Skip to main content

Advertisement

Log in

Mechanisms and significance of microglia–axon interactions in physiological and pathophysiological conditions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Microglia are the resident immune cells of the central nervous system, and are important for cellular processes. In addition to their classical roles in pathophysiological conditions, these immune cells also dynamically interact with neurons and influence their structure and function in physiological conditions. Microglia have been shown to contact neurons at various points, including the dendrites, cell bodies, synapses, and axons, and support various developmental functions, such as neuronal survival, axon elongation, and maturation of the synaptic circuit. This review summarizes the current knowledge regarding the roles of microglia in brain development, with particular emphasis on microglia–axon interactions. We will review recent findings regarding the functions and signaling pathways involved in the reciprocal interactions between microglia and neurons. Moreover, as these interactions are altered in disease and injury conditions, we also discuss the effect and alteration of microglia–axon interactions in disease progression and the potential role of microglia in developmental brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Catapano LA, Arnold MW, Perez FA, Macklis JD (2001) Specific neurotrophic factors support the survival of cortical projection neurons at distinct stages of development. J Neurosci 21(22):8863–8872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dugas JC, Mandemakers W, Rogers M, Ibrahim A, Daneman R, Barres BA (2008) A novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons. J Neurosci 28(33):8294–8305. https://doi.org/10.1523/JNEUROSCI.2010-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. https://doi.org/10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  4. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. https://doi.org/10.1146/annurev.immunol.021908.132528

    Article  CAS  PubMed  Google Scholar 

  5. Shemer A, Erny D, Jung S, Prinz M (2015) Microglia plasticity during health and disease: an immunological perspective. Trends Immunol 36(10):614–624. https://doi.org/10.1016/j.it.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  6. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. https://doi.org/10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  7. Ueno M, Yamashita T (2014) Bidirectional tuning of microglia in the developing brain: from neurogenesis to neural circuit formation. Curr Opin Neurobiol 27:8–15. https://doi.org/10.1016/j.conb.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  8. Mosser CA, Baptista S, Arnoux I, Audinat E (2017) Microglia in CNS development: Shaping the brain for the future. Prog Neurobiol 149–150:1–20. https://doi.org/10.1016/j.pneurobio.2017.01.002

    Article  PubMed  Google Scholar 

  9. Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217. https://doi.org/10.1016/j.tins.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  10. del Rio-Hortega P (1919) El “tercer elemento” de los centros nerviosus. Bol Soc Esp Biol 9:69–120

    Google Scholar 

  11. del Rio-Hortega P (1932) Microglia, vol 2. Cytology and cellular pathology of the nervous system. Hoeber, New York

    Google Scholar 

  12. Sierra A, de Castro F, Del Rio-Hortega J, Rafael Iglesias-Rozas J, Garrosa M, Kettenmann H (2016) The “Big-Bang” for modern glial biology: translation and comments on Pio del Rio-Hortega 1919 series of papers on microglia. Glia 64(11):1801–1840. https://doi.org/10.1002/glia.23046

    Article  PubMed  Google Scholar 

  13. Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53(2):344–354. https://doi.org/10.1016/j.brainresrev.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  14. Rezaie P, Male D (2002) Mesoglia and microglia—a historical review of the concept of mononuclear phagocytes within the central nervous system. J Hist Neurosci 11(4):325–374. https://doi.org/10.1076/jhin.11.4.325.8531

    Article  PubMed  Google Scholar 

  15. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45. https://doi.org/10.3389/fncel.2013.00045

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bertrand JY, Jalil A, Klaine M, Jung S, Cumano A, Godin I (2005) Three pathways to mature macrophages in the early mouse yolk sac. Blood 106(9):3004–3011. https://doi.org/10.1182/blood-2005-02-0461

    Article  CAS  PubMed  Google Scholar 

  17. Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126(22):5073–5084

    Article  CAS  PubMed  Google Scholar 

  18. Boya J, Calvo J, Prado A (1979) The origin of microglial cells. J Anat 129(Pt 1):177–186

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ashwell K (1991) The distribution of microglia and cell death in the fetal rat forebrain. Brain Res Dev Brain Res 58(1):1–12

    Article  CAS  PubMed  Google Scholar 

  20. Fujita S, Tsuchihashi Y, Kitamura T (1981) Origin, morphology and function of the microglia. Prog Clin Biol Res 59A:141–169

    CAS  PubMed  Google Scholar 

  21. Paterson JA, Privat A, Ling EA, Leblond CP (1973) Investigation of glial cells in semithin sections. 3. Transformation of subependymal cells into glial cells, as shown by radioautography after 3 H-thymidine injection into the lateral ventricle of the brain of young rats. J Comp Neurol 149(1):83–102. https://doi.org/10.1002/cne.901490106

    Article  CAS  PubMed  Google Scholar 

  22. de Groot CJ, Huppes W, Sminia T, Kraal G, Dijkstra CD (1992) Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia 6(4):301–309. https://doi.org/10.1002/glia.440060408

    Article  PubMed  Google Scholar 

  23. Fedoroff S, Zhai R, Novak JP (1997) Microglia and astroglia have a common progenitor cell. J Neurosci Res 50(3):477–486. https://doi.org/10.1002/(SICI)1097-4547(19971101)50:3%3c477::AID-JNR14%3e3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  24. Hao C, Richardson A, Fedoroff S (1991) Macrophage-like cells originate from neuroepithelium in culture: characterization and properties of the macrophage-like cells. Int J Dev Neurosci 9(1):1–14. https://doi.org/10.1016/0736-5748(91)90067-v

    Article  CAS  PubMed  Google Scholar 

  25. Kaur C, Ling EA, Wong WC (1987) Origin and fate of neural macrophages in a stab wound of the brain of the young rat. J Anat 154:215–227

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ling EA (1994) Monocytic origin of ramified microglia in the corpus callosum in postnatal rat. Neuropathol Appl Neurobiol 20(2):182–183

    CAS  PubMed  Google Scholar 

  27. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152

    Article  CAS  PubMed  Google Scholar 

  28. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. https://doi.org/10.1126/science.1219179

    Article  CAS  PubMed  Google Scholar 

  30. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. https://doi.org/10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  31. Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141(5):775–785. https://doi.org/10.1016/j.cell.2010.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herbomel P, Thisse B, Thisse C (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238(2):274–288. https://doi.org/10.1006/dbio.2001.0393

    Article  CAS  PubMed  Google Scholar 

  33. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501. https://doi.org/10.1146/annurev.ne.14.030191.002321

    Article  CAS  PubMed  Google Scholar 

  34. Yeo W, Gautier J (2004) Early neural cell death: dying to become neurons. Dev Biol 274(2):233–244. https://doi.org/10.1016/j.ydbio.2004.07.026

    Article  CAS  PubMed  Google Scholar 

  35. Lichtman JW, Colman H (2000) Synapse elimination and indelible memory. Neuron 25(2):269–278. https://doi.org/10.1016/s0896-6273(00)80893-4

    Article  CAS  PubMed  Google Scholar 

  36. Chung WS, Barres BA (2012) The role of glial cells in synapse elimination. Curr Opin Neurobiol 22(3):438–445. https://doi.org/10.1016/j.conb.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  37. Wilton DK, Dissing-Olesen L, Stevens B (2019) Neuron-glia signaling in synapse elimination. Annu Rev Neurosci 42:107–127. https://doi.org/10.1146/annurev-neuro-070918-050306

    Article  CAS  PubMed  Google Scholar 

  38. Xu J, Wang T, Wu Y, Jin W, Wen Z (2016) Microglia colonization of developing zebrafish midbrain is promoted by apoptotic neuron and lysophosphatidylcholine. Dev Cell 38(2):214–222. https://doi.org/10.1016/j.devcel.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  39. Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6. https://doi.org/10.3389/fncel.2013.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095. https://doi.org/10.1038/nature05704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frade JM, Barde YA (1998) Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20(1):35–41. https://doi.org/10.1016/s0896-6273(00)80432-8

    Article  CAS  PubMed  Google Scholar 

  42. Murase S, Hayashi Y (1998) Expression pattern and neurotrophic role of the c-fms proto-oncogene M-CSF receptor in rodent Purkinje cells. J Neurosci 18(24):10481–10492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Del Rio P, Irmler M, Arango-Gonzalez B, Favor J, Bobe C, Bartsch U, Vecino E, Beckers J, Hauck SM, Ueffing M (2011) GDNF-induced osteopontin from Muller glial cells promotes photoreceptor survival in the Pde6brd1 mouse model of retinal degeneration. Glia 59(5):821–832. https://doi.org/10.1002/glia.21155

    Article  PubMed  Google Scholar 

  44. Nakajima K, Kohsaka S (2004) Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 4(1):65–84. https://doi.org/10.2174/1568006043481284

    Article  CAS  PubMed  Google Scholar 

  45. Goda Y, Davis GW (2003) Mechanisms of synapse assembly and disassembly. Neuron 40(2):243–264. https://doi.org/10.1016/s0896-6273(03)00608-1

    Article  CAS  PubMed  Google Scholar 

  46. Riccomagno MM, Kolodkin AL (2015) Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol 31:779–805. https://doi.org/10.1146/annurev-cellbio-100913-013038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo L, O’Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156. https://doi.org/10.1146/annurev.neuro.28.061604.135632

    Article  CAS  PubMed  Google Scholar 

  48. Milligan CE, Cunningham TJ, Levitt P (1991) Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J Comp Neurol 314(1):125–135. https://doi.org/10.1002/cne.903140112

    Article  CAS  PubMed  Google Scholar 

  49. Hristova M, Cuthill D, Zbarsky V, Acosta-Saltos A, Wallace A, Blight K, Buckley SM, Peebles D, Heuer H, Waddington SN, Raivich G (2010) Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia 58(1):11–28. https://doi.org/10.1002/glia.20896

    Article  PubMed  Google Scholar 

  50. Monier A, Evrard P, Gressens P, Verney C (2006) Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol 499(4):565–582. https://doi.org/10.1002/cne.21123

    Article  CAS  PubMed  Google Scholar 

  51. Verney C, Monier A, Fallet-Bianco C, Gressens P (2010) Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 217(4):436–448. https://doi.org/10.1111/j.1469-7580.2010.01245.x

    Article  PubMed  PubMed Central  Google Scholar 

  52. Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, Bessis A, Ginhoux F, Garel S (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8(5):1271–1279. https://doi.org/10.1016/j.celrep.2014.07.042

    Article  CAS  PubMed  Google Scholar 

  53. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16(5):543–551. https://doi.org/10.1038/nn.3358

    Article  CAS  PubMed  Google Scholar 

  54. Pont-Lezica L, Beumer W, Colasse S, Drexhage H, Versnel M, Bessis A (2014) Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur J Neurosci 39(10):1551–1557. https://doi.org/10.1111/ejn.12508

    Article  PubMed  Google Scholar 

  55. Imamoto K, Leblond CP (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells. J Comp Neurol 180(1):139–163. https://doi.org/10.1002/cne.901800109

    Article  CAS  PubMed  Google Scholar 

  56. Ling EA, Ng YK, Wu CH, Kaur C (2001) Microglia: its development and role as a neuropathology sensor. Prog Brain Res 132:61–79. https://doi.org/10.1016/S0079-6123(01)32066-6

    Article  CAS  PubMed  Google Scholar 

  57. Monier A, Adle-Biassette H, Delezoide AL, Evrard P, Gressens P, Verney C (2007) Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 66(5):372–382. https://doi.org/10.1097/nen.0b013e3180517b46

    Article  PubMed  Google Scholar 

  58. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. https://doi.org/10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  59. Chamak B, Morandi V, Mallat M (1994) Brain macrophages stimulate neurite growth and regeneration by secreting thrombospondin. J Neurosci Res 38(2):221–233. https://doi.org/10.1002/jnr.490380213

    Article  CAS  PubMed  Google Scholar 

  60. Morgan SC, Taylor DL, Pocock JM (2004) Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 90(1):89–101. https://doi.org/10.1111/j.1471-4159.2004.02461.x

    Article  CAS  PubMed  Google Scholar 

  61. Ozdinler PH, Macklis JD (2006) IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 9(11):1371–1381. https://doi.org/10.1038/nn1789

    Article  CAS  PubMed  Google Scholar 

  62. Fujita Y, Nakanishi T, Ueno M, Itohara S, Yamashita T (2020) Netrin-G1 regulates microglial accumulation along axons and supports the survival of layer v neurons in the postnatal mouse brain. Cell Rep 31(4):107580. https://doi.org/10.1016/j.celrep.2020.107580

    Article  CAS  PubMed  Google Scholar 

  63. Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45(2):207–221. https://doi.org/10.1016/j.neuron.2004.12.036

    Article  CAS  PubMed  Google Scholar 

  64. Nakashiba T, Ikeda T, Nishimura S, Tashiro K, Honjo T, Culotti JG, Itohara S (2000) Netrin-G1: a novel glycosyl phosphatidylinositol-linked mammalian netrin that is functionally divergent from classical netrins. J Neurosci 20(17):6540–6550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nakashiba T, Nishimura S, Ikeda T, Itohara S (2002) Complementary expression and neurite outgrowth activity of netrin-G subfamily members. Mech Dev 111(1–2):47–60. https://doi.org/10.1016/s0925-4773(01)00600-1

    Article  CAS  PubMed  Google Scholar 

  66. Yin Y, Miner JH, Sanes JR (2002) Laminets: laminin- and netrin-related genes expressed in distinct neuronal subsets. Mol Cell Neurosci 19(3):344–358. https://doi.org/10.1006/mcne.2001.1089

    Article  CAS  PubMed  Google Scholar 

  67. Arnoux I, Hoshiko M, Sanz Diez A, Audinat E (2014) Paradoxical effects of minocycline in the developing mouse somatosensory cortex. Glia 62(3):399–410. https://doi.org/10.1002/glia.22612

    Article  PubMed  Google Scholar 

  68. Hughes AN, Appel B (2020) Microglia phagocytose myelin sheaths to modify developmental myelination. Nat Neurosci 23(9):1055–1066. https://doi.org/10.1038/s41593-020-0654-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141(3):302–313. https://doi.org/10.1111/imm.12163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang J, He X, Meng H, Li Y, Dmitriev P, Tian F, Page JC, Lu QR, He Z (2020) Robust myelination of regenerated axons induced by combined manipulations of GPR17 and microglia. Neuron. https://doi.org/10.1016/j.neuron.2020.09.016

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liu P, Du JL, He C (2013) Developmental pruning of early-stage myelin segments during CNS myelination in vivo. Cell Res 23(7):962–964. https://doi.org/10.1038/cr.2013.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kantor DB, Kolodkin AL (2003) Curbing the excesses of youth: molecular insights into axonal pruning. Neuron 38(6):849–852. https://doi.org/10.1016/s0896-6273(03)00364-7

    Article  CAS  PubMed  Google Scholar 

  73. Gu Z, Kalambogias J, Yoshioka S, Han W, Li Z, Kawasawa YI, Pochareddy S, Li Z, Liu F, Xu X, Wijeratne HRS, Ueno M, Blatz E, Salomone J, Kumanogoh A, Rasin MR, Gebelein B, Weirauch MT, Sestan N, Martin JH, Yoshida Y (2017) Control of species-dependent cortico-motoneuronal connections underlying manual dexterity. Science 357(6349):400–404. https://doi.org/10.1126/science.aan3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pauli A, Althoff F, Oliveira RA, Heidmann S, Schuldiner O, Lehner CF, Dickson BJ, Nasmyth K (2008) Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 14(2):239–251. https://doi.org/10.1016/j.devcel.2007.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Watts RJ, Hoopfer ED, Luo L (2003) Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38(6):871–885. https://doi.org/10.1016/s0896-6273(03)00295-2

    Article  CAS  PubMed  Google Scholar 

  76. Lee T, Lee A, Luo L (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126(18):4065–4076

    Article  CAS  PubMed  Google Scholar 

  77. Awasaki T, Ito K (2004) Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr Biol 14(8):668–677. https://doi.org/10.1016/j.cub.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  78. Watts RJ, Schuldiner O, Perrino J, Larsen C, Luo L (2004) Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14(8):678–684. https://doi.org/10.1016/j.cub.2004.03.035

    Article  CAS  PubMed  Google Scholar 

  79. Awasaki T, Tatsumi R, Takahashi K, Arai K, Nakanishi Y, Ueda R, Ito K (2006) Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50(6):855–867. https://doi.org/10.1016/j.neuron.2006.04.027

    Article  CAS  PubMed  Google Scholar 

  80. Lee T, Marticke S, Sung C, Robinow S, Luo L (2000) Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. Neuron 28(3):807–818. https://doi.org/10.1016/s0896-6273(00)00155-0

    Article  CAS  PubMed  Google Scholar 

  81. Reddien PW, Cameron S, Horvitz HR (2001) Phagocytosis promotes programmed cell death in C. elegans. Nature 412(6843):198–202. https://doi.org/10.1038/35084096

    Article  CAS  PubMed  Google Scholar 

  82. Tanaka T, Ueno M, Yamashita T (2009) Engulfment of axon debris by microglia requires p38 MAPK activity. J Biol Chem 284(32):21626–21636. https://doi.org/10.1074/jbc.M109.005603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kole MH, Stuart GJ (2012) Signal processing in the axon initial segment. Neuron 73(2):235–247. https://doi.org/10.1016/j.neuron.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  84. Baalman K, Marin MA, Ho TS, Godoy M, Cherian L, Robertson C, Rasband MN (2015) Axon initial segment-associated microglia. J Neurosci 35(5):2283–2292. https://doi.org/10.1523/JNEUROSCI.3751-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31(45):16064–16069. https://doi.org/10.1523/JNEUROSCI.4158-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yap EL, Greenberg ME (2018) Activity-regulated transcription: bridging the gap between neural activity and behavior. Neuron 100(2):330–348. https://doi.org/10.1016/j.neuron.2018.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8(11):e1000527. https://doi.org/10.1371/journal.pbio.1000527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980. https://doi.org/10.1523/JNEUROSCI.4363-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li Y, Du XF, Liu CS, Wen ZL, Du JL (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23(6):1189–1202. https://doi.org/10.1016/j.devcel.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  90. Kato G, Inada H, Wake H, Akiyoshi R, Miyamoto A, Eto K, Ishikawa T, Moorhouse AJ, Strassman AM, Nabekura J (2016) Microglial contact prevents excess depolarization and rescues neurons from excitotoxicity. eNeuro. https://doi.org/10.1523/ENEURO.0004-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705. https://doi.org/10.1016/j.neuron.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. https://doi.org/10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  93. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A, Gozzi A, Ragozzino D, Gross CT (2014) Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17(3):400–406. https://doi.org/10.1038/nn.3641

    Article  CAS  PubMed  Google Scholar 

  94. Hua JY, Smith SJ (2004) Neural activity and the dynamics of central nervous system development. Nat Neurosci 7(4):327–332. https://doi.org/10.1038/nn1218

    Article  CAS  PubMed  Google Scholar 

  95. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274(5290):1133–1138. https://doi.org/10.1126/science.274.5290.1133

    Article  CAS  PubMed  Google Scholar 

  96. Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442. https://doi.org/10.1146/annurev.neuro.22.1.389

    Article  CAS  PubMed  Google Scholar 

  97. Feller MB (1999) Spontaneous correlated activity in developing neural circuits. Neuron 22(4):653–656. https://doi.org/10.1016/s0896-6273(00)80724-2

    Article  CAS  PubMed  Google Scholar 

  98. Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB, Ullian EM, Baccus SA, Barres BA (2008) Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59(3):425–438. https://doi.org/10.1016/j.neuron.2008.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shatz CJ, Kirkwood PA (1984) Prenatal development of functional connections in the cat’s retinogeniculate pathway. J Neurosci 4(5):1378–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. https://doi.org/10.1016/j.cell.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  101. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, Murakoshi H, Koizumi S, Moorhouse AJ, Yoshimura Y, Nabekura J (2016) Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 7:12540. https://doi.org/10.1038/ncomms12540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. https://doi.org/10.1016/j.cell.2013.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018. https://doi.org/10.1038/nrdp.2017.18

    Article  PubMed  Google Scholar 

  104. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7(8):617–627. https://doi.org/10.1038/nrn1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4(9):703–713. https://doi.org/10.1038/nrn1195

    Article  CAS  PubMed  Google Scholar 

  106. Silver J, Schwab ME, Popovich PG (2014) Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 7(3):a020602. https://doi.org/10.1101/cshperspect.a020602

    Article  PubMed  Google Scholar 

  107. Fujita Y, Yamashita T (2014) Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 8:338. https://doi.org/10.3389/fnins.2014.00338

    Article  PubMed  PubMed Central  Google Scholar 

  108. Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM (2002) The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 61(7):623–633. https://doi.org/10.1093/jnen/61.7.623

    Article  CAS  PubMed  Google Scholar 

  109. Schwartz M (2003) Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab 23(4):385–394. https://doi.org/10.1097/01.WCB.0000061881.75234.5E

    Article  PubMed  Google Scholar 

  110. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. https://doi.org/10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  111. Zecca L, Zucca FA, Albertini A, Rizzio E, Fariello RG (2006) A proposed dual role of neuromelanin in the pathogenesis of Parkinson’s disease. Neurology 67(7 Suppl 2):S8-11. https://doi.org/10.1212/wnl.67.7_suppl_2.s8

    Article  CAS  PubMed  Google Scholar 

  112. McGeer PL, Rogers J, McGeer EG (2006) Inflammation, anti-inflammatory agents and Alzheimer disease: the last 12 years. J Alzheimers Dis 9(3 Suppl):271–276. https://doi.org/10.3233/jad-2006-9s330

    Article  CAS  PubMed  Google Scholar 

  113. Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38(4):333–347. https://doi.org/10.1038/emm.2006.40

    Article  CAS  PubMed  Google Scholar 

  114. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40(2):140–155. https://doi.org/10.1002/glia.10161

    Article  PubMed  Google Scholar 

  115. Hawthorne AL, Popovich PG (2011) Emerging concepts in myeloid cell biology after spinal cord injury. Neurotherapeutics 8(2):252–261. https://doi.org/10.1007/s13311-011-0032-6

    Article  PubMed  PubMed Central  Google Scholar 

  116. Taylor DL, Jones F, Kubota ES, Pocock JM (2005) Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci 25(11):2952–2964. https://doi.org/10.1523/JNEUROSCI.4456-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81(3):302–313. https://doi.org/10.1002/jnr.20562

    Article  CAS  PubMed  Google Scholar 

  118. Fujita Y, Yamashita T (2014) Chapter 13. Microglia. Neuroprotection and regeneration for retinal diseases. Springer, Berlin

    Google Scholar 

  119. Paolicelli RC, Jawaid A, Henstridge CM, Valeri A, Merlini M, Robinson JL, Lee EB, Rose J, Appel S, Lee VM, Trojanowski JQ, Spires-Jones T, Schulz PE, Rajendran L (2017) TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron 95(2):297-308 e296. https://doi.org/10.1016/j.neuron.2017.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Morioka T, Kalehua AN, Streit WJ (1993) Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J Comp Neurol 327(1):123–132. https://doi.org/10.1002/cne.903270110

    Article  CAS  PubMed  Google Scholar 

  121. Kato H, Kogure K, Liu XH, Araki T, Itoyama Y (1996) Progressive expression of immunomolecules on activated microglia and invading leukocytes following focal cerebral ischemia in the rat. Brain Res 734(1–2):203–212

    Article  CAS  PubMed  Google Scholar 

  122. Schilling M, Besselmann M, Muller M, Strecker JK, Ringelstein EB, Kiefer R (2005) Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 196(2):290–297. https://doi.org/10.1016/j.expneurol.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  123. Boekhoff TM, Ensinger EM, Carlson R, Bock P, Baumgartner W, Rohn K, Tipold A, Stein VM (2012) Microglial contribution to secondary injury evaluated in a large animal model of human spinal cord trauma. J Neurotrauma 29(5):1000–1011. https://doi.org/10.1089/neu.2011.1821

    Article  PubMed  Google Scholar 

  124. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110(34):13904–13909. https://doi.org/10.1073/pnas.1308335110

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, Gullo M, Weinmann O, Kobayashi K, Helmchen F, Ommer B, Schwab ME (2014) Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science 344(6189):1250–1255. https://doi.org/10.1126/science.1253050

    Article  CAS  PubMed  Google Scholar 

  126. Lang C, Guo X, Kerschensteiner M, Bareyre FM (2012) Single collateral reconstructions reveal distinct phases of corticospinal remodeling after spinal cord injury. PLoS ONE 7(1):e30461. https://doi.org/10.1371/journal.pone.0030461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7(3):269–277. https://doi.org/10.1038/nn1195

    Article  CAS  PubMed  Google Scholar 

  128. Li Y, He X, Kawaguchi R, Zhang Y, Wang Q, Monavarfeshani A, Yang Z, Chen B, Shi Z, Meng H, Zhou S, Zhu J, Jacobi A, Swarup V, Popovich PG, Geschwind DH, He Z (2020) Microglia-organized scar-free spinal cord repair in neonatal mice. Nature. https://doi.org/10.1038/s41586-020-2795-6

    Article  PubMed  PubMed Central  Google Scholar 

  129. Tran AP, Warren PM, Silver J (2018) The biology of regeneration failure and success after spinal cord injury. Physiol Rev 98(2):881–917. https://doi.org/10.1152/physrev.00017.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Prewitt CM, Niesman IR, Kane CJ, Houle JD (1997) Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp Neurol 148(2):433–443. https://doi.org/10.1006/exnr.1997.6694

    Article  CAS  PubMed  Google Scholar 

  131. Batchelor PE, Porritt MJ, Martinello P, Parish CL, Liberatore GT, Donnan GA, Howells DW (2002) Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge. Mol Cell Neurosci 21(3):436–453. https://doi.org/10.1006/mcne.2002.1185

    Article  CAS  PubMed  Google Scholar 

  132. Bellver-Landete V, Bretheau F, Mailhot B, Vallieres N, Lessard M, Janelle ME, Vernoux N, Tremblay ME, Fuehrmann T, Shoichet MS, Lacroix S (2019) Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun 10(1):518. https://doi.org/10.1038/s41467-019-08446-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fu H, Zhao Y, Hu D, Wang S, Yu T, Zhang L (2020) Depletion of microglia exacerbates injury and impairs function recovery after spinal cord injury in mice. Cell Death Dis 11(7):528. https://doi.org/10.1038/s41419-020-2733-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Matsuda T, Irie T, Katsurabayashi S, Hayashi Y, Nagai T, Hamazaki N, Adefuin AMD, Miura F, Ito T, Kimura H, Shirahige K, Takeda T, Iwasaki K, Imamura T, Nakashima K (2019) Pioneer factor NeuroD1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion. Neuron 101(3):472-485 e477. https://doi.org/10.1016/j.neuron.2018.12.010

    Article  CAS  PubMed  Google Scholar 

  135. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J, Marsh SE, Saunders A, Macosko E, Ginhoux F, Chen J, Franklin RJM, Piao X, McCarroll SA, Stevens B (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50(1):253-271 e256. https://doi.org/10.1016/j.immuni.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  136. Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Sagar SC, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, Gold R, Grun D, Priller J, Stadelmann C, Prinz M (2019) Author correction: spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 568(7751):E4. https://doi.org/10.1038/s41586-019-1045-2

    Article  CAS  PubMed  Google Scholar 

  137. Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Sagar SC, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, Gold R, Grun D, Priller J, Stadelmann C, Prinz M (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566(7744):388–392. https://doi.org/10.1038/s41586-019-0924-x

    Article  CAS  PubMed  Google Scholar 

  138. Sankowski R, Bottcher C, Masuda T, Geirsdottir L, Sagar SE, Seredenina T, Muhs A, Scheiwe C, Shah MJ, Heiland DH, Schnell O, Grun D, Priller J, Prinz M (2019) Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat Neurosci 22(12):2098–2110. https://doi.org/10.1038/s41593-019-0532-y

    Article  CAS  PubMed  Google Scholar 

  139. Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, Gulati G, Bennett ML, Sun LO, Clarke LE, Marschallinger J, Yu G, Quake SR, Wyss-Coray T, Barres BA (2019) Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101(2):207–22310. https://doi.org/10.1016/j.neuron.2018.12.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YF performed the literature search and drafted the manuscript. TY had the idea for the article and revised the work.

Corresponding authors

Correspondence to Yuki Fujita or Toshihide Yamashita.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, Y., Yamashita, T. Mechanisms and significance of microglia–axon interactions in physiological and pathophysiological conditions. Cell. Mol. Life Sci. 78, 3907–3919 (2021). https://doi.org/10.1007/s00018-021-03758-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03758-1

Keywords

Navigation