Skip to main content

Advertisement

Log in

Targeted disruption of galectin 3 in mice delays the first wave of spermatogenesis and increases germ cell apoptosis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Galectin 3 is a multifunctional lectin implicated in cellular proliferation, differentiation, adhesion, and apoptosis. This lectin is broadly expressed in testicular somatic cells and germ cells, and is upregulated during testicular development. Since the role of galectin 3 in testicular function remains elusive, we aimed to characterize the role of galectin 3 in testicular physiology. We found that galectin 3 transgenic mice (Lgals3−/−) exhibited significantly decreased testicular weight in adulthood compared to controls. The transgenic mice also exhibited a delay to the first wave of spermatogenesis, a decrease in the number of germ cells at postnatal day 5 (P5) and P15, and defective Sertoli cell maturation. Mechanistically, we found that Insulin-like-3 (a Leydig cell marker) and enzymes involved in steroid biosynthesis were significantly upregulated in adult Lgals3−/− testes. These observations were accompanied by increased serum testosterone levels. To determine the underlying causes of the testicular atrophy, we monitored cellular apoptosis. Indeed, adult Lgals3−/− testicular cells exhibited an elevated apoptosis rate that is likely driven by downregulated Bcl-2 and upregulated Bax and Bak expression, molecules responsible for live/death cell balance. Moreover, the percentage of testicular macrophages within CD45+ cells was decreased in Lgals3−/− mice. These data suggest that galectin 3 regulates spermatogenesis initiation and Sertoli cell maturation in part, by preventing germ cells from undergoing apoptosis and regulating testosterone biosynthesis. Going forward, understanding the role of galectin 3 in testicular physiology will add important insights into the factors governing the development of germ cells and steroidogenesis and delineate novel biomarkers of testicular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Russell LD, Ettlin RA, Hikim APS, Clegg ED (1993) Histological and histopathological evaluation of the testis. Int J Androl 16:83–83. https://doi.org/10.1111/j.1365-2605.1993.tb01156.x

    Article  Google Scholar 

  2. Yoshida S (2010) Stem cells in mammalian spermatogenesis. Dev Growth Differ 52:311–317. https://doi.org/10.1111/j.1440-169X.2010.01174.x

    Article  CAS  PubMed  Google Scholar 

  3. Cheng CY, Mruk DD (2010) The biology of spermatogenesis: the past, present and future. Philos Trans R Soc Lond B Biol Sci 365:1459–1463. https://doi.org/10.1098/rstb.2010.0024

    Article  PubMed  PubMed Central  Google Scholar 

  4. De Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 6512:776–798. https://doi.org/10.1002/j.1939-4640.2000.tb03408.x

    Article  Google Scholar 

  5. Song H-W, Wilkinson MF (2014) Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 30:14–26. https://doi.org/10.1016/j.semcdb.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  6. Itman C, Mendis S, Barakat B, Loveland KL (2006) All in the family: TGF-beta family action in testis development. Reproduction 132:233–246. https://doi.org/10.1530/rep.1.01075

    Article  CAS  PubMed  Google Scholar 

  7. Sung WK, Komatsu M, Jagiello GM (1986) The kinetics of the first wave of spermatogenesis in the newborn male mouse. Gamete Res 14:245–254. https://doi.org/10.1002/mrd.1120140308

    Article  Google Scholar 

  8. Vergouwen RP, Huiskamp R, Bas RJ et al (1993) Postnatal development of testicular cell populations in mice. J Reprod Fertil 99:479–485. https://doi.org/10.1530/jrf.0.0990479

    Article  CAS  PubMed  Google Scholar 

  9. Bellvé AR, Cavicchia JC, Millette CF et al (1977) Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol 74:68–85

    Article  Google Scholar 

  10. França LR, Hess RA, Dufour JM et al (2016) The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 4:189–212. https://doi.org/10.1111/andr.12165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharpe RM, McKinnell C, Kivlin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784. https://doi.org/10.1530/rep.0.1250769

    Article  CAS  PubMed  Google Scholar 

  12. Yang R-Y, Rabinovich GA, Liu F-T (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17. https://doi.org/10.1017/S1462399408000719

    Article  PubMed  Google Scholar 

  13. Shimura T, Takenaka Y, Tsutsumi S et al (2004) Galectin-3, a novel binding partner of beta-catenin. Cancer Res 64:6363–6367. https://doi.org/10.1158/0008-5472.CAN-04-1816

    Article  CAS  PubMed  Google Scholar 

  14. Li P, Liu S, Lu M et al (2016) Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell 167:973-984.e12. https://doi.org/10.1016/j.cell.2016.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Oliveira FL, Gatto M, Bassi N et al (2015) Galectin-3 in autoimmunity and autoimmune diseases. Exp Biol Med (Maywood) 240:1019–1028. https://doi.org/10.1177/1535370215593826

    Article  CAS  Google Scholar 

  16. Deschildre C, Ji JW, Chater S et al (2007) Expression of galectin-3 and its regulation in the testes. Int J Androl 30:28–40. https://doi.org/10.1111/j.1365-2605.2006.00707.x

    Article  CAS  PubMed  Google Scholar 

  17. Haddad Kashani H, Moshkdanian G, Atlasi MA et al (2013) Expression of galectin-3 as a testis inflammatory marker in vasectomised mice. Cell J 15:11–18

    PubMed  PubMed Central  Google Scholar 

  18. Özbek M, Hitit M, Yıldırım N et al (2018) Expression pattern of galectin-1 and galectin-3 in rat testes and epididymis during postnatal development. Acta Histochem 120:814–827. https://doi.org/10.1016/j.acthis.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  19. Jones JL, Saraswati S, Block AS et al (2010) Galectin-3 is associated with prostasomes in human semen. Glycoconj J 27:227–236. https://doi.org/10.1007/s10719-009-9262-9

    Article  CAS  PubMed  Google Scholar 

  20. Kim H, Ahn M, Moon C et al (2008) Immunohistochemical study of galectin-3 in mature and immature bull testis and epididymis. J Vet Sci 9:339–344. https://doi.org/10.4142/jvs.2008.9.4.339

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mei S, Chen P, Lee C-L et al (2019) The role of galectin-3 in spermatozoa-zona pellucida binding and its association with fertilization in vitro. Mol Hum Reprod 25:458–470. https://doi.org/10.1093/molehr/gaz030

    Article  CAS  PubMed  Google Scholar 

  22. Blois SM, Dveksler G, Vasta GR et al (2019) Pregnancy galectinology: insights into a complex network of glycan binding proteins. Front Immunol 10:1–15. https://doi.org/10.3389/fimmu.2019.01166

    Article  CAS  Google Scholar 

  23. Freitag N, Tirado-Gonzalez I, Barrientos G et al (2020) Galectin-3 deficiency in pregnancy increases the risk of fetal growth restriction (FGR) via placental insufficiency. Cell Death Dis. https://doi.org/10.1038/s41419-020-02791-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hara A, Niwa M, Noguchi K et al (2020) Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules 10:1–19. https://doi.org/10.3390/biom10030389

    Article  CAS  Google Scholar 

  25. Hsu DK, Yang RY, Pan Z et al (2000) Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 156:1073–1083. https://doi.org/10.1016/S0002-9440(10)64975-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wudy SA, Schuler G, Sánchez-Guijo A, Hartmann MF (2018) The art of measuring steroids: principles and practice of current hormonal steroid analysis. J Steroid Biochem Mol Biol 179:88–103. https://doi.org/10.1016/j.jsbmb.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  27. Fijak M, Damm L-J, Wenzel J-P et al (2015) Influence of testosterone on inflammatory response in testicular cells and expression of transcription factor Foxp3 in T cells. Am J Reprod Immunol 74:12–25. https://doi.org/10.1111/aji.12363

    Article  CAS  PubMed  Google Scholar 

  28. Niedenberger BA, Busada JT, Geyer CB (2015) Marker expression reveals heterogeneity of spermatogonia in the neonatal mouse testis. Reproduction 149:329–338. https://doi.org/10.1530/REP-14-0653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Auharek SA, de França LR (2010) Postnatal testis development, Sertoli cell proliferation and number of different spermatogonial types in C57BL/6J mice made transiently hypo- and hyperthyroidic during the neonatal period. J Anat 216:577–588. https://doi.org/10.1111/j.1469-7580.2010.01219.x

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ahmed H, AlSadek DMM (2015) Galectin-3 as a potential target to prevent cancer metastasis. Clin Med Insights Oncol 9:113–121. https://doi.org/10.4137/CMO.S29462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lichtenstein RG, Rabinovich GA (2013) Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ 20:976–986. https://doi.org/10.1038/cdd.2013.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakahara S, Oka N, Raz A (2005) On the role of galectin-3 in cancer apoptosis. Apoptosis 10:267–275. https://doi.org/10.1007/s10495-005-0801-y

    Article  CAS  PubMed  Google Scholar 

  33. Nio-Kobayashi J, Boswell L, Amano M et al (2014) The loss of luteal progesterone production in women is associated with a galectin switch via α2,6-sialylation of glycoconjugates. J Clin Endocrinol Metab 99:4616–4624. https://doi.org/10.1210/jc.2014-2716

    Article  CAS  PubMed  Google Scholar 

  34. Zirkin BR, Papadopoulos V (2018) Leydig cells: formation, function, and regulation. Biol Reprod 99:101–111. https://doi.org/10.1093/biolre/ioy059

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ivell R, Anand-ivell R (2009) Biology of insulin-like factor 3 in human reproduction. Hum Reprod Update 15:463–476. https://doi.org/10.1093/humupd/dmp011

    Article  CAS  PubMed  Google Scholar 

  36. Casarini L, Santi D, Brigante G, Simoni M (2018) Two hormones for one receptor: evolution, biochemistry, actions, and pathophysiology of LH and hCG. Endocr Rev 39:549–592. https://doi.org/10.1210/er.2018-00065

    Article  PubMed  Google Scholar 

  37. Jia W, Kidoya H, Yamakawa D et al (2013) Galectin-3 accelerates M2 macrophage infiltration and angiogenesis in tumors. Am J Pathol 182:1821–1831. https://doi.org/10.1016/j.ajpath.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  38. Sano H, Hsu DK, Yu L et al (2000) Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165:2156–2164

    Article  CAS  Google Scholar 

  39. DeFalco T, Potter SJ, Williams AV et al (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12:1107–1119. https://doi.org/10.1016/j.celrep.2015.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mossadegh-Keller N, Sieweke MH (2018) Testicular macrophages: guardians of fertility. Cell Immunol 330:120–125. https://doi.org/10.1016/j.cellimm.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  41. Busada JT, Velte EK, Serra N et al (2016) Rhox13 is required for a quantitatively normal first wave of spermatogenesis in mice. Reproduction 152:379–388. https://doi.org/10.1530/REP-16-0268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mu X, Lee Y-F, Liu N-C et al (2004) Targeted inactivation of testicular nuclear orphan receptor 4 delays and disrupts late meiotic prophase and subsequent meiotic divisions of spermatogenesis. Mol Cell Biol 24:5887–5899. https://doi.org/10.1128/MCB.24.13.5887-5899.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Holembowski L, Kramer D, Riedel D et al (2014) Tap73 is essential for germ cell adhesion and maturation in testis. J Cell Biol 204:1173–1190. https://doi.org/10.1083/jcb.201306066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu L, Lu Y, Han D et al (2017) Rnf138 deficiency promotes apoptosis of spermatogonia in juvenile male mice. Cell Death Dis 8:e2795. https://doi.org/10.1038/cddis.2017.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lovasco LA, Gustafson EA, Seymour KA et al (2015) TAF4b is required for mouse spermatogonial stem cell development. Stem Cells 33:1267–1276. https://doi.org/10.1002/stem.1914.TAF4b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sansone A, Kliesch S, Isidori AM, Schlatt S (2019) AMH and INSL3 in testicular and extragonadal pathophysiology: what do we know? Andrology 7:131–138. https://doi.org/10.1111/andr.12597

    Article  CAS  PubMed  Google Scholar 

  47. Chiarini-Garcia H, Hornick JR, Griswold MD, Russell LD (2001) Distribution of type a spermatogonia in the mouse is not random. Biol Reprod 65:1179–1185. https://doi.org/10.1095/biolreprod65.4.1179

    Article  CAS  PubMed  Google Scholar 

  48. Jahnukainen K, Ehmcke J, Quader MA et al (2011) Testicular recovery after irradiation differs in prepubertal and pubertal non-human primates, and can be enhanced by autologous germ cell transplantation. Hum Reprod 26:1945–1954. https://doi.org/10.1093/humrep/der160

    Article  PubMed  PubMed Central  Google Scholar 

  49. Khorsandi L, Orazizadeh M (2011) Immunolocalization of galectin-3 in mouse testicular tissue. Iran J Basic Med Sci 14:349–353

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang RY, Hsu DK, Liu FT (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A 93:6737–6742. https://doi.org/10.1073/pnas.93.13.6737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shamas-Din A, Kale J, Leber B, Andrews DW (2013) Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol 5:a008714. https://doi.org/10.1101/cshperspect.a008714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Andreu-Fernández V, Sancho M, Genovés A et al (2017) Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes. Proc Natl Acad Sci USA 114:310–315. https://doi.org/10.1073/pnas.1612322114

    Article  CAS  PubMed  Google Scholar 

  53. Diao B, Liu Y, Xu G-Z et al (2018) The role of galectin-3 in the tumorigenesis and progression of pituitary tumors. Oncol Lett 15:4919–4925. https://doi.org/10.3892/ol.2018.7931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eisa NH, Ebrahim MA, Ragab M et al (2015) Galectin-3 and matrix metalloproteinase-9: perspective in management of hepatocellular carcinoma. J Oncol Pharm Pract 21:323–330. https://doi.org/10.1177/1078155214532698

    Article  CAS  PubMed  Google Scholar 

  55. Xie L, Ni W-K, Chen X-D et al (2012) The expressions and clinical significances of tissue and serum galectin-3 in pancreatic carcinoma. J Cancer Res Clin Oncol 138:1035–1043. https://doi.org/10.1007/s00432-012-1178-2

    Article  CAS  PubMed  Google Scholar 

  56. Gendy HE, Madkour B, Abdelaty S et al (2014) Diagnostic and prognostic significance of serum and tissue galectin 3 expression in patients with carcinoma of the bladder. Curr Urol 7:185–190. https://doi.org/10.1159/000365673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fang T, Liu D-D, Ning H-M et al (2018) Modified citrus pectin inhibited bladder tumor growth through downregulation of galectin-3. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-018-0004-z

    Article  PubMed  PubMed Central  Google Scholar 

  58. Campo VL, Marchiori MF, Rodrigues LC, Dias-Baruffi M (2016) Synthetic glycoconjugates inhibitors of tumor-related galectin-3: an update. Glycoconj J 33:853–876. https://doi.org/10.1007/s10719-016-9721-z

    Article  CAS  PubMed  Google Scholar 

  59. Pan L-L, Deng Y-Y, Wang R et al (2018) Lactose induces phenotypic and functional changes of neutrophils and macrophages to alleviate acute pancreatitis in mice. Front Immunol 9:751. https://doi.org/10.3389/fimmu.2018.00751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meinhardt A, Wang M, Schulz C, Bhushan S (2018) Microenvironmental signals govern the cellular identity of testicular macrophages. J Leukoc Biol 104:757–766. https://doi.org/10.1002/JLB.3MR0318-086RR

    Article  CAS  PubMed  Google Scholar 

  61. Lukyanenko YO, Chen JJ, Hutson JC (2001) Production of 25-hydroxycholesterol by testicular macrophages and its effects on Leydig cells. Biol Reprod 64:790–796. https://doi.org/10.1095/biolreprod64.3.790

    Article  CAS  PubMed  Google Scholar 

  62. Gaytan F, Bellido C, Aguilar E, van Rooijen N (1994) Requirement for testicular macrophages in Leydig cell proliferation and differentiation during prepubertal development in rats. J Reprod Fertil 102:393–399. https://doi.org/10.1530/jrf.0.1020393

    Article  CAS  PubMed  Google Scholar 

  63. Geenen V, Makara GB, Lepletier A et al (2018) Lack of galectin-3 disrupts thymus homeostasis in association to increase of local and systemic glucocorticoid levels and steroidogenic machinery. Front Edocrinol 9:1–13. https://doi.org/10.3389/fendo.2018.00365

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Ralf Middendorff and Sabine Tasch for providing the PCNA antibody and acknowledge Prof. Thomas Linn and Dr. Qingkui Jiang for offering the MLTC-1 cell line. We are grateful to Yahia Almousa for assistance with the fixation protocol and tissue collection. We appreciate the support from our research assistants Petra Moschansky, Maria Daniltchenko and Gudrun Koch.

Funding

The financial support of the China Scholarship Council to Tao Lei and of the Medical Faculty of Justus-Liebig University is gratefully acknowledged. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) BL1115/2-1 and Heisenberg Program (BL1115/3-1-BL1115/7-1) to S.M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Fijak.

Ethics declarations

Conflict of interests

The author(s) declare(s) that they have no competing interests.

Ethics approval

All procedures involving animals were carried out in strict accordance with guidelines for care and use of experimental animals of the German law of welfare. Organ collection from mice was approved by the local Animal Ethics Committee (Regierungspräsidium Giessen GI Nr. 646_M).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2021_3757_MOESM1_ESM.pdf

Supplementary file1 (PDF 669 KB) Supplementary Figure 1. (A-F) Representative PCNA staining in testicular sections from Lgals3+/+ (A, C, E) and Lgals3-/- (B, D, F) mice at P5 (A, B), P15 (C, D) and P20 (E, F). The stars indicate the tubules without germ cells. Scale bars represent 80 µm.

18_2021_3757_MOESM2_ESM.pdf

Supplementary file2 (PDF 186 KB) Supplementary Figure 2. (A-B) Immunofluorescence staining for Sox9 (green; Sertoli cell marker) and Tra98 (red; germ cell marker) in testicular sections from Lgals3+/+ (A) and Lgals3-/- mice at P15 (B). (C) Relative expression of Wt1 mRNA was normalized to Actb and Gapdh at P15; (n = 3). The data represent the means ± SEM.

18_2021_3757_MOESM3_ESM.pdf

Supplementary file3 (PDF 956 KB) Supplementary Figure 3. Representative 11β - hydroxysteroid dehydrogenase (HSD11B1) DAB staining in testicular sections from Lgals3+/+ and Lgals3-/- mice at P50. The sections are counterstained with hematoxylin-eosin; (magnification x 100).

18_2021_3757_MOESM4_ESM.pdf

Supplementary file4 (PDF 368 KB) Supplementary Figure 4. Lgals3 siRNA knock down efficiency in MLTC-1 cells. Representative Western blot of galectin 3 protein levels in MLTC-1 cells 24, 48 and 72 h after transfection with Lgals3 siRNA or control siRNA or left untreated. β-actin was used as a loading control.

18_2021_3757_MOESM5_ESM.pdf

Supplementary file5 (PDF 145 KB) Supplementary Figure 5. The gating strategy used to analyse testicular macrophages by flow cytometry. (A-C) Detected cells were displayed by using forward scatter (FSC) and side scatter (SSC) (A). Doublets (B), cell debris, and non-viable cells (C) were gated out. (D-F) Testicular macrophages were defined as F4/80+CD11b+ cells in the Ly6C- fraction of CD45+ leukocytes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, T., Blois, S.M., Freitag, N. et al. Targeted disruption of galectin 3 in mice delays the first wave of spermatogenesis and increases germ cell apoptosis. Cell. Mol. Life Sci. 78, 3621–3635 (2021). https://doi.org/10.1007/s00018-021-03757-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03757-2

Keywords

Navigation