Abstract
Many tumors are now understood to be heterogenous cell populations arising from a minority of epithelial-like cancer stem cells (CSCs). CSCs demonstrate distinctive metabolic signatures from the more differentiated surrounding tumor bulk that confer resistance to traditional chemotherapeutic regimens and potential for tumor relapse. Many CSC phenotypes including metabolism, epithelial-to-mesenchymal transition, cellular signaling pathway activity, and others, arise from altered mitochondrial function and turnover, which are regulated by constant cycles of mitochondrial fusion and fission. Further, recycling of mitochondria through mitophagy in CSCs is associated with maintenance of reactive oxygen species levels that dictate gene expression. The protein machinery that drives mitochondrial dynamics is surprisingly simple and may represent attractive new therapeutic avenues to target CSC metabolism and selectively eradicate tumor-generating cells to reduce the risks of metastasis and relapse for a variety of tumor types.
This is a preview of subscription content, access via your institution.


References:
- 1.
Murphy SL, Kochanek KD, Xu J, Arias E (2015) Mortality in the United States, 2014. NCHS Data Brief No. 229
- 2.
Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23:1124–1134
- 3.
Beck B, Blanpain C (2013) Unravelling cancer stem cell potential. Nat Rev Cancer 13:727–738
- 4.
Chen J, Li Y, Yu TS et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. https://doi.org/10.1038/nature11287
- 5.
Hu J, Yuan X, Xu Q et al (2012) Cancer stem cells in glioblastoma. Stem cells cancer stem cells, vol 1 stem cells cancer stem cells. Ther Appl Dis Inj 1:113–120. https://doi.org/10.1007/978-94-007-1709-1_14
- 6.
Dick JE, Bonnet D (1997) Human Acute Myeloid Leukaemia is organised as a heirarchy that originates from a primitive haematopoetic cell. Nat Med 3:730–737
- 7.
Tian Y, Huang Z, Wang Z et al (2014) Identification of novel molecular markers for prognosis estimation of acute myeloid leukemia: over-expression of PDCD7, FIS1 and Ang2 may indicate poor prognosis in pretreatment patients with acute myeloid leukemia. PLoS ONE 9:5–10. https://doi.org/10.1371/journal.pone.0084150
- 8.
Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10:1–13. https://doi.org/10.1186/bcr1982
- 9.
Al-Hajj M, Wicha M, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100(7):3983–3988
- 10.
Masciale V, Grisendi G, Banchelli F et al (2019) Isolation and identification of cancer stem-like cells in adenocarcinoma and squamous cell carcinoma of the lung: a pilot study. Front Oncol 9:1–12. https://doi.org/10.3389/fonc.2019.01394
- 11.
Herreros-Pomares A, de-Maya-GironesCalabuig-Fariñas JDS et al (2019) Lung tumorspheres reveal cancer stem cell-like properties and a score with prognostic impact in resected non-small-cell lung cancer. Cell Death Dis 10:1–14. https://doi.org/10.1038/s41419-019-1898-1
- 12.
De Sousa E, Melo F, Kurtova AV, Harnoss JM et al (2017) A distinct role for Lgr5 + stem cells in primary and metastatic colon cancer. Nature 543:676–680. https://doi.org/10.1038/nature21713
- 13.
O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110. https://doi.org/10.1038/nature05372
- 14.
Bertolini G, Roz L, Perego P et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 106:16281–16286. https://doi.org/10.1073/pnas.0905653106
- 15.
Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128
- 16.
Prager BC, Xie Q, Bao S, Rich JN (2019) Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24:41–53
- 17.
Shimokawa M, Ohta Y, Nishikori S et al (2017) Visualization and targeting of LGR5 + human colon cancer stem cells. Nature 545:187–192. https://doi.org/10.1038/nature22081
- 18.
Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and Cancer. Cell 166:555–566
- 19.
Chen H, Chan DC (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 26:39–48. https://doi.org/10.1016/j.cmet.2017.05.016
- 20.
Bereiter-Hahn J, Vöth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219. https://doi.org/10.1002/jemt.1070270303
- 21.
Friedman JR, Lackner LL, West M et al (2011) ER tubules mark sites of mitochondrial division. Science (80-) 334:358–362. https://doi.org/10.1126/science.1207385
- 22.
Ingerman E, Perkins EM, Marino M et al (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170:1021–1027. https://doi.org/10.1083/jcb.200506078
- 23.
Kamerkar SC, Kraus F, Sharpe AJ et al (2018) Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat Commun. https://doi.org/10.1038/s41467-018-07543-w
- 24.
Fonseca TB, Sánchez-Guerrero Á, Milosevic I, Raimundo N (2019) Mitochondrial fission requires DRP1 but not dynamins. Nature 570:E34–E42. https://doi.org/10.1038/s41586-019-1296-y
- 25.
Lee JE, Westrate LM, Wu H et al (2016) Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540:139–143. https://doi.org/10.1038/nature20555
- 26.
Kashatus JA, Nascimento A, Myers LJ et al (2015) Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 57:537–551. https://doi.org/10.1016/j.molcel.2015.01.002
- 27.
Taguchi N, Ishihara N, Jofuku A et al (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529. https://doi.org/10.1074/jbc.M607279200
- 28.
Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282:21583–21587. https://doi.org/10.1074/jbc.C700083200
- 29.
Santel A, Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114:867–874
- 30.
Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200. https://doi.org/10.1083/jcb.200211046
- 31.
Olichon A, Emorine LJ, Descoins E et al (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 523:171–176. https://doi.org/10.1016/S0014-5793(02)02985-X
- 32.
Olichon A, Baricault L, Gas N et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746. https://doi.org/10.1074/jbc.C200677200
- 33.
Ehses S, Raschke I, Mancuso G et al (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1036. https://doi.org/10.1083/jcb.200906084
- 34.
Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25:2966–2977. https://doi.org/10.1038/sj.emboj.7601184
- 35.
Anand R, Wai T, Baker MJ et al (2014) The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204:919–929. https://doi.org/10.1083/jcb.201308006
- 36.
Rolland SG, Motori E, Memar N et al (2013) Impaired complex IV activity in response to loss of LRPPRC function can be compensated by mitochondrial hyperfusion. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1303872110
- 37.
Pickles S, Vigié P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28:R170–R185. https://doi.org/10.1016/j.cub.2018.01.004
- 38.
Cho HM, Ryu JR, Jo Y et al (2019) Drp1-Zip1 interaction regulates mitochondrial quality surveillance system. Mol Cell 73:364-376.e8. https://doi.org/10.1016/j.molcel.2018.11.009
- 39.
Lazarou M, Sliter DA, Kane LA et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314. https://doi.org/10.1038/nature14893
- 40.
Liu L, Feng D, Chen G et al (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14:177–185. https://doi.org/10.1038/ncb2422
- 41.
Novak I, Kirkin V, McEwan DG et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51. https://doi.org/10.1038/embor.2009.256
- 42.
Gomes LC, Di BG, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13:589–598. https://doi.org/10.1038/ncb2220
- 43.
St. JohnRamalho-SantosGray JCJHL et al (2005) The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stemn cells. Clon Stem Cells 7:141–153. https://doi.org/10.1089/clo.2005.7.141
- 44.
Lee WTY, John JS (2015) The control of mitochondrial DNA replication during development and tumorigenesis. Ann N Y Acad Sci 1350:95–106. https://doi.org/10.1111/nyas.12873
- 45.
Prigione A, Fauler B, Lurz R et al (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733. https://doi.org/10.1002/stem.404
- 46.
Zhang J, Khvorostov I, Hong JS et al (2011) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30:4860–4873. https://doi.org/10.1038/emboj.2011.401
- 47.
Nagdas S, Kashatus DF (2017) The interplay between oncogenic signaling networks and mitochondrial dynamics. Antioxidants. https://doi.org/10.3390/antiox6020033
- 48.
Serasinghe MN, Wieder SY, Renault TT et al (2015) Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell 57:521–536. https://doi.org/10.1016/j.molcel.2015.01.003
- 49.
Prieto J, León M, Ponsoda X et al (2016) Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. https://doi.org/10.1038/ncomms11124
- 50.
Pyakurel A, Savoia C, Hess D, Scorrano L (2015) Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis. Mol Cell 58:244–254. https://doi.org/10.1016/j.molcel.2015.02.021
- 51.
Tondera D, Santel A, Schwarzer R et al (2004) Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J Biol Chem 279:31544–31555. https://doi.org/10.1074/jbc.M404704200
- 52.
Kim DI, Lee KH, Gabr AA et al (2016) Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochim Biophys Acta Mol Cell Res 1863:2820–2834. https://doi.org/10.1016/j.bbamcr.2016.09.003
- 53.
Agarwal E, Altman BJ, Ho Seo J et al (2019) Myc regulation of a mitochondrial trafficking network mediates tumor cell invasion and metastasis. Mol Cell Biol. https://doi.org/10.1128/mcb.00109-19
- 54.
Prieto J, Seo AY, León M et al (2018) MYC induces a hybrid energetics program early in cell reprogramming. Stem Cell Rep 11:1479–1492. https://doi.org/10.1016/j.stemcr.2018.10.018
- 55.
von Eyss B, Jaenicke LA, Kortlever RM et al (2015) A MYC-driven change in mitochondrial dynamics limits YAP/TAZ function in mammary epithelial cells and breast cancer. Cancer Cell 28:743–757. https://doi.org/10.1016/j.ccell.2015.10.013
- 56.
Toyama EQ, Herzig S, Courchet J et al (2016) Metabolism: AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science (80-) 351:275–281. https://doi.org/10.1126/science.aab4138
- 57.
Xie Q, Wu Q, Horbinski CM et al (2015) Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci 18:501–510. https://doi.org/10.1038/nn.3960
- 58.
DeBerardinis RJ, Chandel NS (2020) We need to talk about the Warburg effect. Nat Metab 2:127–129. https://doi.org/10.1038/s42255-020-0172-2
- 59.
Sperber H, Mathieu J, Wang Y et al (2015) The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 17:1523–1535. https://doi.org/10.1038/ncb3264
- 60.
Kaelin WG, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56–69. https://doi.org/10.1016/j.cell.2013.03.004
- 61.
Lee JV, Carrer A, Shah S et al (2014) Akt-dependent metabolic reprogramming regulates tumor cell Histone acetylation. Cell Metab 20:306–319. https://doi.org/10.1016/j.cmet.2014.06.004
- 62.
Wellen KE, Hatzivassiliou G, Sachdeva UM et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science (80-) 324:1076–1080. https://doi.org/10.1126/science.1164097
- 63.
Carey BW, Finley LWS, Cross JR et al (2015) Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–416. https://doi.org/10.1038/nature13981
- 64.
Selak MA, Armour SM, MacKenzie ED et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7:77–85. https://doi.org/10.1016/j.ccr.2004.11.022
- 65.
Wang C, Shao L, Pan C et al (2019) Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Stem Cell Res Ther. https://doi.org/10.1186/s13287-019-1265-2
- 66.
Hamanaka RB, Glasauer A, Hoover P et al (2013) Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle. Development 6:1–10
- 67.
MacKenzie ED, Selak MA, Tennant DA et al (2007) Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 27:3282–3289. https://doi.org/10.1128/mcb.01927-06
- 68.
Rodríguez-Colman MJ, Schewe M, Meerlo M et al (2017) Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543:424–427. https://doi.org/10.1038/nature21673
- 69.
Ma R, Ma L, Weng W et al (2020) DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation. Sci Adv. https://doi.org/10.1126/sciadv.aaz0361
- 70.
Xue D, Zhou X, Qiu J (2020) Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed Pharmacother 131:110676. https://doi.org/10.1016/j.biopha.2020.110676
- 71.
Guha M, Srinivasan S, Ruthel G et al (2014) Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene 33:5238–5250. https://doi.org/10.1038/onc.2013.467
- 72.
Srinivasan S, Koenigstein A, Joseph J et al (2010) Role of mitochondrial reactive oxygen species in osteoclast differentiation. Ann N Y Acad Sci 1192:245–252. https://doi.org/10.1111/j.1749-6632.2009.05377.x
- 73.
Khacho M, Clark A, Svoboda DS et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19:232–247. https://doi.org/10.1016/j.stem.2016.04.015
- 74.
Folmes CDL, Nelson TJ, Martinez-Fernandez A et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271. https://doi.org/10.1016/j.cmet.2011.06.011
- 75.
Civenni G, Bosotti R, Timpanaro A et al (2019) Epigenetic control of mitochondrial fission enables self-renewal of stem-like tumor cells in human prostate cancer. Cell Metab 30:303-318.e6. https://doi.org/10.1016/j.cmet.2019.05.004
- 76.
Lagadinou ED, Sach A, Callahan K et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12:329–341. https://doi.org/10.1016/j.stem.2012.12.013
- 77.
Pei S, Minhajuddin M, Adane B et al (2018) AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell 23:86-100.e6. https://doi.org/10.1016/j.stem.2018.05.021
- 78.
Ye X, Tam WL, Shibue T et al (2015) Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525:256–260. https://doi.org/10.1038/nature14897
- 79.
Rodríguez-García A, Samsó P, Fontova P et al (2017) TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J 284:3437–3454. https://doi.org/10.1111/febs.14201
- 80.
Masin M, Vazquez J, Rossi S et al (2014) GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer. Cancer Metab 2:11. https://doi.org/10.1186/2049-3002-2-11
- 81.
Liu M, Quek L-E, Sultani G, Turner N (2016) Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma. Cancer Metab 4:1–13. https://doi.org/10.1186/s40170-016-0160-x
- 82.
Zhang Z, Li TE, Chen M et al (2020) MFN1-dependent alteration of mitochondrial dynamics drives hepatocellular carcinoma metastasis by glucose metabolic reprogramming. Br J Cancer 122:209–220. https://doi.org/10.1038/s41416-019-0658-4
- 83.
Cunniff B, McKenzie AJ, Heintz NH, Howe AK (2016) AMPK activity regulates trafficking of Mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell 27:2662–2674. https://doi.org/10.1091/mbc.E16-05-0286
- 84.
Caino MC, Ghosh JC, Chae YC et al (2015) PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc Natl Acad Sci USA 112:8638–8643. https://doi.org/10.1073/pnas.1500722112
- 85.
Desai SP, Bhatia SN, Toner M, Irimia D (2013) Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 104:2077–2088. https://doi.org/10.1016/j.bpj.2013.03.025
- 86.
Lee HC, Yin PH, Lin JC et al (2005) Mitochondrial genome instability and mtDNA depletion in human cancers. Ann N Y Acad Sci 1042:109–122. https://doi.org/10.1196/annals.1338.011
- 87.
Wu MJ, Chen YS, Kim MR et al (2019) Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin. Cell Metab 29:993-1002.e6. https://doi.org/10.1016/j.cmet.2018.11.004
- 88.
Whelan KA, Chandramouleeswaran PM, Tanaka K et al (2017) Autophagy supports generation of cells with high CD44 expression via modulation of oxidative stress and Parkin-mediated mitochondrial clearance. Oncogene. https://doi.org/10.1038/onc.2017.102
- 89.
Viale A, Pettazzoni P, Lyssiotis CA et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628–632. https://doi.org/10.1038/nature13611
- 90.
Kong B, Tsuyoshi H, Orisaka M et al (2015) Mitochondrial dynamics regulating chemoresistance in gynecological cancers. Ann N Y Acad Sci 1350:1–16. https://doi.org/10.1111/nyas.12883
- 91.
Zampieri LX, Grasso D, Bouzin C et al (2020) Mitochondria participate in chemoresistance to cisplatin in human ovarian cancer cells. Mol Cancer Res molcanres.1145.2019. https://doi.org/10.1158/1541-7786.mcr-19-1145
- 92.
Wang T, Fahrmann JF, Lee H et al (2018) JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27:136-150.e5. https://doi.org/10.1016/j.cmet.2017.11.001
- 93.
Lee K, GiltnaneBalko JMJM et al (2017) MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab 26:633-647.e7. https://doi.org/10.1016/j.cmet.2017.09.009
- 94.
Ducker GS, Rabinowitz JD (2017) Cell metabolism review one-carbon metabolism in health and disease. Cell Metab 25:27–42. https://doi.org/10.1016/j.cmet.2016.08.009
- 95.
Nilsson R, Jain M, Madhusudhan N et al (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun. https://doi.org/10.1038/ncomms4128
- 96.
Jung J, Zhang Y, Celiku O et al (2019) Mitochondrial NIX promotes tumor survival in the hypoxic niche of glioblastoma. Cancer Res canres.0198.2019. https://doi.org/10.1158/0008-5472.can-19-0198
- 97.
Comerford KM, Wallace TJ, Karhausen J et al (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–3394
- 98.
Yan C, Luo L, Guo CY et al (2017) Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells. Cancer Lett 388:34–42. https://doi.org/10.1016/j.canlet.2016.11.018
- 99.
Lee SY, Jeong EK, Ju MK et al (2017) Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 16:1–25. https://doi.org/10.1186/s12943-016-0577-4
- 100.
Patten DA, Ouellet M, Allan DS et al (2019) Mitochondrial adaptation in human mesenchymal stem cells following ionizing radiation. FASEB J 33:9263–9278. https://doi.org/10.1096/fj.201801483rr
- 101.
Stewart JM, Shaw PA, Gedye C et al (2011) Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc Natl Acad Sci USA 108:6468–6473. https://doi.org/10.1073/pnas.1005529108
- 102.
Takeda M, Koseki J, Takahashi H et al (2019) Disruption of endolysosomal Rab5/7 efficiently eliminates colorectal cancer stem cells. Cancer Res 79:1426–1437. https://doi.org/10.1158/0008-5472.CAN-18-2192
- 103.
Adlam VJ, Harrison JC, Porteous CM et al (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19:1088–1095. https://doi.org/10.1096/fj.05-3718com
Acknowledgements
We thank the members of the Kashatus lab for review of the manuscript.
Funding
This work is supported by NIH grant CA200755 (to D.F.K.).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sessions, D.T., Kashatus, D.F. Mitochondrial dynamics in cancer stem cells. Cell. Mol. Life Sci. (2021). https://doi.org/10.1007/s00018-021-03773-2
Accepted:
Published:
Keywords
- Mitochondrial dynamics
- Mitochondrial morphology
- Cancer stem cells
- Metabolism
- Therapeutic resistance
- Signaling
- EMT