Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC (2016) HIV-associated neurocognitive disorder - pathogenesis and prospects for treatment. Nat Rev Neurol 12(5):309. https://doi.org/10.1038/nrneurol.2016.53
Article
PubMed
PubMed Central
Google Scholar
Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799. https://doi.org/10.1212/01.WNL.0000287431.88658.8b
CAS
Article
PubMed
PubMed Central
Google Scholar
Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8(1):33–44. https://doi.org/10.1038/nrn2040
CAS
Article
PubMed
Google Scholar
Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8(2):136–142. https://doi.org/10.1080/13550280290049615
CAS
Article
PubMed
Google Scholar
Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, LeBlanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP, Collier AC (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17(1):3–16. https://doi.org/10.1007/s13365-010-0006-1
CAS
Article
PubMed
Google Scholar
Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75(23):2087–2096. https://doi.org/10.1212/WNL.0b013e318200d727
CAS
Article
PubMed
PubMed Central
Google Scholar
Nasi M, De Biasi S, Gibellini L, Bianchini E, Pecorini S, Bacca V, Guaraldi G, Mussini C, Pinti M, Cossarizza A (2017) Ageing and inflammation in patients with HIV infection. Clin Exp Immunol 187(1):44–52. https://doi.org/10.1111/cei.12814
CAS
Article
PubMed
Google Scholar
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW (2019) The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 1724:146426. https://doi.org/10.1016/j.brainres.2019.146426
CAS
Article
PubMed
PubMed Central
Google Scholar
Adle-Biassette H, Chretien F, Wingertsmann L, Hery C, Ereau T, Scaravilli F, Tardieu M, Gray F (1999) Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol Appl Neurobiol 25(2):123–133. https://doi.org/10.1046/j.1365-2990.1999.00167.x
CAS
Article
PubMed
Google Scholar
Gelman BB (2015) Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep 12(2):272–279. https://doi.org/10.1007/s11904-015-0266-8
Article
PubMed
PubMed Central
Google Scholar
Ru W, Tang SJ (2017) HIV-associated synaptic degeneration. Mol. Brain 10(1):40. https://doi.org/10.1186/s13041-017-0321-z
CAS
Article
Google Scholar
Ances BM, Hammoud DA (2014) Neuroimaging of HIV-associated neurocognitive disorders (HAND). Curr Opin HIV AIDS 9(6):545–551. https://doi.org/10.1097/COH.0000000000000112
Article
PubMed
PubMed Central
Google Scholar
Vera JH, Ridha B, Gilleece Y, Amlani A, Thorburn P, Dizdarevic S (2017) PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy. Eur J Nucl Med Mol Imaging 44(5):895–902. https://doi.org/10.1007/s00259-016-3602-3
Article
PubMed
Google Scholar
Chang L, Shukla DK (2018) Imaging studies of the HIV-infected brain. Handb Clin Neurol 152:229–264. https://doi.org/10.1016/B978-0-444-63849-6.00018-9
Article
PubMed
Google Scholar
Haziot MEJ, Barbosa Junior SP, Vidal JE, de Oliveira FTM, de Oliveira ACP (2015) Neuroimaging of HIV-associated neurocognitive disorders. Dement Neuropsychol 9(4):380–384. https://doi.org/10.1590/1980-57642015DN94000380
Article
PubMed
PubMed Central
Google Scholar
Sui J, Li X, Bell RP, Towe SL, Gadde S, Chen NK, Meade CS (2020) Structural and functional brain abnormalities in HIV disease revealed by multimodal MRI fusion: association with cognitive function. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa1415
Article
PubMed
PubMed Central
Google Scholar
Popov M, Molsberry SA, Lecci F, Junker B, Kingsley LA, Levine A, Martin E, Miller E, Munro CA, Ragin A, Seaberg E, Sacktor N, Becker JT (2020) Brain structural correlates of trajectories to cognitive impairment in men with and without HIV disease. Brain Imaging Behav 14(3):821–829. https://doi.org/10.1007/s11682-018-0026-7
Article
PubMed
Google Scholar
Sanford R, Fellows LK, Ances BM, Collins DL (2018) Association of brain structure changes and cognitive function with combination antiretroviral therapy in hiv-positive individuals. JAMA Neurol 75(1):72–79. https://doi.org/10.1001/jamaneurol.2017.3036
Article
PubMed
Google Scholar
Hassanzadeh-Behbahani S, Shattuck KF, Bronshteyn M, Dawson M, Diaz M, Kumar P, Moore DJ, Ellis RJ, Jiang X (2020) Low CD4 nadir linked to widespread cortical thinning in adults living with HIV. Neuroimage Clin 25:102155. https://doi.org/10.1016/j.nicl.2019.102155
Article
PubMed
Google Scholar
Kato T, Yoshihara Y, Watanabe D, Fukumoto M, Wada K, Nakakura T, Kuriyama K, Shirasaka T, Murai T (2020) Neurocognitive impairment and gray matter volume reduction in HIV-infected patients. J Neurovirol 26(4):590–601. https://doi.org/10.1007/s13365-020-00865-w
CAS
Article
PubMed
Google Scholar
Cysique LA, Soares JR, Geng G, Scarpetta M, Moffat K, Green M, Brew BJ, Henry RG, Rae C (2017) White matter measures are near normal in controlled HIV infection except in those with cognitive impairment and longer HIV duration. J Neurovirol 23(4):539–547. https://doi.org/10.1007/s13365-017-0524-1
Article
PubMed
Google Scholar
Kuhn T, Jin Y, Huang C, Kim Y, Nir TM, Gullett JM, Jones JD, Sayegh P, Chung C, Dang BH, Singer EJ, Shattuck DW, Jahanshad N, Bookheimer SY, Hinkin CH, Zhu H, Thompson PM, Thames AD (2019) The joint effect of aging and HIV infection on microstructure of white matter bundles. Hum Brain Mapp 40(15):4370–4380. https://doi.org/10.1002/hbm.24708
Article
PubMed
PubMed Central
Google Scholar
Davies O, Haynes BI, Casey SJ, Gerbase S, Barker GJ, Pitkanen M, Kulasegaram R, Kopelman MD (2019) Clinical and neuroimaging correlates of cognition in HIV. J Neurovirol 25(6):754–764. https://doi.org/10.1007/s13365-019-00763-w
Article
PubMed
PubMed Central
Google Scholar
Gruenewald AL, Garcia-Mesa Y, Gill AJ, Garza R, Gelman BB, Kolson DL (2020) Neuroinflammation associates with antioxidant heme oxygenase-1 response throughout the brain in persons living with HIV. J Neurovirol. https://doi.org/10.1007/s13365-020-00902-8
Article
PubMed
PubMed Central
Google Scholar
Abidin AZ, AM DS, Schifitto G, Wismuller A, (2020) Detecting cognitive impairment in HIV-infected individuals using mutual connectivity analysis of resting state functional MRI. J Neurovirol 26(2):188–200. https://doi.org/10.1007/s13365-019-00823-1
Article
PubMed
Google Scholar
Chaganti JR, Heinecke A, Gates TM, Moffat KJ, Brew BJ (2017) Functional connectivity in virally suppressed patients with HIV-associated neurocognitive disorder: a resting-state analysis. Am J Neuroradiol 38(8):1623–1629. https://doi.org/10.3174/ajnr.A5246
CAS
Article
PubMed
Google Scholar
Philippi CL, Reyna L, Nedderman L, Chan P, Samboju V, Chang K, Phanuphak N, Ratnaratorn N, Hellmuth J, Benjapornpong K, Dumrongpisutikul N, Pothisri M, Robb ML, Ananworanich J, Spudich S, Valcour V, Paul R, Search RV, teams RSs (2020) Resting-state neural signatures of depressive symptoms in acute HIV. J Neurovirol 26 (2):226-240. https://doi.org/10.1007/s13365-020-00826-3. https://pubmed.ncbi.nlm.nih.gov/31989446/
Toniolo S, Cercignani M, Mora-Peris B, Underwood J, Alagaratnam J, Bozzali M, Boffito M, Nelson M, Winston A, Vera JH (2020) Changes in functional connectivity in people with HIV switching antiretroviral therapy. J Neurovirol. https://doi.org/10.1007/s13365-020-00853-0
Article
PubMed
PubMed Central
Google Scholar
Coughlin JM, Wang Y, Ma S, Yue C, Kim PK, Adams AV, Roosa HV, Gage KL, Stathis M, Rais R, Rojas C, McGlothan JL, Watkins CC, Sacktor N, Guilarte TR, Zhou Y, Sawa A, Slusher BS, Caffo B, Kassiou M, Endres CJ, Pomper MG (2014) Regional brain distribution of translocator protein using [(11)C]DPA-713 PET in individuals infected with HIV. J Neurovirol 20(3):219–232. https://doi.org/10.1007/s13365-014-0239-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P, Rabiner EA, Kalk N, Bishop C, Gunn RN, Matthews PM, Winston A (2016) Neuroinflammation in treated HIV-positive individuals: A TSPO PET study. Neurology 86(15):1425–1432. https://doi.org/10.1212/WNL.0000000000002485
CAS
Article
PubMed
PubMed Central
Google Scholar
Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG, Coughlin JM (2018) Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy. AIDS 32(12):1661–1667. https://doi.org/10.1097/QAD.0000000000001858
Article
PubMed
PubMed Central
Google Scholar
Kim EJ, Yu SW (2015) Translocator protein 18 kDa (TSPO): old dogma, new mice, new structure, and new questions for neuroprotection. Neural Regen Res 10(6):878–880. https://doi.org/10.4103/1673-5374.158338
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee Y, Park Y, Nam H, Lee JW, Yu SW (2020) Translocator protein (TSPO): the new story of the old protein in neuroinflammation. BMB Rep 53(1):20–27
CAS
Article
Google Scholar
Boerwinkle A, Ances BM (2019) Molecular Imaging of Neuroinflammation in HIV. J Neuroimmune Pharmacol 14(1):9–15. https://doi.org/10.1007/s11481-018-9823-4
Article
PubMed
Google Scholar
Wang Y, Sun P, Wang Q, Trinkaus K, Schmidt RE, Naismith RT, Cross AH, Song SK (2015) Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. Brain 138(Pt 5):1223–1238. https://doi.org/10.1093/brain/awv046
Article
PubMed
PubMed Central
Google Scholar
Strain JF, Burdo TH, Song SK, Sun P, El-Ghazzawy O, Nelson B, Westerhaus E, Baker L, Vaida F, Ances BM (2017) Diffusion basis spectral imaging detects ongoing brain inflammation in virologically well-controlled HIV+ patients. J Acquir Immune Defic Syndr 76(4):423–430. https://doi.org/10.1097/QAI.0000000000001513
Article
PubMed
PubMed Central
Google Scholar
Nash B, Festa L, Lin C, Meucci O (2019) Opioid and chemokine regulation of cortical synaptodendritic damage in HIV-associated neurocognitive disorders. Brain Res 1723:146409. https://doi.org/10.1016/j.brainres.2019.146409
CAS
Article
PubMed
PubMed Central
Google Scholar
Borjabad A, Volsky DJ (2012) Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer’s disease, and Multiple Sclerosis. J Neuroimmune Pharmacol 7(4):914–926. https://doi.org/10.1007/s11481-012-9409-5
Article
PubMed
PubMed Central
Google Scholar
Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical JR, Starkey JM, Masliah E, Commins DL, Brandt D, Grant I, Singer EJ, Levine AJ, Miller J, Winkler JM, Fox HS, Luxon BA, Morgello S, National Neuro ATC (2012) The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment. PLoS ONE 7(9):e46178. https://doi.org/10.1371/journal.pone.0046178
CAS
Article
PubMed
PubMed Central
Google Scholar
Sanna PP, Repunte-Canonigo V, Masliah E, Lefebvre C (2017) Gene expression patterns associated with neurological disease in human HIV infection. PLoS ONE 12(4):e0175316. https://doi.org/10.1371/journal.pone.0175316
CAS
Article
PubMed
PubMed Central
Google Scholar
Solomon IH, Chettimada S, Misra V, Lorenz DR, Gorelick RJ, Gelman BB, Morgello S, Gabuzda D (2020) White matter abnormalities linked to interferon, stress response, and energy metabolism gene expression changes in older HIV-positive patients on antiretroviral therapy. Mol Neurobiol 57(2):1115–1130. https://doi.org/10.1007/s12035-019-01795-3
CAS
Article
PubMed
Google Scholar
Masliah E, Ellis RJ, Mallory M, Heaton RK, Marcotte TD, Nelson JA, Grant I, Atkinson JH, Wiley CA, Achim CL, McCutchan JA (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus–related cognitive disorders. Ann Neurol 42(6):963–972. https://doi.org/10.1002/ana.410420618
CAS
Article
PubMed
Google Scholar
Sa MJ, Madeira MD, Ruela C, Volk B, Mota-Miranda A, Paula-Barbosa MM (2004) Dendritic changes in the hippocampal formation of AIDS patients: a quantitative Golgi study. Acta Neuropathol 107(2):97–110. https://doi.org/10.1007/s00401-003-0781-3
CAS
Article
PubMed
Google Scholar
Moore DJ, Masliah E, Rippeth JD, Gonzalez R, Carey CL, Cherner M, Ellis RJ, Achim CL, Marcotte TD, Heaton RK, Grant I (2006) Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. Aids 20(6):879–887. https://doi.org/10.1097/01.aids.0000218552.69834.00
Article
PubMed
Google Scholar
Everall IP Heaton RK Marcotte TD Ellis RJ McCutchan JA Atkinson JH Grant I Mallory M Masliah E. and HNRC Group (1999) Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. Brain Pathol 9(2):209–217. https://doi.org/10.1111/j.1750-3639.1999.tb00219.x
Article
Google Scholar
Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19(4):407–411. https://doi.org/10.1097/01.aids.0000161770.06158.5c
CAS
Article
PubMed
Google Scholar
Gelman BB, Schuenke K (2004) Brain aging in acquired immunodeficiency syndrome: increased ubiquitin-protein conjugate is correlated with decreased synaptic protein but not amyloid plaque accumulation. J Neurovirol 10(2):98–108. https://doi.org/10.1080/13550280490279816
CAS
Article
PubMed
Google Scholar
Achim CL, Adame A, Dumaop W, Everall IP, Masliah E, Neurobehavioral Research C (2009) Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J Neuroimmune Pharmacol 4(2):190–199. https://doi.org/10.1007/s11481-009-9152-8
Article
Google Scholar
Stern AL, Ghura S, Gannon PJ, Akay-Espinoza C, Phan JM, Yee AC, Vassar R, Gelman BB, Kolson DL, Jordan-Sciutto KL (2018) BACE1 mediates HIV-associated and excitotoxic neuronal damage through an APP-dependent mechanism. J Neurosci 38(18):4288–4300. https://doi.org/10.1523/JNEUROSCI.1280-17.2018
CAS
Article
PubMed
PubMed Central
Google Scholar
Brew BJ, Letendre SL (2008) Biomarkers of HIV related central nervous system disease. Int Rev Psychiatry 20(1):73–88. https://doi.org/10.1080/09540260701878082
Article
PubMed
Google Scholar
Brew BJ, Crowe SM, Landay A, Cysique LA, Guillemin G (2009) Neurodegeneration and ageing in the HAART era. J Neuroimmune Pharmacol 4(2):163–174. https://doi.org/10.1007/s11481-008-9143-1
Article
PubMed
Google Scholar
Ances BM, Christensen JJ, Teshome M, Taylor J, Xiong C, Aldea P, Fagan AM, Holtzman DM, Morris JC, Mintun MA, Clifford DB (2010) Cognitively unimpaired HIV-positive subjects do not have increased 11C-PiB: a case–control study. Neurology 75(2):111–115. https://doi.org/10.1212/WNL.0b013e3181e7b66e
Article
PubMed
PubMed Central
Google Scholar
Ances BM, Ortega M, Vaida F, Heaps J, Paul R (2012) Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr 59(5):469–477. https://doi.org/10.1097/QAI.0b013e318249db17
Article
PubMed
PubMed Central
Google Scholar
Ortega M, Ances BM (2014) Role of HIV in amyloid metabolism. J Neuroimmune Pharmacol 9(4):483–491. https://doi.org/10.1007/s11481-014-9546-0
Article
PubMed
PubMed Central
Google Scholar
Ances BM, Benzinger TL, Christensen JJ, Thomas J, Venkat R, Teshome M, Aldea P, Fagan AM, Holtzman DM, Morris JC, Clifford DB (2012) 11C-PiB imaging of human immunodeficiency virus-associated neurocognitive disorder. Arch Neurol 69(1):72–77. https://doi.org/10.1001/archneurol.2011.761
Article
PubMed
PubMed Central
Google Scholar
Howdle GC, Quide Y, Kassem MS, Johnson K, Rae CD, Brew BJ, Cysique LA (2020) Brain amyloid in virally suppressed HIV-associated neurocognitive disorder. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000739
Article
PubMed
PubMed Central
Google Scholar
Soontornniyomkij V, Moore DJ, Gouaux B, Soontornniyomkij B, Tatro ET, Umlauf A, Masliah E, Levine AJ, Singer EJ, Vinters HV, Gelman BB, Morgello S, Cherner M, Grant I, Achim CL (2012) Cerebral beta-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE epsilon4 carriers. AIDS 26(18):2327–2335. https://doi.org/10.1097/QAD.0b013e32835a117c
CAS
Article
PubMed
PubMed Central
Google Scholar
Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, Jennings K, Gelman B (2016) Neuropsychological, neurovirological and neuroimmune aspects of abnormal GABAergic transmission in HIV infection. J Neuroimmune Pharmacol 11(2):279–293. https://doi.org/10.1007/s11481-016-9652-2
Article
PubMed
PubMed Central
Google Scholar
Gelman BB, Lisinicchia JG, Chen T, Johnson KM, Jennings K, Freeman DH Jr, Soukup VM (2012) Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J Neuroimmune Pharmacol 7(3):686–700. https://doi.org/10.1007/s11481-012-9345-4
Article
PubMed
PubMed Central
Google Scholar
Testa D, Prochiantz A, Di Nardo AA (2019) Perineuronal nets in brain physiology and disease. Semin Cell Dev Biol 89:125–135. https://doi.org/10.1016/j.semcdb.2018.09.011
Article
PubMed
Google Scholar
Bozzelli PL, Caccavano A, Avdoshina V, Mocchetti I, Wu JY, Conant K (2020) Increased matrix metalloproteinase levels and perineuronal net proteolysis in the HIV-infected brain; relevance to altered neuronal population dynamics. Exp Neurol 323:113077. https://doi.org/10.1016/j.expneurol.2019.113077
CAS
Article
PubMed
Google Scholar
Zhang K, McQuibban GA, Silva C, Butler GS, Johnston JB, Holden J, Clark-Lewis I, Overall CM, Power C (2003) HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nat Neurosci 6(10):1064–1071. https://doi.org/10.1038/nn1127
CAS
Article
PubMed
Google Scholar
Conant K, McArthur JC, Griffin DE, Sjulson L, Wahl LM, Irani DN (1999) Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia. Ann Neurol 46(3):391–398. https://doi.org/10.1002/1531-8249(199909)46:3%3c391::aid-ana15%3e3.0.co;2-0
CAS
Article
PubMed
Google Scholar
Gorska AM, Eugenin EA (2020) The Glutamate system as a crucial regulator of CNS toxicity and survival of HIV reservoirs. Front Cell Infect Microbiol 10:261. https://doi.org/10.3389/fcimb.2020.00261
CAS
Article
PubMed
PubMed Central
Google Scholar
Young AC, Yiannoutsos CT, Hegde M, Lee E, Peterson J, Walter R, Price RW, Meyerhoff DJ, Spudich S (2014) Cerebral metabolite changes prior to and after antiretroviral therapy in primary HIV infection. Neurology 83(18):1592–1600. https://doi.org/10.1212/WNL.0000000000000932
CAS
Article
PubMed
PubMed Central
Google Scholar
Marino J, Maubert ME, Mele AR, Spector C, Wigdahl B, Nonnemacher MR (2020) Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cell Mol Life Sci. https://doi.org/10.1007/s00018-020-03561-4
Article
PubMed
Google Scholar
Potter MC, Figuera-Losada M, Rojas C, Slusher BS (2013) Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 8(3):594–607. https://doi.org/10.1007/s11481-013-9442-z
Article
PubMed
PubMed Central
Google Scholar
Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H (2017) HIV, Tat and dopamine transmission. Neurobiol Dis 105:51–73. https://doi.org/10.1016/j.nbd.2017.04.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Illenberger JM, Harrod SB, Mactutus CF, McLaurin KA, Kallianpur A, Booze RM (2020) HIV infection and neurocognitive disorders in the context of chronic drug abuse: evidence for divergent findings dependent upon prior drug history. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-020-09928-5
Article
PubMed
Google Scholar
Nickoloff-Bybel EA, Calderon TM, Gaskill PJ, Berman JW (2020) HIV neuropathogenesis in the presence of a disrupted dopamine system. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-020-09927-6
Article
PubMed
PubMed Central
Google Scholar
Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353. https://doi.org/10.1146/annurev.physiol.64.081501.160008
CAS
Article
PubMed
Google Scholar
DeFelipe J (2015) The dendritic spine story: an intriguing process of discovery. Front Neuroanat 9:14. https://doi.org/10.3389/fnana.2015.00014
CAS
Article
PubMed
PubMed Central
Google Scholar
Berry KP, Nedivi E (2017) Spine dynamics: are they all the same? Neuron 96(1):43–55. https://doi.org/10.1016/j.neuron.2017.08.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Nakahata Y, Yasuda R (2018) Plasticity of spine structure: local signaling, translation and cytoskeletal reorganization. Front Synaptic Neurosci 10:29. https://doi.org/10.3389/fnsyn.2018.00029
CAS
Article
PubMed
PubMed Central
Google Scholar
Segal M (2017) Dendritic spines: morphological building blocks of memory. Neurobiol Learn Mem 138:3–9. https://doi.org/10.1016/j.nlm.2016.06.007
Article
PubMed
Google Scholar
Zuo Y, Lin A, Chang P, Gan WB (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46(2):181–189. https://doi.org/10.1016/j.neuron.2005.04.001
CAS
Article
PubMed
Google Scholar
Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092. https://doi.org/10.1038/nn736
CAS
Article
PubMed
PubMed Central
Google Scholar
Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45(2):279–291. https://doi.org/10.1016/j.neuron.2005.01.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Ganeshina O, Berry RW, Petralia RS, Nicholson DA, Geinisman Y (2004) Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neuroscience 125(3):615–623. https://doi.org/10.1016/j.neuroscience.2004.02.025
CAS
Article
PubMed
Google Scholar
Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12(7):2685–2705
CAS
Article
Google Scholar
Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55. https://doi.org/10.1146/annurev.neuro.28.061604.135757
CAS
Article
PubMed
Google Scholar
Adrian M, Kusters R, Wierenga CJ, Storm C, Hoogenraad CC, Kapitein LC (2014) Barriers in the brain: resolving dendritic spine morphology and compartmentalization. Front Neuroanat 8:142. https://doi.org/10.3389/fnana.2014.00142
Article
PubMed
PubMed Central
Google Scholar
Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, Jones O, Doodnauth D, Davis H, Sill A, O’Driscoll P, Huso D, Fouts T, Lewis G, Hill M, Kamin-Lewis R, Wei C, Ray P, Gallo RC, Reitz M, Bryant J (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci USA 98(16):9271–9276. https://doi.org/10.1073/pnas.161290298
CAS
Article
PubMed
Google Scholar
Festa LK, Irollo E, Platt BJ, Tian Y, Floresco S, Meucci O (2020) CXCL12-induced rescue of cortical dendritic spines and cognitive flexibility. Elife. https://doi.org/10.7554/eLife.49717
Article
PubMed
PubMed Central
Google Scholar
Moran LM, Booze RM, Mactutus CF (2014) Modeling deficits in attention, inhibition, and flexibility in HAND. J Neuroimmune Pharmacol 9(4):508–521. https://doi.org/10.1007/s11481-014-9539-z
Article
PubMed
PubMed Central
Google Scholar
McLaurin KA, Booze RM, Mactutus CF (2018) Evolution of the HIV-1 transgenic rat: utility in assessing the progression of HIV-1-associated neurocognitive disorders. J Neurovirol 24(2):229–245. https://doi.org/10.1007/s13365-017-0544-x
CAS
Article
PubMed
Google Scholar
Vigorito M, LaShomb AL, Chang SL (2007) Spatial learning and memory in HIV-1 transgenic rats. J Neuroimmune Pharmacol 2(4):319–328. https://doi.org/10.1007/s11481-007-9078-y
Article
PubMed
Google Scholar
Lashomb AL, Vigorito M, Chang SL (2009) Further characterization of the spatial learning deficit in the human immunodeficiency virus-1 transgenic rat. J Neurovirol 15(1):14–24. https://doi.org/10.1080/13550280802232996
CAS
Article
PubMed
Google Scholar
Floresco SB, Block AE, Tse MT (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190(1):85–96. https://doi.org/10.1016/j.bbr.2008.02.008
Article
PubMed
Google Scholar
Festa L, Gutoskey CJ, Graziano A, Waterhouse BD, Meucci O (2015) Induction of interleukin-1beta by human immunodeficiency virus-1 viral proteins leads to increased levels of neuronal ferritin heavy chain, synaptic injury, and deficits in flexible attention. J Neurosci 35(29):10550–10561. https://doi.org/10.1523/JNEUROSCI.4403-14.2015
CAS
Article
PubMed
PubMed Central
Google Scholar
McLaurin KA, Li H, Booze RM, Mactutus CF (2019) Disruption of timing: neuroHIV progression in the post-cART era. Sci Rep 9(1):827. https://doi.org/10.1038/s41598-018-36822-1
CAS
Article
PubMed
PubMed Central
Google Scholar
McLaurin KA, Li H, Booze RM, Fairchild AJ, Mactutus CF (2018) unraveling individual differences in the HIV-1 transgenic rat: therapeutic efficacy of methylphenidate. Sci Rep 8(1):136. https://doi.org/10.1038/s41598-017-18300-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Royal W 3rd, Zhang L, Guo M, Jones O, Davis H, Bryant JL (2012) Immune activation, viral gene product expression and neurotoxicity in the HIV-1 transgenic rat. J Neuroimmunol 247(1–2):16–24. https://doi.org/10.1016/j.jneuroim.2012.03.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Rowson SA, Harrell CS, Bekhbat M, Gangavelli A, Wu MJ, Kelly SD, Reddy R, Neigh GN (2016) Neuroinflammation and behavior in HIV-1 transgenic rats exposed to chronic adolescent stress. Front Psychiatry 7:102. https://doi.org/10.3389/fpsyt.2016.00102
Article
PubMed
PubMed Central
Google Scholar
Royal W 3rd, Wang H, Jones O, Tran H, Bryant JL (2007) A vitamin A deficient diet enhances proinflammatory cytokine, Mu opioid receptor, and HIV-1 expression in the HIV-1 transgenic rat. J Neuroimmunol 185(1–2):29–36. https://doi.org/10.1016/j.jneuroim.2007.01.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Henderson LJ, Johnson TP, Smith BR, Reoma LB, Santamaria UA, Bachani M, Demarino C, Barclay RA, Snow J, Sacktor N, McArthur J, Letendre S, Steiner J, Kashanchi F, Nath A (2019) Presence of Tat and transactivation response element in spinal fluid despite antiretroviral therapy. AIDS 33(Suppl 2):S145–S157. https://doi.org/10.1097/QAD.0000000000002268
CAS
Article
PubMed
Google Scholar
Mele AR, Marino J, Dampier W, Wigdahl B, Nonnemacher MR (2020) HIV-1 Tat length: comparative and functional considerations. Front Microbiol 11:444. https://doi.org/10.3389/fmicb.2020.00444
Article
PubMed
PubMed Central
Google Scholar
Raybuck JD, Hargus NJ, Thayer SA (2017) A GluN2B-selective nmdar antagonist reverses synapse loss and cognitive impairment produced by the HIV-1 protein Tat. J Neurosci 37(33):7837–7847. https://doi.org/10.1523/JNEUROSCI.0226-17.2017
CAS
Article
PubMed
PubMed Central
Google Scholar
Fitting S, Ignatowska-Jankowska BM, Bull C, Skoff RP, Lichtman AH, Wise LE, Fox MA, Su J, Medina AE, Krahe TE, Knapp PE, Guido W, Hauser KF (2013) Synaptic dysfunction in the hippocampus accompanies learning and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice. Biol Psychiatry 73(5):443–453. https://doi.org/10.1016/j.biopsych.2012.09.026
CAS
Article
PubMed
Google Scholar
Schier CJ, Marks WD, Paris JJ, Barbour AJ, McLane VD, Maragos WF, McQuiston AR, Knapp PE, Hauser KF (2017) Selective vulnerability of striatal D2 versus D1 dopamine receptor-expressing medium spiny neurons in HIV-1 Tat transgenic male mice. J Neurosci 37(23):5758–5769. https://doi.org/10.1523/JNEUROSCI.0622-17.2017
CAS
Article
PubMed
PubMed Central
Google Scholar
Hahn YK, Podhaizer EM, Farris SP, Miles MF, Hauser KF, Knapp PE (2015) Effects of chronic HIV-1 Tat exposure in the CNS: heightened vulnerability of males versus females to changes in cell numbers, synaptic integrity, and behavior. Brain Struct Funct 220(2):605–623. https://doi.org/10.1007/s00429-013-0676-6
Article
PubMed
Google Scholar
Kraft-Terry SD, Buch SJ, Fox HS, Gendelman HE (2009) A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron 64(1):133–145. https://doi.org/10.1016/j.neuron.2009.09.042
CAS
Article
PubMed
PubMed Central
Google Scholar
Bachis A, Wenzel E, Boelk A, Becker J, Mocchetti I (2016) The neurotrophin receptor p75 mediates gp120-induced loss of synaptic spines in aging mice. Neurobiol Aging 46:160–168. https://doi.org/10.1016/j.neurobiolaging.2016.07.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Speidell A, Asuni GP, Wakulski R, Mocchetti I (2020) Up-regulation of the p75 neurotrophin receptor is an essential mechanism for HIV-gp120 mediated synaptic loss in the striatum. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2020.07.023
Article
PubMed
Google Scholar
Sokolova IV, Szucs A, Sanna PP (2019) Reduced intrinsic excitability of CA1 pyramidal neurons in human immunodeficiency virus (HIV) transgenic rats. Brain Res 1724:146431. https://doi.org/10.1016/j.brainres.2019.146431
CAS
Article
PubMed
PubMed Central
Google Scholar
Khodr CE, Chen L, Dave S, Al-Harthi L, Hu XT (2016) Combined chronic blockade of hyper-active L-type calcium channels and NMDA receptors ameliorates HIV-1 associated hyper-excitability of mPFC pyramidal neurons. Neurobiol Dis 94:85–94. https://doi.org/10.1016/j.nbd.2016.06.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Cirino TJ, Harden SW, McLaughlin JP, Frazier CJ (2020) Region-specific effects of HIV-1 Tat on intrinsic electrophysiological properties of pyramidal neurons in mouse prefrontal cortex and hippocampus. J Neurophysiol 123(4):1332–1341. https://doi.org/10.1152/jn.00029.2020
CAS
Article
PubMed
PubMed Central
Google Scholar
Zucchini S, Pittaluga A, Brocca-Cofano E, Summa M, Fabris M, De Michele R, Bonaccorsi A, Busatto G, Barbanti-Brodano G, Altavilla G, Verlengia G, Cifelli P, Corallini A, Caputo A, Simonato M (2013) Increased excitability in tat-transgenic mice: role of tat in HIV-related neurological disorders. Neurobiol Dis 55:110–119. https://doi.org/10.1016/j.nbd.2013.02.004
CAS
Article
PubMed
Google Scholar
Wayman WN, Chen L, Hu XT, Napier TC (2016) HIV-1 transgenic rat prefrontal cortex hyper-excitability is enhanced by cocaine self-administration. Neuropsychopharmacology 41(8):1965–1973. https://doi.org/10.1038/npp.2015.366
CAS
Article
PubMed
PubMed Central
Google Scholar
Barbour AJ, Hauser KF, McQuiston AR, Knapp PE (2020) HIV and opiates dysregulate K(+)- Cl(-) cotransporter 2 (KCC2) to cause GABAergic dysfunction in primary human neurons and Tat-transgenic mice. Neurobiol Dis 141:104878. https://doi.org/10.1016/j.nbd.2020.104878
CAS
Article
PubMed
Google Scholar
Xu C, Fitting S (2016) Inhibition of GABAergic neurotransmission by HIV-1 Tat and opioid treatment in the striatum involves mu-opioid receptors. Front Neurosci 10:497. https://doi.org/10.3389/fnins.2016.00497
Article
PubMed
PubMed Central
Google Scholar
Ohene-Nyako M, Persons AL, Napier TC (2018) Region-specific changes in markers of neuroplasticity revealed in HIV-1 transgenic rats by low-dose methamphetamine. Brain Struct Funct 223(7):3503–3513. https://doi.org/10.1007/s00429-018-1701-6
CAS
Article
PubMed
Google Scholar
Nookala AR, Schwartz DC, Chaudhari NS, Glazyrin A, Stephens EB, Berman NEJ, Kumar A (2018) Methamphetamine augment HIV-1 Tat mediated memory deficits by altering the expression of synaptic proteins and neurotrophic factors. Brain Behav Immun 71:37–51. https://doi.org/10.1016/j.bbi.2018.04.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Green MV, Thayer SA (2019) HIV gp120-induced neuroinflammation potentiates NMDA receptors to overcome basal suppression of inhibitory synapses by p38 MAPK. J Neurochem 148(4):499–515. https://doi.org/10.1111/jnc.14640
CAS
Article
PubMed
PubMed Central
Google Scholar
Green MV, Thayer SA (2019) HIV gp120 upregulates tonic inhibition through alpha5-containing GABAARs. Neuropharmacology 149:161–168. https://doi.org/10.1016/j.neuropharm.2019.02.024
CAS
Article
PubMed
PubMed Central
Google Scholar
Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135(3):422–435. https://doi.org/10.1016/j.cell.2008.10.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Green MV, Raybuck JD, Zhang X, Wu MM, Thayer SA (2019) Scaling synapses in the presence of HIV. Neurochem Res 44(1):234–246. https://doi.org/10.1007/s11064-018-2502-2
CAS
Article
PubMed
Google Scholar
Xu C, Hermes DJ, Nwanguma B, Jacobs IR, Mackie K, Mukhopadhyay S, Lichtman AH, Ignatowska-Jankowska B, Fitting S (2017) Endocannabinoids exert CB1 receptor-mediated neuroprotective effects in models of neuronal damage induced by HIV-1 Tat protein. Mol Cell Neurosci 83:92–102. https://doi.org/10.1016/j.mcn.2017.07.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Jacobs IR, Xu C, Hermes DJ, League AF, Xu C, Nath B, Jiang W, Niphakis MJ, Cravatt BF, Mackie K, Mukhopadhyay S, Lichtman AH, Ignatowska-Jankowska BM, Fitting S (2019) Inhibitory control deficits associated with upregulation of CB1R in the HIV-1 Tat transgenic mouse model of hand. J Neuroimmune Pharmacol 14(4):661–678. https://doi.org/10.1007/s11481-019-09867-w
Article
PubMed
PubMed Central
Google Scholar
Wu MM, Thayer SA (2020) HIV Tat protein selectively impairs cb1 receptor-mediated presynaptic inhibition at excitatory but not inhibitory synapses. Eneuro. https://doi.org/10.1523/ENEURO.0119-20.2020
Article
PubMed
PubMed Central
Google Scholar
Fitting S, Knapp PE, Zou S, Marks WD, Bowers MS, Akbarali HI, Hauser KF (2014) Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na(+) influx, mitochondrial instability, and Ca(2)(+) overload. J Neurosci 34(38):12850–12864. https://doi.org/10.1523/JNEUROSCI.5351-13.2014
CAS
Article
PubMed
PubMed Central
Google Scholar
Pitcher J, Abt A, Myers J, Han R, Snyder M, Graziano A, Festa L, Kutzler M, Garcia F, Gao W-J, Fischer-Smith T, Rappaport J, Meucci O (2014) Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction. Journal of Clinical Investigation 124(2):656–669. https://doi.org/10.1172/JCI70090
CAS
Article
Google Scholar
Miller EC, Zhang L, Dummer BW, Cariveau DR, Loh H, Law PY, Liao D (2012) Differential modulation of drug-induced structural and functional plasticity of dendritic spines. Mol Pharmacol 82(2):333–343. https://doi.org/10.1124/mol.112.078162
CAS
Article
PubMed
PubMed Central
Google Scholar
Sanchez AB, Varano GP, de Rozieres CM, Maung R, Catalan IC, Dowling CC, Sejbuk NE, Hoefer MM, Kaul M (2016) Antiretrovirals, methamphetamine, and HIV-1 envelope protein gp120 compromise neuronal energy homeostasis in association with various degrees of synaptic and neuritic damage. Antimicrob Agents Chemother 60(1):168–179. https://doi.org/10.1128/AAC.01632-15
CAS
Article
PubMed
Google Scholar
Akay C, Cooper M, Odeleye A, Jensen BK, White MG, Vassoler F, Gannon PJ, Mankowski J, Dorsey JL, Buch AM, Cross SA, Cook DR, Pena MM, Andersen ES, Christofidou-Solomidou M, Lindl KA, Zink MC, Clements J, Pierce RC, Kolson DL, Jordan-Sciutto KL (2014) Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J Neurovirol 20(1):39–53. https://doi.org/10.1007/s13365-013-0227-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Jensen BK, Monnerie H, Mannell MV, Gannon PJ, Espinoza CA, Erickson MA, Bruce-Keller AJ, Gelman BB, Briand LA, Pierce RC, Jordan-Sciutto KL, Grinspan JB (2015) Altered oligodendrocyte maturation and myelin maintenance: the role of antiretrovirals in HIV-associated neurocognitive disorders. J Neuropathol Exp Neurol 74(11):1093–1118. https://doi.org/10.1097/NEN.0000000000000255
CAS
Article
PubMed
PubMed Central
Google Scholar
Mohseni Ahooyi T, Shekarabi M, Decoppet EA, Langford D, Khalili K, Gordon J (2018) Network analysis of hippocampal neurons by microelectrode array in the presence of HIV-1 Tat and cocaine. J Cell Physiol 233(12):9299–9311. https://doi.org/10.1002/jcp.26322
CAS
Article
PubMed
Google Scholar
Sami Saribas A, Cicalese S, Ahooyi TM, Khalili K, Amini S, Sariyer IK (2017) HIV-1 Nef is released in extracellular vesicles derived from astrocytes: evidence for Nef-mediated neurotoxicity. Cell Death Dis 8(1):e2542. https://doi.org/10.1038/cddis.2016.467
CAS
Article
PubMed
PubMed Central
Google Scholar
Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, Kuhlman B, Hahn KM, Kasai H (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525(7569):333–338. https://doi.org/10.1038/nature15257
CAS
Article
PubMed
PubMed Central
Google Scholar
Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, Witztum J, Shaver DC, Rosenthal DL, Alway EJ, Lopez K, Meng Y, Nellissen L, Grosenick L, Milner TA, Deisseroth K, Bito H, Kasai H, Liston C (2019) Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. https://doi.org/10.1126/science.aat8078
Article
PubMed
PubMed Central
Google Scholar
Bertrand SJ, Mactutus CF, Aksenova MV, Espensen-Sturges TD, Booze RM (2014) Synaptodendritic recovery following HIV Tat exposure: neurorestoration by phytoestrogens. J Neurochem 128(1):140–151. https://doi.org/10.1111/jnc.12375
CAS
Article
PubMed
Google Scholar
McLaurin KA, Moran LM, Booze RM, Mactutus CF (2020) Selective estrogen receptor beta agonists: a therapeutic approach for HIV-1 associated neurocognitive disorders. J Neuroimmune Pharmacol 15(2):264–279. https://doi.org/10.1007/s11481-019-09900-y
Article
PubMed
Google Scholar
Iacobucci GJ, Popescu GK (2017) NMDA receptors: linking physiological output to biophysical operation. Nat Rev Neurosci 18(4):236–249. https://doi.org/10.1038/nrn.2017.24
CAS
Article
PubMed
PubMed Central
Google Scholar
Viviani B, Gardoni F, Bartesaghi S, Corsini E, Facchi A, Galli CL, Di Luca M, Marinovich M (2006) Interleukin-1 beta released by gp120 drives neural death through tyrosine phosphorylation and trafficking of NMDA receptors. J Biol Chem 281(40):30212–30222. https://doi.org/10.1074/jbc.M602156200
CAS
Article
PubMed
Google Scholar
Xu H, Bae M, Tovar-y-Romo LB, Patel N, Bandaru VV, Pomerantz D, Steiner JP, Haughey NJ (2011) The human immunodeficiency virus coat protein gp120 promotes forward trafficking and surface clustering of NMDA receptors in membrane microdomains. J Neurosci 31(47):17074–17090. https://doi.org/10.1523/JNEUROSCI.4072-11.2011
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou Y, Liu J, Xiong H (2017) HIV-1 glycoprotein 120 enhancement of N-methyl-D-aspartate nmda receptor-mediated excitatory post-synaptic currents: implications for HIV-1-associated neural injury. J Neuroimmune Pharmacol 12(2):314–326. https://doi.org/10.1007/s11481-016-9719-0
Article
PubMed
Google Scholar
Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8(8):1069–1077. https://doi.org/10.1038/nn1510
CAS
Article
PubMed
Google Scholar
Bachis A, Avdoshina V, Zecca L, Parsadanian M, Mocchetti I (2012) Human immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons. J Neurosci 32(28):9477–9484. https://doi.org/10.1523/JNEUROSCI.0865-12.2012
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang J, Harte-Hargrove LC, Siao CJ, Marinic T, Clarke R, Ma Q, Jing D, Lafrancois JJ, Bath KG, Mark W, Ballon D, Lee FS, Scharfman HE, Hempstead BL (2014) proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep 7(3):796–806. https://doi.org/10.1016/j.celrep.2014.03.040
CAS
Article
PubMed
PubMed Central
Google Scholar
Speidell A, Asuni GP, Avdoshina V, Scognamiglio S, Forcelli P, Mocchetti I (2019) Reversal of cognitive impairment in gp120 transgenic mice by the removal of the p75 neurotrophin receptor. Front Cell Neurosci 13:398. https://doi.org/10.3389/fncel.2019.00398
CAS
Article
PubMed
PubMed Central
Google Scholar
Li W, Huang Y, Reid R, Steiner J, Malpica-Llanos T, Darden TA, Shankar SK, Mahadevan A, Satishchandra P, Nath A (2008) NMDA receptor activation by HIV-Tat protein is clade dependent. J Neurosci 28(47):12190–12198. https://doi.org/10.1523/JNEUROSCI.3019-08.2008
CAS
Article
PubMed
PubMed Central
Google Scholar
King JE, Eugenin EA, Hazleton JE, Morgello S, Berman JW (2010) Mechanisms of HIV-tat-induced phosphorylation of N-methyl-D-aspartate receptor subunit 2A in human primary neurons: implications for neuroAIDS pathogenesis. Am J Pathol 176(6):2819–2830. https://doi.org/10.2353/ajpath.2010.090642
CAS
Article
PubMed
PubMed Central
Google Scholar
Hu XT (2016) HIV-1 Tat-Mediated Calcium Dysregulation and Neuronal Dysfunction in Vulnerable Brain Regions. Curr Drug Targets 17(1):4–14. https://doi.org/10.2174/1389450116666150531162212
CAS
Article
PubMed
PubMed Central
Google Scholar
Repunte-Canonigo V, Lefebvre C, George O, Kawamura T, Morales M, Koob GF, Califano A, Masliah E, Sanna PP (2014) Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats. Mol Neurodegener 9:26. https://doi.org/10.1186/1750-1326-9-26
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang Z, Nesil T, Connaghan KP, Li MD, Chang SL (2016) Modulation effect of HIV-1 viral proteins and nicotine on expression of the immune-related genes in brain of the HIV-1 transgenic rats. J Neuroimmune Pharmacol 11(3):562–571. https://doi.org/10.1007/s11481-016-9679-4
Article
PubMed
PubMed Central
Google Scholar
Wheeler D, Knapp E, Bandaru VV, Wang Y, Knorr D, Poirier C, Mattson MP, Geiger JD, Haughey NJ (2009) Tumor necrosis factor-alpha-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors. J Neurochem 109(5):1237–1249. https://doi.org/10.1111/j.1471-4159.2009.06038.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu SJ, Zukin RS (2007) Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 30(3):126–134. https://doi.org/10.1016/j.tins.2007.01.006
CAS
Article
PubMed
Google Scholar
Ogoshi F, Yin HZ, Kuppumbatti Y, Song B, Amindari S, Weiss JH (2005) Tumor necrosis-factor-alpha (TNF-alpha) induces rapid insertion of Ca2+-permeable alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate (Ca-A/K) channels in a subset of hippocampal pyramidal neurons. Exp Neurol 193(2):384–393. https://doi.org/10.1016/j.expneurol.2004.12.026
CAS
Article
PubMed
Google Scholar
Pribiag H, Stellwagen D (2013) TNF-alpha downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 33(40):15879–15893. https://doi.org/10.1523/JNEUROSCI.0530-13.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Green MV, Thayer SA (2016) NMDARs adapt to neurotoxic HIV protein Tat downstream of a GluN2A-Ubiquitin ligase signaling pathway. J Neurosci 36(50):12640–12649. https://doi.org/10.1523/JNEUROSCI.2980-16.2016
CAS
Article
PubMed
PubMed Central
Google Scholar
Khan MZ, Shimizu S, Patel JP, Nelson A, Le MT, Mullen-Przeworski A, Brandimarti R, Fatatis A, Meucci O (2005) Regulation of neuronal P53 activity by CXCR 4. Mol Cell Neurosci 30(1):58–66. https://doi.org/10.1016/j.mcn.2005.05.007
CAS
Article
PubMed
PubMed Central
Google Scholar
Colledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK, Lu H, Bear MF, Scott JD (2003) Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40(3):595–607. https://doi.org/10.1016/s0896-6273(03)00687-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, Leapman RD, Gainer H, Sheng M, Reese TS (2011) PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci 31(17):6329–6338. https://doi.org/10.1523/JNEUROSCI.5968-10.2011
CAS
Article
PubMed
PubMed Central
Google Scholar
Cane M, Maco B, Knott G, Holtmaat A (2014) The relationship between PSD-95 clustering and spine stability in vivo. J Neurosci 34(6):2075–2086. https://doi.org/10.1523/JNEUROSCI.3353-13.2014
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim HJ, Martemyanov KA, Thayer SA (2008) Human immunodeficiency virus protein Tat induces synapse loss via a reversible process that is distinct from cell death. J Neurosci 28(48):12604–12613. https://doi.org/10.1523/JNEUROSCI.2958-08.2008
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Thayer SA (2018) Monoacylglycerol lipase inhibitor JZL184 prevents HIV-1 gp120-induced synapse loss by altering endocannabinoid signaling. Neuropharmacology 128:269–281. https://doi.org/10.1016/j.neuropharm.2017.10.023
CAS
Article
PubMed
Google Scholar
Hargus NJ, Thayer SA (2013) Human immunodeficiency virus-1 Tat protein increases the number of inhibitory synapses between hippocampal neurons in culture. J Neurosci 33(45):17908–17920. https://doi.org/10.1523/JNEUROSCI.1312-13.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Musante V, Summa M, Neri E, Puliti A, Godowicz TT, Severi P, Battaglia G, Raiteri M, Pittaluga A (2010) The HIV-1 viral protein Tat increases glutamate and decreases GABA exocytosis from human and mouse neocortical nerve endings. Cereb Cortex 20(8):1974–1984. https://doi.org/10.1093/cercor/bhp274
Article
PubMed
Google Scholar
Xu C, Hermes DJ, Mackie K, Lichtman AH, Ignatowska-Jankowska BM, Fitting S (2016) Cannabinoids occlude the HIV-1 Tat-induced decrease in GABAergic neurotransmission in prefrontal cortex slices. J Neuroimmune Pharmacol 11(2):316–331. https://doi.org/10.1007/s11481-016-9664-y
Article
PubMed
PubMed Central
Google Scholar
Okabe S (2020) Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms. Mol Cell Neurosci 109:103564. https://doi.org/10.1016/j.mcn.2020.103564
CAS
Article
PubMed
Google Scholar
Yan Z, Kim E, Datta D, Lewis DA, Soderling SH (2016) Synaptic actin dysregulation, a convergent mechanism of mental disorders? J Neurosci 36(45):11411–11417. https://doi.org/10.1523/JNEUROSCI.2360-16.2016
CAS
Article
PubMed
PubMed Central
Google Scholar
Mizuno K (2013) Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 25(2):457–469. https://doi.org/10.1016/j.cellsig.2012.11.001
CAS
Article
PubMed
Google Scholar
Costa JF, Dines M, Lamprecht R (2020) The Role of Rac GTPase in dendritic spine morphogenesis and memory. Front Synaptic Neurosci 12:12. https://doi.org/10.3389/fnsyn.2020.00012
CAS
Article
PubMed
PubMed Central
Google Scholar
Krogh KA, Lyddon E, Thayer SA (2015) HIV-1 Tat activates a RhoA signaling pathway to reduce NMDA-evoked calcium responses in hippocampal neurons via an actin-dependent mechanism. J Neurochem 132(3):354–366. https://doi.org/10.1111/jnc.12936
CAS
Article
PubMed
Google Scholar
Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285(5429):895–898. https://doi.org/10.1126/science.285.5429.895
CAS
Article
PubMed
Google Scholar
Nicolai J, Burbassi S, Rubin J, Meucci O (2010) CXCL12 inhibits expression of the NMDA receptor’s NR2B subunit through a histone deacetylase-dependent pathway contributing to neuronal survival. Cell Death Dis 1:e33. https://doi.org/10.1038/cddis.2010.10
CAS
Article
PubMed
PubMed Central
Google Scholar
Nash B, Meucci O (2014) Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by mu-opioid receptors. Int Rev Neurobiol 118:105–128. https://doi.org/10.1016/B978-0-12-801284-0.00005-1
Article
PubMed
PubMed Central
Google Scholar
Guyon A (2014) CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front Cell Neurosci 8:65. https://doi.org/10.3389/fncel.2014.00065
CAS
Article
PubMed
PubMed Central
Google Scholar
Sanchez AB, Medders KE, Maung R, Sanchez-Pavon P, Ojeda-Juarez D, Kaul M (2016) CXCL12-induced neurotoxicity critically depends on NMDA receptor-gated and L-type Ca(2+) channels upstream of p38 MAPK. J Neuroinflammation 13(1):252. https://doi.org/10.1186/s12974-016-0724-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Vergote D, Butler GS, Ooms M, Cox JH, Silva C, Hollenberg MD, Jhamandas JH, Overall CM, Power C (2006) Proteolytic processing of SDF-1alpha reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proc Natl Acad Sci USA 103(50):19182–19187. https://doi.org/10.1073/pnas.0604678103
CAS
Article
PubMed
Google Scholar
Ye X, Zhang Y, Xu Q, Zheng H, Wu X, Qiu J, Zhang Z, Wang W, Shao Y, Xing HQ (2017) HIV-1 Tat inhibits EAAT-2 through AEG-1 upregulation in models of HIV-associated neurocognitive disorder. Oncotarget 8(24):39922–39934. https://doi.org/10.18632/oncotarget.16485
Article
PubMed
PubMed Central
Google Scholar
Cisneros IE, Ghorpade A (2012) HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res 10(5):392–406. https://doi.org/10.2174/157016212802138832
CAS
Article
PubMed
PubMed Central
Google Scholar
Melendez RI, Roman C, Capo-Velez CM, Lasalde-Dominicci JA (2016) Decreased glial and synaptic glutamate uptake in the striatum of HIV-1 gp120 transgenic mice. J Neurovirol 22(3):358–365. https://doi.org/10.1007/s13365-015-0403-6
CAS
Article
PubMed
Google Scholar
Moidunny S, Matos M, Wesseling E, Banerjee S, Volsky DJ, Cunha RA, Agostinho P, Boddeke HW, Roy S (2016) Oncostatin M promotes excitotoxicity by inhibiting glutamate uptake in astrocytes: implications in HIV-associated neurotoxicity. J Neuroinflammation 13(1):144. https://doi.org/10.1186/s12974-016-0613-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Vartak-Sharma N, Gelman BB, Joshi C, Borgamann K, Ghorpade A (2014) Astrocyte elevated gene-1 is a novel modulator of HIV-1-associated neuroinflammation via regulation of nuclear factor-kappaB signaling and excitatory amino acid transporter-2 repression. J Biol Chem 289(28):19599–19612. https://doi.org/10.1074/jbc.M114.567644
CAS
Article
PubMed
PubMed Central
Google Scholar
Vartak-Sharma N, Nooka S, Ghorpade A (2017) Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 157:133–157. https://doi.org/10.1016/j.pneurobio.2016.03.006
CAS
Article
PubMed
Google Scholar
Vivithanaporn P, Asahchop EL, Acharjee S, Baker GB, Power C (2016) HIV protease inhibitors disrupt astrocytic glutamate transporter function and neurobehavioral performance. AIDS 30(4):543–552. https://doi.org/10.1097/QAD.0000000000000955
CAS
Article
PubMed
PubMed Central
Google Scholar
Gonzalez H, Podany A, Al-Harthi L, Wallace J (2020) The far-reaching HAND of cART: cART effects on astrocytes. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-020-09907-w
Article
PubMed
Google Scholar
Cotto B, Natarajanseenivasan K, Langford D (2019) HIV-1 infection alters energy metabolism in the brain: Contributions to HIV-associated neurocognitive disorders. Prog Neurobiol 181:101616. https://doi.org/10.1016/j.pneurobio.2019.101616
CAS
Article
PubMed
PubMed Central
Google Scholar
Natarajaseenivasan K, Cotto B, Shanmughapriya S, Lombardi AA, Datta PK, Madesh M, Elrod JW, Khalili K, Langford D (2018) Astrocytic metabolic switch is a novel etiology for Cocaine and HIV-1 Tat-mediated neurotoxicity. Cell Death Dis 9(4):415. https://doi.org/10.1038/s41419-018-0422-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Sivalingam K, Cirino TJ, McLaughlin JP, Samikkannu T (2020) HIV-Tat and cocaine impact brain energy metabolism: redox modification and mitochondrial biogenesis influence NRF transcription-mediated neurodegeneration. Mol Neurobiol. https://doi.org/10.1007/s12035-020-02131-w
Article
PubMed
Google Scholar
Swinton MK, Carson A, Telese F, Sanchez AB, Soontornniyomkij B, Rad L, Batki I, Quintanilla B, Perez-Santiago J, Achim CL, Letendre S, Ellis RJ, Grant I, Murphy AN, Fields JA (2019) Mitochondrial biogenesis is altered in HIV+ brains exposed to ART: Implications for therapeutic targeting of astroglia. Neurobiol Dis 130:104502. https://doi.org/10.1016/j.nbd.2019.104502
CAS
Article
PubMed
PubMed Central
Google Scholar
Nooka S, Ghorpade A (2017) HIV-1-associated inflammation and antiretroviral therapy regulate astrocyte endoplasmic reticulum stress responses. Cell Death Discov 3:17061. https://doi.org/10.1038/cddiscovery.2017.61
CAS
Article
PubMed
PubMed Central
Google Scholar
Sengupta R, Burbassi S, Shimizu S, Cappello S, Vallee RB, Rubin JB, Meucci O (2009) Morphine increases brain levels of ferritin heavy chain leading to inhibition of CXCR4-mediated survival signaling in neurons. J Neurosci 29(8):2534–2544. https://doi.org/10.1523/JNEUROSCI.5865-08.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Li R, Luo C, Mines M, Zhang J, Fan GH (2006) Chemokine CXCL12 induces binding of ferritin heavy chain to the chemokine receptor CXCR4, alters CXCR4 signaling, and induces phosphorylation and nuclear translocation of ferritin heavy chain. J Biol Chem 281(49):37616–37627. https://doi.org/10.1074/jbc.M607266200
CAS
Article
PubMed
Google Scholar
Nash B, Tarn K, Irollo E, Luchetta J, Festa L, Halcrow P, Datta G, Geiger JD, Meucci O (2019) Morphine-induced modulation of endolysosomal iron mediates upregulation of ferritin heavy chain in cortical neurons. Eneuro. https://doi.org/10.1523/ENEURO.0237-19.2019
Article
PubMed
PubMed Central
Google Scholar
White RS, Bhattacharya AK, Chen Y, Byrd M, McMullen MF, Siegel SJ, Carlson GC, Kim SF (2016) Lysosomal iron modulates NMDA receptor-mediated excitation via small GTPase, Dexras1. Mol Brain 9:38. https://doi.org/10.1186/s13041-016-0220-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Fitting S, Xu R, Bull C, Buch SK, El-Hage N, Nath A, Knapp PE, Hauser KF (2010) Interactive comorbidity between opioid drug abuse and HIV-1 Tat: chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. Am J Pathol 177(3):1397–1410. https://doi.org/10.2353/ajpath.2010.090945
CAS
Article
PubMed
PubMed Central
Google Scholar
Napier TC, Chen L, Kashanchi F, Hu XT (2014) Repeated cocaine treatment enhances HIV-1 Tat-induced cortical excitability via over-activation of L-type calcium channels. J Neuroimmune Pharmacol 9(3):354–368. https://doi.org/10.1007/s11481-014-9524-6
Article
PubMed
PubMed Central
Google Scholar
Wayman WN, Chen L, Napier TC, Hu XT (2015) Cocaine self-administration enhances excitatory responses of pyramidal neurons in the rat medial prefrontal cortex to human immunodeficiency virus-1 Tat. Eur J Neurosci 41(9):1195–1206. https://doi.org/10.1111/ejn.12853
Article
PubMed
PubMed Central
Google Scholar
de Guglielmo G, Fu Y, Chen J, Larrosa E, Hoang I, Kawamura T, Lorrai I, Zorman B, Bryant J, George O, Sumazin P, Lefebvre C, Repunte-Canonigo V, Sanna PP (2020) Increases in compulsivity, inflammation, and neural injury in HIV transgenic rats with escalated methamphetamine self-administration under extended-access conditions. Brain Res 1726:146502. https://doi.org/10.1016/j.brainres.2019.146502
CAS
Article
PubMed
Google Scholar
Hoefer MM, Sanchez AB, Maung R, de Rozieres CM, Catalan IC, Dowling CC, Thaney VE, Pina-Crespo J, Zhang D, Roberts AJ, Kaul M (2015) Combination of methamphetamine and HIV-1 gp120 causes distinct long-term alterations of behavior, gene expression, and injury in the central nervous system. Exp Neurol 263:221–234. https://doi.org/10.1016/j.expneurol.2014.09.010
CAS
Article
PubMed
Google Scholar
McGuire JL, Barrett JS, Vezina HE, Spitsin S, Douglas SD (2014) Adjuvant therapies for HIV-associated neurocognitive disorders. Ann Clin Transl Neurol 1(11):938–952. https://doi.org/10.1002/acn3.131
CAS
Article
PubMed
PubMed Central
Google Scholar
Obermayer J, Luchicchi A, Heistek TS, de Kloet SF, Terra H, Bruinsma B, Mnie-Filali O, Kortleven C, Galakhova AA, Khalil AJ, Kroon T, Jonker AJ, de Haan R, van de Berg WDJ, Goriounova NA, de Kock CPJ, Pattij T, Mansvelder HD (2019) Prefrontal cortical ChAT-VIP interneurons provide local excitation by cholinergic synaptic transmission and control attention. Nat Commun 10(1):5280. https://doi.org/10.1038/s41467-019-13244-9
CAS
Article
PubMed
PubMed Central
Google Scholar