Article  CAS  PubMed  Google Scholar 

  3. Kang S, Denley A, Vanhaesebroeck B, Vogt PK (2006) Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci USA 103:1289–1294

    Article  CAS  PubMed  Google Scholar 

  4. Zhao L, Vogt PK (2008) Class I PI3K in oncogenic cellular transformation. Oncogene 27:5486–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thorpe LM, Yuzugullu H, Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15:7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu J, Wjasow C, Backer JM (1998) Regulation of the p85/p110alpha phosphatidylinositol 3’-kinase. Distinct roles for the n-terminal and c-terminal SH2 domains. J Biol Chem 273:30199–30203

    Article  CAS  PubMed  Google Scholar 

  8. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM (1998) Regulation of the p85/p110 phosphatidylinositol 3’-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18:1379–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    Article  CAS  PubMed  Google Scholar 

  10. Ueki K, Fruman DA, Brachmann SM, Tseng YH, Cantley LC, Kahn CR (2002) Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol Cell Biol 22:965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holt KH, Olson L, Moye-Rowley WS, Pessin JE (1994) Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol Cell Biol 14:42–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu P, Schlessinger J (1994) Direct association of p110 beta phosphatidylinositol 3-kinase with p85 is mediated by an N-terminal fragment of p110 beta. Mol Cell Biol 14:2577–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu P, Mondino A, Skolnik EY, Schlessinger J (1993) Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol 13:7677–7688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klippel A, Escobedo JA, Hu Q, Williams LT (1993) A region of the 85-kilodalton (kDa) subunit of phosphatidylinositol 3-kinase binds the 110-kDa catalytic subunit in vivo. Mol Cell Biol 13:5560–5566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cuevas BD, Lu Y, Mao M, Zhang J, LaPushin R, Siminovitch K, Mills GB (2001) Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J Biol Chem 276:27455–27461

    Article  CAS  PubMed  Google Scholar 

  16. Mellor P, Furber LA, Nyarko JN, Anderson DH (2012) Multiple roles for the p85α isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochem J 441:23–37

    Article  CAS  PubMed  Google Scholar 

  17. de la Cruz-Herrera CF, Baz-Martínez M, Lang V, El Motiam A, Barbazán J, Couceiro R, Abal M, Vidal A, Esteban M, Muñoz-Fontela C, Nieto A, Rodríguez MS, Collado M, Rivas C (2016) Conjugation of SUMO to p85 leads to a novel mechanism of PI3K regulation. Oncogene 35:2873–2880

    Article  PubMed  Google Scholar 

  18. González-Santamaría J, Campagna M, Ortega-Molina A, Marcos-Villar L, de la Cruz-Herrera CF, González D, Gallego P, Lopitz-Otsoa F, Esteban M, Rodríguez MS, Serrano M, Rivas C (2012) Regulation of the tumor suppressor PTEN by SUMO. Cell Death Dis 3:e393. https://doi.org/10.1038/cddis.2012.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de la Cruz-Herrera CF, Campagna M, Lang V, del Carmen G-S, Marcos-Villar L, Rodriguez MS, Vidal A, Collado M, Rivas C (2015) SUMOylation regulates AKT1 activity. Oncogene 34:1442–1450

    Article  PubMed  Google Scholar 

  20. Huang J, Yan J, Zhang J, Zhu S, Wang Y, Shi T, Zhu C, Chen C, Liu X, Cheng J, Mustelin T, Feng GS, Chen G, Yu J (2012) SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat Commun 3:911

    Article  PubMed  Google Scholar 

  21. Li R, Wei J, Jiang C, Liu D, Deng L, Zhang K, Wang P (2013) Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res 73:5742–5753

    Article  CAS  PubMed  Google Scholar 

  22. Risso G, Pelisch F, Pozzi B, Mammi P, Blaustein M, Colman-Lerner A, Srebrow A (2013) Modification of Akt by SUMO conjugation regulates alternative splicing and cell cycle. Cell Cycle 12:3165–3174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cotter CA, Earl PL, Wyatt LS, Moss B (2017) Preparation of cell cultures and vaccinia virus stocks. Curr Protoc Protein Sci 89:5.12.1-5.12.18

    Article  Google Scholar 

  24. Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233–239

    Article  CAS  PubMed  Google Scholar 

  25. Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics 5:2298–2310

    Article  CAS  PubMed  Google Scholar 

  26. Dbouk HA, Backer JM (2013) Novel approaches to inhibitor design for the p110β phosphoinositide 3-kinase. Trends Pharmacol Sci 34:149–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Campagna M, Marcos-Villar L, Arnoldi F, de la Cruz-Herrera CF, Gallego P, Gonzalez-Santamaria J, Gonzalez D, Lopitz-Otsoa F, Rodríguez MS, Burrone OR, Rivas C (2012) Rotavirus viroplasm proteins interact with the cellular SUMOylation system: implications for viroplasm-like structure formation. J Virol 87:807–817

    Article  PubMed  Google Scholar 

  28. Barysch SV, Dittner C, Flotho A, Becker J, Melchior F (2014) Identification and analysis of endogenous SUMO1 and SUMO2/3 targets in mammalian cells and tissues using monoclonal antibodies. Nat Protoc 9:896–909

    Article  CAS  PubMed  Google Scholar 

  29. Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB, Amzel LM (2007) The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 318:1744–1748

    Article  CAS  PubMed  Google Scholar 

  30. Hendriks IA, Lyon D, Su D, Skotte NH, Daniel JA, Jensen LJ, Nielsen ML (2018) Site-specific characterization of endogenous SUMOylation across species and organs. Nat Commun 9:2456

    Article  PubMed  PubMed Central  Google Scholar 

  31. Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385

    Article  CAS  PubMed  Google Scholar 

  32. Pazarentzos E, Giannikopoulos P, Hrustanovic G, St John J, Olivas VR, Gubens MA, Balassanian R, Weissman J, Polkinghorn W, Bivona TG (2016) Oncogenic activation of the PI3-kinase p110β isoform via the tumor-derived PIK3Cβ(D1067V) kinase domain mutation. Oncogene 35:1198–1205

    Article  CAS  PubMed  Google Scholar 

  33. Zhang M, Jang H, Nussinov R (2020) Structural features that distinguish inactive and active PI3K lipid kinases. J Mol Biol. https://doi.org/10.1016/j.jmb.2020.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang X, Vadas O, Perisic O, Anderson KE, Clark J, Hawkins PT, Stephens LR, Williams RL (2011) Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol Cell 41:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saw G, Krishna K, Gupta N, Soong TW, Mallilankaraman K, Sajikumar S, Dheen ST (2020) Epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway involved in long-term potentiation and synaptic plasticity in rats. Glia 68:656–569

    Article  PubMed  Google Scholar 

  36. Becher I, Andrés-Pons A, Romanov N, Stein F, Schramm M, Baudin F, Helm D, Kurzawa N, Mateus A, Mackmull MT, Typas A, Müller CW, Bork P, Beck M, Savitski M (2018) pervasive protein thermal stability variation during the cell cycle. Cell 173:1495–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wee S, Wiederschain D, Maira SM, Loo A, Miller C, deBeaumont R, Stegmeier F, Yao YM, Lengauer C (2008) PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci USA 105:13057–13062

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr, Jonathan M Backer for kindly providing the myc-p110β plasmid and Dr. Lewis Cantley for the HA-tagged p110α expression plasmid. Funding at the laboratory of CR is provided by Ministry of Science, Innovation and Universities and FEDER (BFU-2017–88,880-P) and Xunta de Galicia (ED431G 2019/02). SV and RS are predoctoral fellows funded by Xunta de Galicia-Consellería de Cultura, Educación y Ordenación Universitaria (ED481A-2018/110 and ED481A-2020/160, respectively).

Funding

Funding at the laboratory of CR is provided by Ministry of Science, Innovation and Universities and FEDER (BFU-2017-88880-P) and Xunta de Galicia (ED431G 2019/02). The laboratory of MC is funded by grant RTI2018-095818-B-100 (MCIU/AEI/ FEDER, UE). SV and RS are predoctoral fellows funded by Xunta de Galicia-Consellería de Cultura, Educación y Ordenación Universitaria (ED481A-2018/110 and ED481A-2020/160, respectively).

Author information

Authors and Affiliations

Authors

Contributions

AEM, CFC-H, SV, RS, YHB, and MB-M conducted the experiments; ME and MSR generated reagents; AV, MSR, ME, MC, EL, and CR analyzed the results; CR, designed the experiments and wrote the paper.

Corresponding author

Correspondence to Carmen Rivas.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclosure.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Motiam, A., de la Cruz-Herrera, C.F., Vidal, S. et al. SUMOylation modulates the stability and function of PI3K-p110β. Cell. Mol. Life Sci. 78, 4053–4065 (2021). https://doi.org/10.1007/s00018-021-03826-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03826-6

Keywords

Navigation