Skip to main content
Log in

Molecular and neural mechanisms regulating sexual motivation of virgin female Drosophila

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

During courtship, multiple information sources are integrated in the brain to reach a final decision, i.e., whether or not to mate. The brain functions for this complex behavior can be investigated by genetically manipulating genes and neurons, and performing anatomical, physiological, and behavioral analyses. Drosophila is a powerful model experimental system for such studies, which need to be integrated from molecular and cellular levels to the behavioral level, and has enabled pioneering research to be conducted. In male flies, which exhibit a variety of characteristic sexual behaviors, we have accumulated knowledge of many genes and neural circuits that control sexual behaviors. On the other hand, despite the importance of the mechanisms of mating decision-making in females from an evolutionary perspective (such as sexual selection), research on the mechanisms that control sexual behavior in females has progressed somewhat slower. In this review, we focus on the pre-mating behavior of female Drosophila melanogaster, and introduce previous key findings on the neuronal and molecular mechanisms that integrate sensory information and selective expression of behaviors toward the courting male.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Krstic D, Boll W, Noll M (2009) Sensory integration regulating male courtship behavior in Drosophila. PLoS One 4(2):e4457. https://doi.org/10.1371/journal.pone.0004457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spieth HT (1952) Mating behavior within the genus Drosophila (Diptera). Bull Am Mus Nat Hist 99(7):401–474

    Google Scholar 

  3. Connolly K, Cook R (1973) Rejection responses by female Drosophila-melanogaster—their ontogeny, causality and effects upon behavior of courting male. Behaviour 44(1–2):142–166. https://doi.org/10.1163/156853973x00364

    Article  Google Scholar 

  4. Lasbleiz C, Ferveur JF, Everaerts C (2006) Courtship behaviour of Drosophila melanogaster revisited. Anim Behav 72:1001–1012. https://doi.org/10.1016/j.anbehav.2006.01.027

    Article  Google Scholar 

  5. Dickson BJ (2008) Wired for sex: the neurobiology of drosophila mating decisions. Science 322(5903):904–909. https://doi.org/10.1126/science.1159276

    Article  CAS  PubMed  Google Scholar 

  6. Aranha MM, Vasconcelos ML (2018) Deciphering Drosophila female innate behaviors. Curr Opin Neurobiol 52:139–148. https://doi.org/10.1016/j.conb.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  7. Ferveur JF (2010) Drosophila female courtship and mating behaviors: sensory signals, genes, neural structures and evolution. Curr Opin Neurobiol 20(6):764–769. https://doi.org/10.1016/j.conb.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  8. Pavlou HJ, Goodwin SF (2013) Courtship behavior in Drosophila melanogaster: towards a 'courtship connectome'. Curr Opin Neurobiol 23(1):76–83. https://doi.org/10.1016/j.conb.2012.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tompkins L, Gross AC, Hall JC, Gailey DA, Siegel RW (1982) The role of female movement in the sexual-behavior of Drosophila-melanogaster. Behav Genet 12(3):295–307. https://doi.org/10.1007/Bf01067849

    Article  CAS  PubMed  Google Scholar 

  10. Markow TA, Hanson SJ (1981) Multivariate-analysis of Drosophila courtship.  Proc Natl Acad Sci USA 78(1):430–434. https://doi.org/10.1073/pnas.78.1.430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bussell JJ, Yapici N, Zhang SX, Dickson BJ, Vosshall LB (2014) Abdominal-B neurons control Drosophila virgin female receptivity. Curr Biol 24(14):1584–1595. https://doi.org/10.1016/j.cub.2014.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aranha MM, Herrmann D, Cachitas H, Neto-Silva RM, Dias S, Vasconcelos ML (2017) Apterous brain neurons control receptivity to male courtship in Drosophila melanogaster females. Sci Rep 7:46242. https://doi.org/10.1038/srep46242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Howard RW, Blomquist GJ (1982) Chemical ecology and biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149–172

    CAS  Google Scholar 

  14. Ferveur JF (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 35(3):279–295

    PubMed  Google Scholar 

  15. Marcillac F, Houot B, Ferveur JF (2005) Revisited roles of Drosophila female pheromones. Chem Senses 30:I273-i274

    CAS  PubMed  Google Scholar 

  16. Vijayan V, Thistle R, Liu T, Starostina E, Pikielny CW (2014) Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity. PLoS Genet 10(3):1004238. https://doi.org/10.1371/journal.pgen.1004238

    Article  CAS  Google Scholar 

  17. Grillet M, Dartevelle L, Ferveur JF (2006) A Drosophila male pheromone affects female sexual receptivity. P Roy Soc B-Biol Sci 273(1584):315–323

    CAS  Google Scholar 

  18. Miyamoto T, Amrein H (2008) Suppression of male courtship by a Drosophila pheromone receptor. Nat Neurosci 11(8):874–876

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang LM, Han XQ, Mehren J, Hiroi M, Billeter JC, Miyamoto T, Amrein H, Levine JD, Anderson DJ (2011) Hierarchical chemosensory regulation of male-male social interactions in Drosophila. Nat Neurosci 14(6):757-U392

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446(7135):542–546

    CAS  PubMed  Google Scholar 

  21. Datta SR, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K, Dickson BJ, Axel R (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452(7186):473–477

    CAS  PubMed  Google Scholar 

  22. Ruta V, Datta SR, Vasconcelos ML, Freeland J, Looger LL, Axel R (2010) A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468(7324):686-U106

    CAS  PubMed  Google Scholar 

  23. Lebreton S, Grabe V, Omondi AB, Ignell R, Becher PG, Hansson BS, Sachse S, Witzgall P (2014) Love makes smell blind: mating suppresses pheromone attraction in Drosophila females via Or65a olfactory neurons. Sci Rep 4:7119. https://doi.org/10.1038/srep07119

    Article  PubMed  PubMed Central  Google Scholar 

  24. Laughlin JD, Ha TS, Jones DNM, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133(7):1255–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gomez-Diaz C, Reina JH, Cambillau C, Benton R (2013) Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins. PLoS Biol 11(4):e1001546. https://doi.org/10.1371/journal.pbio.1001546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bentzur A, Shmueli A, Omesi L, Ryvkin J, Knapp JM, Parnas M, Davis FP, Shohat-Ophir G (2018) Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila. PLoS Genet 14(4):e1007328. https://doi.org/10.1371/journal.pgen.1007328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Das S, Trona F, Khallaf MA, Schuh E, Knaden M, Hansson BS, Sachse S (2017) Electrical synapses mediate synergism between pheromone and food odors in Drosophila melanogaster. Proc Natl Acad Sci USA 114(46):E9962–E9971

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lebreton S, Trona F, Borrero-Echeverry F, Bilz F, Grabe V, Becher PG, Carlsson MA, Nassel DR, Hansson BS, Sachse S, Witzgall P (2015) Feeding regulates sex pheromone attraction and courtship in Drosophila females. Sci Rep 5:13132. https://doi.org/10.1038/srep13132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kohl J, Ostrovsky AD, Frechter S, Jefferis GSXE (2013) A bidirectional circuit switch reroutes pheromone signals in male and female brains. Cell 155(7):1610–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Everaerts C, Farine JP, Cobb M, Ferveur JF (2010) Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS One 5(3):e9607. https://doi.org/10.1371/journal.pone.0009607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scott D, Richmond RC (1987) Evidence against an antiaphrodisiac role for cis-vaccenyl acetate in Drosophila-melanogaster. J Insect Physiol 33(5):363–369

    CAS  Google Scholar 

  32. Davis RL (2007) The scent of Drosophila sex. Neuron 54(1):14–16

    CAS  PubMed  Google Scholar 

  33. Ferveur JF, Sureau G (1996) Simultaneous influence on male courtship of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proc Roy Soc B-Biol Sci 263(1373):967–973

    CAS  Google Scholar 

  34. Antony C, Jallon JM (1982) The chemical basis for sex recognition in Drosophila-melanogaster. J Insect Physiol 28(10):873–880

    CAS  Google Scholar 

  35. Billeter JC, Levine JD (2013) Who is he and what is he to you? Recognition in Drosophila melanogaster. Curr Opin Neurobiol 23(1):17–23. https://doi.org/10.1016/j.conb.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  36. Jallon JM, Antony C, Benamar O (1981) An anti-aphrodisiac produced by Drosophila-melanogaster males and transferred to females during copulation. Cr Acad Sci III-Vie 292(21):1147–1149

    Google Scholar 

  37. Zawistowski S, Richmond RC (1986) Inhibition of courtship and mating of Drosophila-melanogaster by the male-produced lipid cis-vaccenyl acetate. J Insect Physiol 32(3):189–192

    CAS  Google Scholar 

  38. Bennet-Clark H (1969) Pulse interval as a critical parameter in the courtship song of Drosophila melanogaster. Anim Behav 17:755–759

    Google Scholar 

  39. Manning A (1967) Antennae and sexual receptivity in Drosophila melanogaster females. Science 158(3797):136–137

    CAS  PubMed  Google Scholar 

  40. Yorozu S, Wong A, Fischer BJ, Dankert H, Kernan MJ, Kamikouchi A, Ito K, Anderson DJ (2009) Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 458(7235):201-U204

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shorey HH (1962) Nature of the sound produced by Drosophila melanogaster during courtship. Science 137(3531):677–678. https://doi.org/10.1126/science.137.3531.677

    Article  CAS  PubMed  Google Scholar 

  42. Talyn BC, Dowse HB (2004) The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Anim Behav 68:1165–1180

    Google Scholar 

  43. Blyth JE, Lachaise D, Ritchie MG (2008) Divergence in multiple courtship song traits between Drosophila santomea and D-Yakuba. Ethology 114(7):728–736

    Google Scholar 

  44. Saarikettu M, Liimatainen JO, Hoikkala A (2005) The role of male courtship song in species recognition in Drosophila montana. Behav Genet 35(3):257–263

    CAS  PubMed  Google Scholar 

  45. Coen P, Clemens J, Weinstein AJ, Pacheco DA, Deng Y, Murthy M (2014) Dynamic sensory cues shape song structure in Drosophila. Nature 507(7491):233–237

    CAS  PubMed  Google Scholar 

  46. Coen P, Xie M, Clemens J, Murthy M (2016) Sensorimotor transformations underlying variability in song intensity during Drosophila courtship. Neuron 89(3):629–644. https://doi.org/10.1016/j.neuron.2015.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hall JC (1994) The mating of a fly. Science 264(5166):1702–1714. https://doi.org/10.1126/science.8209251

    Article  CAS  PubMed  Google Scholar 

  48. Arthur BJ, Sunayama-Morita T, Coen P, Murthy M, Stern DL (2013) Multi-channel acoustic recording and automated analysis of Drosophila courtship songs. Bmc Biol 11:1–11

    Google Scholar 

  49. Yamada D, Ishimoto H, Li XD, Kohashi T, Ishikawa Y, Kamikouchi A (2018) GABAergic local interneurons shape female fruit fly response to mating songs. J Neurosci 38(18):4329–4347

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Li XD, Ishimoto H, Kamikouchi A (2018) Auditory experience controls the maturation of song discrimination and sexual response in Drosophila. eLife 7:e34348. https://doi.org/10.7554/eLife.34348

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mezzera C, Brotas M, Gaspar M, Pavlou HJ, Goodwin SF, Vasconcelos ML (2020) Ovipositor extrusion promotes the transition from courtship to copulation and signals female acceptance in Drosophila melanogaster. Curr Biol  30(19):3736–3748.e5. https://doi.org/10.1016/j.cub.2020.06.071

    Article  CAS  PubMed  Google Scholar 

  52. Wang F, Wang K, Forknall N, Parekh R, Dickson BJ (2020) Circuit and behavioral mechanisms of sexual rejection by Drosophila females. Curr Biol 30(19):3749–3760.e3. https://doi.org/10.1016/j.cub.2020.07.083

    Article  CAS  PubMed  Google Scholar 

  53. Tomaru M, Doi M, Higuchi H, Oguma Y (2000) Courtship song recognition in the Drosophila melanogaster complex: heterospecific songs make females receptive in D-melanogaster, but not in D-sechellia. Evolution 54(4):1286–1294

    CAS  PubMed  Google Scholar 

  54. Kamikouchi A, Shimada T, Ito K (2006) Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J Comp Neurol 499(3):317–356

    PubMed  Google Scholar 

  55. Kamikouchi A, Inagaki HK, Effertz T, Hendrich O, Fiala A, Gopfert MC, Ito K (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458(7235):165-U161

    CAS  PubMed  Google Scholar 

  56. Lai JSY, Lo SJ, Dickson BJ, Chiang AS (2012) Auditory circuit in the Drosophila brain. Proc Natl Acad Sci USA 109(7):2607–2612

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vaughan AG, Zhou C, Manoli DS, Baker BS (2014) Neural pathways for the detection and discrimination of conspecific song in D. melanogaster. Curr Biol 24(10):1039–1049

    CAS  PubMed  Google Scholar 

  58. Zhou C, Franconville R, Vaughan AG, Robinett CC, Jayaraman V, Baker BS (2015) Central neural circuitry mediating courtship song perception in male Drosophila. eLife 4:e08477. https://doi.org/10.7554/eLife.08477

    Article  PubMed Central  Google Scholar 

  59. Pacheco DA, Thiberge SY, Pnevmatikakis E, Murthy M (2021) Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat Neurosci 24(1):93–104. https://doi.org/10.1038/s41593-020-00743-y

    Article  CAS  PubMed  Google Scholar 

  60. Zheng ZH, Lauritzen JS, Perlman E, Robinson CG, Nichols M, Milkie D, Torrens O, Price J, Fisher CB, Sharifi N, Calle-Schuler SA, Kmecova L, Ali IJ, Karsh B, Trautman ET, Bogovic JA, Hanslovsky P, Jefferis GSXE, Kazhdan M, Khairy K, Saalfeld S, Fetter RD, Bock DD (2018) A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174(3):730–743

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Robie AA, Hirokawa J, Edwards AW, Umayam LA, Lee A, Phillips ML, Card GM, Korff W, Rubin GM, Simpson JH, Reiser MB, Branson K (2017) Mapping the neural substrates of behavior. Cell 170(2):393–406

    CAS  PubMed  Google Scholar 

  62. Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft L, Aibar S, Makhzami S, Christiaens V, Gonzalez-Blas CB, Poovathingal S, Hulselmans G, Spanier KI, Moerman T, Vanspauwen B, Geurs S, Voet T, Lammertyn J, Thienpont B, Liu S, Konstantinides N, Fiers M, Verstreken P, Aerts S (2018) A single-cell transcriptome atlas of the aging Drosophila brain. Cell 174(4):982–998

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Luan HJ, Wan KH, Peabody NC, White BH (2006) Dissection of a neuronal network required for wing expansion using a novel split Gal4 system. J Neurogenet 20(3–4):168–169

    Google Scholar 

  64. Pfeiffer BD, Ngo TTB, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186(2):735–755

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Baker CA, McKellar C, Nern A, Dorkenwald S, Dickson BJ, Murthy M (2020) Neural network organization for courtship song feature detection in Drosophila. bioRxiv 2020.10.08.332148; https://doi.org/10.1101/2020.10.08.332148

  66. Wang K, Wang F, Forknall N, Yang T, Patrick C, Parekh R, Dickson BJ (2021) Neural circuit mechanisms of sexual receptivity in Drosophila females. Nature 589(7843):577–581. https://doi.org/10.1038/s41586-020-2972-7

    Article  CAS  PubMed  Google Scholar 

  67. Partridge L, Farquhar M (1983) Lifetime mating success of male fruitflies (Drosophila-melanogaster) is related to their size. Anim Behav 31(3):871–877

    Google Scholar 

  68. Partridge L, Ewing A, Chandler A (1987) Male size and mating success in Drosophila-melanogaster—the roles of male and female behavior. Anim Behav 35:555–562

    Google Scholar 

  69. Partridge L, Hoffmann A, Jones JS (1987) Male size and mating success in Drosophila-melanogaster and Drosophila-pseudoobscura under field conditions. Anim Behav 35:468–476

    Google Scholar 

  70. Jagadeeshan S, Shah U, Chakrabarti D, Singh RS (2015) Female choice or male sex drive? The advantages of male body size during mating in Drosophila melanogaster. PLoS One 10(12):e0144672. https://doi.org/10.1371/journal.pone.0144672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tomaru M, Yamada H (2011) Courtship of Drosophila, with a special interest in courtship songs. Teion Kagaku 69:61–85

    Google Scholar 

  72. Edwards KA, Doescher LT, Kaneshiro KY, Yamamoto D (2007) A database of wing diversity in the Hawaiian Drosophila. PLoS One 2(5):e487. https://doi.org/10.1371/journal.pone.0000487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fuyama Y (1979) A visual stimulus in the courtship of Drosophila suzukii. Experientia 35(10):1327–1328

    Google Scholar 

  74. Watanabe K, Suzuki Y, Inami S, Ohashi H, Sakai T (2018) Light is required for proper female mate choice between winged and wingless males in Drosophila. Genes Genet Syst 93(3):119–123

    PubMed  Google Scholar 

  75. Schretter CE, Aso Y, Robie AA, Dreher M, Dolan MJ, Chen N, Ito M, Yang T, Parekh R, Branson KM, Rubin GM (2020) Cell types and neuronal circuitry underlying female aggression in Drosophila. eLife 9:e58942. https://doi.org/10.7554/eLife.58942.

  76. Wu M, Nern A, Williamson WR, Morimoto MM, Reiser MB, Card GM, Rubin GM (2016) Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. eLife 5:e21022. https://doi.org/10.7554/eLife.21022.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ribeiro IMA, Drews M, Bahl A, Machacek C, Borst A, Dickson BJ (2018) Visual projection neurons mediating directed courtship in Drosophila. Cell 174(3):607–621

    CAS  PubMed  Google Scholar 

  78. Manning A (1967) The control of sexual receptivity in female Drosophila. Anim Behav 15(2):239–250. https://doi.org/10.1016/0003-3472(67)90006-1

    Article  CAS  PubMed  Google Scholar 

  79. Ringo J, Werczberger R, Altaratz M, Segal D (1991) Female sexual receptivity is defective in juvenile hormone-deficient mutants of the apterous gene of Drosophila-melanogaster. Behav Genet 21(5):453–469

    CAS  PubMed  Google Scholar 

  80. Bilen J, Atallah J, Azanchi R, Levine JD, Riddiford LM (2013) Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster. Proc Natl Acad Sci USA 110(45):18321–18326. https://doi.org/10.1073/pnas.1318119110

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gorter JA, Jagadeesh S, Gahr C, Boonekamp JJ, Levine JD, Billeter JC (2016) The nutritional and hedonic value of food modulate sexual receptivity in Drosophila melanogaster females. Sci Rep 6:19441. https://doi.org/10.1038/srep19441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu HF, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci USA 100(17):9929–9933

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang CH, Rumpf S, Xiang Y, Gordon MD, Song W, Jan LY, Jan YN (2009) Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61(4):519–526. https://doi.org/10.1016/j.neuron.2008.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hasemeyer M, Yapici N, Heberlein U, Dickson BJ (2009) Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61(4):511–518. https://doi.org/10.1016/j.neuron.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  85. Rezaval C, Pavlou HJ, Dornan AJ, Chan YB, Kravitz EA, Goodwin SF (2012) Neural circuitry underlying Drosophila female postmating behavioral responses. Curr Biol 22(13):1155–1165. https://doi.org/10.1016/j.cub.2012.04.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yapici N, Kim YJ, Ribeiro C, Dickson BJ (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451(7174):33–37

    PubMed  Google Scholar 

  87. Feng K, Palfreyman MT, Hasemeyer M, Talsma A, Dickson BJ (2014) Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron 83(1):135–148. https://doi.org/10.1016/j.neuron.2014.05.017

    Article  CAS  PubMed  Google Scholar 

  88. Jang YH, Chae HS, Kim YJ (2017) Female-specific myoinhibitory peptide neurons regulate mating receptivity in Drosophila melanogaster. Nat Commun 8(1):1630. https://doi.org/10.1038/s41467-017-01794-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kubli E (2003) Sex-peptides: seminal peptides of the Drosophila male. Cell Mol Life Sci 60(8):1689–1704. https://doi.org/10.1007/s00018-003-3052

    Article  CAS  PubMed  Google Scholar 

  90. Polak M, Starmer WT, Barker JSF (1998) A mating plug and male mate choice in Drosophila hibisci Bock. Anim Behav 56(4):919–926. https://doi.org/10.1006/anbe.1998.0850

    Article  CAS  PubMed  Google Scholar 

  91. Polak M, Wolf LL, Starmer WT, Barker JSF (2001) Function of the mating plug in Drosophila hibisci Bock. Behav Ecol Sociobiol 49(2–3):196–205

    Google Scholar 

  92. Laturney M, Billeter JC (2016) Drosophila melanogaster females restore their attractiveness after mating by removing male anti-aphrodisiac pheromones. Nat Commun 7(1):1–11

    Google Scholar 

  93. Wigby S, Slack C, Gronke S, Martinez P, Calboli FC, Chapman T, Partridge L (2011) Insulin signalling regulates remating in female Drosophila. Proc Biol Sci 278(1704):424–431. https://doi.org/10.1098/rspb.2010.1390

    Article  CAS  PubMed  Google Scholar 

  94. Lee KM, Daubnerova I, Isaac RE, Zhang C, Choi S, Chung J, Kim YJ (2015) A neuronal pathway that controls sperm ejection and storage in female Drosophila. Curr Biol 25(6):790–797

    CAS  PubMed  Google Scholar 

  95. Cannell E, Dornan AJ, Halberg KA, Terhzaz S, Dow JAT, Davies SA (2016) The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster. Peptides 80:96–107. https://doi.org/10.1016/j.peptides.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zandawala M, Marley R, Davies SA, Nassel DR (2018) Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila. Cell Mol Life Sci 75(6):1099–1115

    CAS  PubMed  Google Scholar 

  97. Cachero S, Ostrovsky AD, Yu JY, Dickson BJ, Jefferis GSXE (2010) Sexual dimorphism in the fly brain. Curr Biol 20(18):1589–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yu JY, Kanai MI, Demir E, Jefferis GSXE, Dickson BJ (2010) Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr Biol 20(18):1602–1614

    CAS  PubMed  Google Scholar 

  99. Auer T, Benton R (2016) Sexual circuitry in Drosophila. Curr Opin Neurobiol 38:18–26

    CAS  PubMed  Google Scholar 

  100. Manoli DS, Fan P, Fraser EJ, Shah NM (2013) Neural control of sexually dimorphic behaviors. Curr Opin Neurobiol 23(3):330–338

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Siwicki KK, Kravitz EA (2009) Fruitless, doublesex and the genetics of social behavior in Drosophila melanogaster. Curr Opin Neurobiol 19(2):200–206

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sato K, Yamamoto D (2014) An epigenetic switch of the brain sex as a basis of gendered behavior in Drosophila. Adv Genet 86:45–63

    CAS  PubMed  Google Scholar 

  103. Zhou C, Pan YF, Robinett CC, Meissner GW, Baker BS (2014) Central brain neurons expressing doublesex regulate female receptivity in Drosophila. Neuron 83(1):149–163

    CAS  PubMed  Google Scholar 

  104. Rideout EJ, Dornan AJ, Neville MC, Eadie S, Goodwin SF (2010) Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nat Neurosci 13(4):458–466

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Robinett CC, Vaughan AG, Knapp JM, Baker BS (2010) Sex and the single cell. II. There is a time and place for sex. PloS Biol 8(5):e1000365

    PubMed  PubMed Central  Google Scholar 

  106. Kimura K, Sato C, Koganezawa M, Yamamoto D (2015) Drosophila ovipositor extension in mating behavior and egg deposition involves distinct sets of brain interneurons. PLoS One 10(5):e0126445. https://doi.org/10.1371/journal.pone.0126445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Deutsch D, Clemens J, Thiberge SY, Guan G, Murthy M (2019) Shared song detector neurons in Drosophila male and female brains drive sex-specific behaviors. Curr Biol 29(19):3200–3215. https://doi.org/10.1016/j.cub.2019.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Suzuki K, Juni N, Yamamoto D (1997) Enhanced mate refusal in female Drosophila induced by a mutation in the spinster locus. Appl Entomol Zool 32(1):235–243

    Google Scholar 

  109. Nakano Y, Fujitani K, Kurihara J, Ragan J, Usui-Aoki K, Shimoda L, Lukacsovich T, Suzuki K, Sezaki M, Sano Y, Ueda R, Awano W, Kaneda M, Umeda M, Yamamoto D (2001) Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol Cell Biol 21(11):3775–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sakurai A, Koganezawa M, Yasunaga K, Emoto K, Yamamoto D (2013) Select interneuron clusters determine female sexual receptivity in Drosophila. Nat Commun 4:1–9

    Google Scholar 

  111. van Naters WVG, Carlson JR (2007) Receptors and neurons for fly odors in Drosophila. Curr Biol 17(7):606–612

    Google Scholar 

  112. Ueda A, Kidokoro Y (2002) Aggressive behaviours of female Drosophila melanogaster are influenced by their social experience and food resources. Physiol Entomol 27(1):21–28

    Google Scholar 

  113. Bath E, Bowden S, Peters C, Reddy A, Tobias JA, Easton-Calabria E, Seddon N, Goodwin SF, Wigby S (2017) Sperm and sex peptide stimulate aggression in female Drosophila. Nat Ecol Evol 1(6):0154. https://doi.org/10.1038/s41559-017-0154

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bath E, Morimoto J, Wigby S (2018) The developmental environment modulates mating-induced aggression and fighting success in adult female Drosophila. Funct Ecol 32(11):2542–2552. https://doi.org/10.1111/1365-2435.13214

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nilsen SP, Chan YB, Huber R, Kravitz EA (2004) Gender-selective patterns of aggressive behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 101(33):12342–12347. https://doi.org/10.1073/pnas.0404693101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hoffmann AA (1990) The influence of age and experience with conspecifics on territorial behavior in Drosophila-melanogaster. J Insect Behav 3(1):1–12

    Google Scholar 

  117. Sturtevant AH (1915) Experiments on sex recognition and the problem of sexual selection in Drosophila. J Anim Behav 5:351–366. https://doi.org/10.1037/h0074109.

    Article  Google Scholar 

  118. Shelly TE (1999) Defense of oviposition sites by female oriental fruit flies (Diptera: Tephritidae). Fla Entomol 82:339–346

    Google Scholar 

  119. Lim RS, Eyjolfsdottir E, Shin E, Perona P, Anderson DJ (2014) How food controls aggression in Drosophila. PLoS One 9(8):e105626. https://doi.org/10.1371/journal.pone.0105626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zwarts L, Versteven M, Callaerts P (2012) Genetics and neurobiology of aggression in Drosophila. Fly (Austin) 6(1):35–48. https://doi.org/10.4161/fly.19249

    Article  CAS  PubMed Central  Google Scholar 

  121. Kravitz EA, Fernandez MP (2015) Aggression in Drosophila. Behav Neurosci 129(5):549–563. https://doi.org/10.1037/bne0000089

    Article  PubMed  Google Scholar 

  122. Li JF, Zhang W, Guo ZH, Wu S, Jan LY, Jan YN (2016) A Defensive kicking behavior in response to mechanical stimuli mediated by Drosophila wing margin bristles. J Neurosci 36(44):11275–11282

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu C, Zhang B, Zhang L, Yang T, Zhang Z, Gao Z, Zhang W (2020) A neural circuit encoding mating states tunes defensive behavior in Drosophila. Nat Commun 11(1):3962. https://doi.org/10.1038/s41467-020-17771-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Asahina K (2018) Sex differences in Drosophila behavior: qualitative and quantitative dimorphism. Curr Opin Physiol 6:35–45. https://doi.org/10.1016/j.cophys.2018.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yamamoto D (2007) The neural and genetic substrates of sexual behavior in Drosophila. Genetics of sexual differentiation and sexually dimorphic behaviors. Elsevier, pp 39–66

    Google Scholar 

  126. Yamamoto D, Koganezawa M (2013) Genes and circuits of courtship behaviour in Drosophila males. Nat Rev Neurosci 14(10):681–692

    CAS  PubMed  Google Scholar 

  127. Palavicino-Maggio CB, Chan YB, McKellar C, Kravitz EA (2019) A small number of cholinergic neurons mediate hyperaggression in female Drosophila. Proc Natl Acad Sci USA 116(34):17029–17038. https://doi.org/10.1073/pnas.1907042116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang CH, Belawat P, Hafen E, Jan LY, Jan YN (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319(5870):1679–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Namiki S, Dickinson MH, Wong AM, Korff W, Card GM (2018) The functional organization of descending sensory-motor pathways in Drosophila. eLife 7:e34272. https://doi.org/10.7554/eLife.34272

    PubMed  PubMed Central  Google Scholar 

  130. Seelig JD, Jayaraman V (2013) Feature detection and orientation tuning in the Drosophila central complex. Nature 503(7475):262–266

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang ZP, Pan YF, Li WZ, Jiang HQ, Chatzimanolis L, Chang JH, Gong ZF, Liu L (2008) Visual pattern memory requires foraging function in the central complex of Drosophila. Learn Mem 15(3):133–142

    PubMed  PubMed Central  Google Scholar 

  132. Pan YF, Zhou YQ, Guo C, Gong HY, Gong ZF, Liu L (2009) Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem 16(5):289–295

    PubMed  Google Scholar 

  133. Neuser K, Triphan T, Mronz M, Poeck B, Strauss R (2008) Analysis of a spatial orientation memory in Drosophila. Nature 453(7199):1244–1247

    CAS  PubMed  Google Scholar 

  134. Ofstad TA, Zuker CS, Reiser MB (2011) Visual place learning in Drosophila melanogaster. Nature 474(7350):204-U240

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Park JY, Dus M, Kim S, Abu F, Kanai MI, Rudy B, Suh GSB (2016) Drosophila SLC5A11 mediates hunger by regulating K+ channel activity. Curr Biol 26(15):1965–1974

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Dus M, Ai MR, Suh GSB (2013) Taste-independent nutrient selection is mediated by a brain-specific Na+/solute co-transporter in Drosophila. Nat Neurosci 16(5):526–528

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu S, Liu QL, Tabuchi M, Wu MN (2016) Sleep drive is encoded by neural plastic changes in a dedicated circuit. Cell 165(6):1347–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ishimoto H, Kamikouchi A (2020) A feedforward circuit regulates action selection of pre-mating courtship behavior in female Drosophila. Curr Biol 30(3):396–407

    CAS  PubMed  Google Scholar 

  139. Martin-Pena A, Acebes A, Rodriguez JR, Chevalier V, Casas-Tinto S, Triphan T, Strauss R, Ferrus A (2014) Cell types and coincident synapses in the ellipsoid body of Drosophila. Eur J Neurosci 39(10):1586–1601

    PubMed  Google Scholar 

  140. Hanesch U, Fischbach KF, Heisenberg M (1989) Neuronal architecture of the central complex in Drosophila-Melanogaster. Cell Tissue Res 257(2):343–366

    Google Scholar 

  141. Omoto JJ, Keles MF, Nguyen BCM, Bolanos C, Lovick JK, Frye MA, Hartenstein V (2017) Visual input to the Drosophila central complex by developmentally and functionally distinct neuronal populations. Curr Biol 27(8):1098–1110

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Renn SCP, Armstrong JD, Yang MY, Wang ZS, An X, Kaiser K, Taghert PH (1999) Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol 41(2):189–207

    CAS  PubMed  Google Scholar 

  143. Omoto JJ, Nguyen BCM, Kandimalla P, Lovick JK, Donlea JM, Hartenstein V (2018) Neuronal constituents and putative interactions within the Drosophila ellipsoid body neuropil. Front Neural Circuits 12:103. https://doi.org/10.3389/fncir.2018.00103

    Article  CAS  Google Scholar 

  144. Micheva KD, Buchanan J, Holz RW, Smith SJ (2003) Retrograde regulation of synaptic vesicle endocytosis and recycling. Nat Neurosci 6(9):925–932

    CAS  PubMed  Google Scholar 

  145. Xie XJ, Tabuchi M, Brown MP, Mitchell SP, Wu MN, Kolodkin AL (2017) The laminar organization of the Drosophila ellipsoid body is semaphorin-dependent and prevents the formation of ectopic synaptic connections. eLife 6:e25328. https://doi.org/10.7554/eLife.25328

    Article  PubMed  PubMed Central  Google Scholar 

  146. Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and historical significance. Belknap Press of Harvard University Press

    Google Scholar 

  147. Strausfeld NJ, Hirth F (2013) Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340(6129):157–161

    CAS  PubMed  Google Scholar 

  148. Turner-Evans DB, Jayaraman V (2016) The insect central complex. Curr Biol 26(11):R453–R457

    CAS  PubMed  Google Scholar 

  149. Fiore VG, Dolan RJ, Strausfeld NJ, Hirth F (2015) Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philos Trans R Soc B 370(1684):20150053

    Google Scholar 

  150. Hjelmstad GO (2004) Dopamine excites nucleus accumbens neurons through the differential modulation of glutamate and GABA release. J Neurosci 24(39):8621–8628

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490(7419):262–266

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, Berlin J, Deisseroth K, Rice ME, Tepper JM, Koos T (2010) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci 30(20):7105–7110

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chuhma N, Mingote S, Moore H, Rayport S (2014) Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron 81(4):901–912

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Aragona BJ, Liu Y, Yu YJ, Curtis JT, Detwiler JM, Insel TR, Wang ZX (2006) Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat Neurosci 9(1):133–139

    CAS  PubMed  Google Scholar 

  155. Aragona BJ, Wang ZX (2009) Dopamine regulation of social choice in a monogamous rodent species. Front Behav Neurosci 3:15. https://doi.org/10.3389/neuro.08.015.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pfaus JG (2009) Pathways of sexual desire. J Sex Med 6(6):1506–1533

    CAS  PubMed  Google Scholar 

  157. Numan M, Young LJ (2016) Neural mechanisms of mother-infant bonding and pair bonding: similarities, differences, and broader implications. Horm Behav 77:98–112

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Matthew Paul Su for editorial assistance. H.I. and A.K. are supported by funds the supported by MEXT KAKENHI Grants-in-Aid for Scientific Research (B) (Grant JP20H03355 to AK), Scientific Research on Innovative Areas “Evolinguistics” (Grant JP20H04997 to AK), “Systems science of bio-navigation (Grant 19H04933 to AK), Challenging Research (Exploratory) (Grant 17K19450 to AK), Grant-in Aid for Scientific research (C) (15K07147 and 18K06332 to HI), the Naito Foundation to AK, and Inamori Foundation Research Grant, Japan to HI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Ishimoto or Azusa Kamikouchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishimoto, H., Kamikouchi, A. Molecular and neural mechanisms regulating sexual motivation of virgin female Drosophila. Cell. Mol. Life Sci. 78, 4805–4819 (2021). https://doi.org/10.1007/s00018-021-03820-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03820-y

Keywords

Navigation