Skip to main content

Advertisement

Log in

Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hospital-associated infections are a major concern for global public health. Infections with antibiotic-resistant pathogens can cause empiric treatment failure, and for infections with multidrug-resistant bacteria which can overcome antibiotics of “last resort” there exists no alternative treatments. Despite extensive sanitization protocols, the hospital environment is a potent reservoir and vector of antibiotic-resistant organisms. Pathogens can persist on hospital surfaces and plumbing for months to years, acquire new antibiotic resistance genes by horizontal gene transfer, and initiate outbreaks of hospital-associated infections by spreading to patients via healthcare workers and visitors. Advancements in next-generation sequencing of bacterial genomes and metagenomes have expanded our ability to (1) identify species and track distinct strains, (2) comprehensively profile antibiotic resistance genes, and (3) resolve the mobile elements that facilitate intra- and intercellular gene transfer. This information can, in turn, be used to characterize the population dynamics of hospital-associated microbiota, track outbreaks to their environmental reservoirs, and inform future interventions. This review provides a detailed overview of the approaches and bioinformatic tools available to study isolates and metagenomes of hospital-associated bacteria, and their multi-layered networks of transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Poe EA (1839) The Fall of the House of Usher. https://americanenglish.state.gov/files/ae/resource_files/the_fall_of_the_house_of_usher.pdf

  2. Haque M, Sartelli M, McKimm J, Abu Bakar M (2018) Health care-associated infections—an overview. Infect Drug Resist 11:2321–2333. https://doi.org/10.2147/IDR.S177247

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lax S, Gilbert JA (2015) Hospital-associated microbiota and implications for nosocomial infections. Trends Mol Med 21(7):427–432. https://doi.org/10.1016/j.molmed.2015.03.005

    Article  PubMed  Google Scholar 

  4. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK, Healthcare-Associated EIP, I, Antimicrobial Use Prevalence Survey T, (2014) Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370(13):1198–1208. https://doi.org/10.1056/NEJMoa1306801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mora M, Mahnert A, Koskinen K, Pausan MR, Oberauner-Wappis L, Krause R, Perras AK, Gorkiewicz G, Berg G, Moissl-Eichinger C (2016) Microorganisms in confined habitats: microbial monitoring and control of intensive care units, operating rooms, cleanrooms and the international space station. Front Microbiol 7:1573. https://doi.org/10.3389/fmicb.2016.01573

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM (2016) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011–2014. Infect Control Hosp Epidemiol 37(11):1288–1301. https://doi.org/10.1017/ice.2016.174

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK, National Healthcare Safety Network T, Participating National Healthcare Safety Network F (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29(11):996–1011. https://doi.org/10.1086/591861

    Article  PubMed  Google Scholar 

  8. Vincent JL, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, Finfer S, Pelosi P, Brazzi L, Aditianingsih D, Timsit JF, Du B, Wittebole X, Maca J, Kannan S, Gorordo-Delsol LA, De Waele JJ, Mehta Y, Bonten MJM, Khanna AK, Kollef M, Human M, Angus DC, Investigators EI (2020) Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA. https://doi.org/10.1001/jama.2020.2717

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weiner-Lastinger LM, Abner S, Edwards JR, Kallen AJ, Karlsson M, Magill SS, Pollock D, See I, Soe MM, Walters MS, Dudeck MA (2020) Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol 41(1):1–18. https://doi.org/10.1017/ice.2019.296

    Article  PubMed  Google Scholar 

  10. Weiner-Lastinger LM, Abner S, Benin AL, Edwards JR, Kallen AJ, Karlsson M, Magill SS, Pollock D, See I, Soe MM, Walters MS, Dudeck MA (2020) Antimicrobial-resistant pathogens associated with pediatric healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol 41(1):19–30. https://doi.org/10.1017/ice.2019.297

    Article  PubMed  Google Scholar 

  11. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum H, Norstrom M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317. https://doi.org/10.1038/nrmicro3439

    Article  CAS  PubMed  Google Scholar 

  12. CDC (2019) Antibiotic resistance threats in the United States, 2019. Atlanta, GA

  13. Cassini A, Hogberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens MJ, Suetens C, Monnet DL, Burden of AMRCG (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 19(1):56–66. https://doi.org/10.1016/S1473-3099(18)30605-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJ, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9(12):894–896. https://doi.org/10.1038/nrmicro2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00181-19

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197(8):1079–1081. https://doi.org/10.1086/533452

    Article  PubMed  Google Scholar 

  17. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the Era of antimicrobial resistance: a review. Front Microbiol 10:539. https://doi.org/10.3389/fmicb.2019.00539

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Group WHOPPLW (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18(3):318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  19. Chng KR, Li C, Bertrand D, Ng AHQ, Kwah JS, Low HM, Tong C, Natrajan M, Zhang MH, Xu L, Ko KKK, Ho EXP, Av-Shalom TV, Teo JWP, Khor CC, Meta SUBC, Chen SL, Mason CE, Ng OT, Marimuthu K, Ang B, Nagarajan N (2020) Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat Med 26(6):941–951. https://doi.org/10.1038/s41591-020-0894-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weingarten RA, Johnson RC, Conlan S, Ramsburg AM, Dekker JP, Lau AF, Khil P, Odom RT, Deming C, Park M, Thomas PJ, Program NCS, Henderson DK, Palmore TN, Segre JA, Frank KM (2018) Genomic analysis of hospital plumbing reveals diverse reservoir of bacterial plasmids conferring carbapenem resistance. mBio. https://doi.org/10.1128/mBio.02011-17

    Article  PubMed  PubMed Central  Google Scholar 

  21. D’Souza AW, Potter RF, Wallace M, Shupe A, Patel S, Sun X, Gul D, Kwon JH, Andleeb S, Burnham CD, Dantas G (2019) Spatiotemporal dynamics of multidrug resistant bacteria on intensive care unit surfaces. Nat Commun 10(1):4569. https://doi.org/10.1038/s41467-019-12563-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu H, Johani K, Gosbell IB, Jacombs AS, Almatroudi A, Whiteley GS, Deva AK, Jensen S, Vickery K (2015) Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J Hosp Infect 91(1):35–44. https://doi.org/10.1016/j.jhin.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  23. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239(4839):487–491. https://doi.org/10.1126/science.2448875

    Article  CAS  PubMed  Google Scholar 

  24. Buchan BW, Ledeboer NA (2014) Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev 27(4):783–822. https://doi.org/10.1128/CMR.00003-14

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hou TY, Chiang-Ni C, Teng SH (2019) Current status of MALDI-TOF mass spectrometry in clinical microbiology. J Food Drug Anal 27(2):404–414. https://doi.org/10.1016/j.jfda.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  26. Balada-Llasat JM, Kamboj K, Pancholi P (2013) Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. J Clin Microbiol 51(9):2875–2879. https://doi.org/10.1128/JCM.00819-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mesureur J, Arend S, Celliere B, Courault P, Cotte-Pattat PJ, Totty H, Deol P, Mick V, Girard V, Touchberry J, Burrowes V, Lavigne JP, O’Callaghan D, Monnin V, Keriel A (2018) A MALDI-TOF MS database with broad genus coverage for species-level identification of Brucella. PLoS Negl Trop Dis 12(10):e0006874. https://doi.org/10.1371/journal.pntd.0006874

    Article  PubMed  PubMed Central  Google Scholar 

  28. Seuylemezian A, Aronson HS, Tan J, Lin M, Schubert W, Vaishampayan P (2018) Development of a custom MALDI-TOF MS database for species-level identification of bacterial isolates collected from spacecraft and associated surfaces. Front Microbiol 9:780. https://doi.org/10.3389/fmicb.2018.00780

    Article  PubMed  PubMed Central  Google Scholar 

  29. Veloo ACM, Jean-Pierre H, Justesen US, Morris T, Urban E, Wybo I, Kostrzewa M, Friedrich AW, workgroup E (2018) Validation of MALDI-TOF MS Biotyper database optimized for anaerobic bacteria: the ENRIA project. Anaerobe 54:224–230. https://doi.org/10.1016/j.anaerobe.2018.03.007

    Article  CAS  PubMed  Google Scholar 

  30. Wetterstrand KA (2019) DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data.

  31. Quainoo S, Coolen JPM, van Hijum S, Huynen MA, Melchers WJG, van Schaik W, Wertheim HFL (2017) Whole-genome sequencing of bacterial pathogens: the future of nosocomial outbreak analysis. Clin Microbiol Rev 30(4):1015–1063. https://doi.org/10.1128/CMR.00016-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13(9):601–612. https://doi.org/10.1038/nrg3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829. https://doi.org/10.1101/gr.074492.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17(1):132. https://doi.org/10.1186/s13059-016-0997-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  41. Douglas AP, Marshall C, Baines SL, Ritchie D, Szer J, Madigan V, Chan HT, Ballard SA, Howden BP, Buising K, Slavin MA (2019) Utilizing genomic analyses to investigate the first outbreak of vanA vancomycin-resistant Enterococcus in Australia with emergence of daptomycin non-susceptibility. J Med Microbiol 68(3):303–308. https://doi.org/10.1099/jmm.0.000916

    Article  CAS  PubMed  Google Scholar 

  42. Johnson RC, Deming C, Conlan S, Zellmer CJ, Michelin AV, Lee-Lin S, Thomas PJ, Park M, Weingarten RA, Less J, Dekker JP, Frank KM, Musser KA, McQuiston JR, Henderson DK, Lau AF, Palmore TN, Segre JA (2018) Investigation of a cluster of sphingomonas koreensis infections. N Engl J Med 379(26):2529–2539. https://doi.org/10.1056/NEJMoa1803238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Decraene V, Phan HTT, George R, Wyllie DH, Akinremi O, Aiken Z, Cleary P, Dodgson A, Pankhurst L, Crook DW, Lenney C, Walker AS, Woodford N, Sebra R, Fath-Ordoubadi F, Mathers AJ, Seale AC, Guiver M, McEwan A, Watts V, Welfare W, Stoesser N, Cawthorne J, Group TI (2018) A Large, refractory nosocomial outbreak of klebsiella pneumoniae carbapenemase-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01689-18

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maatallah M, Vading M, Kabir MH, Bakhrouf A, Kalin M, Naucler P, Brisse S, Giske CG (2014) Klebsiella variicola is a frequent cause of bloodstream infection in the stockholm area, and associated with higher mortality compared to K pneumoniae. PLoS ONE 9(11):e113539. https://doi.org/10.1371/journal.pone.0113539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Long SW, Linson SE, Ojeda Saavedra M, Cantu C, Davis JJ, Brettin T, Olsen RJ (2017) Whole-genome sequencing of human clinical klebsiella pneumoniae isolates reveals misidentification and misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. mSphere. https://doi.org/10.1128/mSphereDirect.00290-17

    Article  PubMed  PubMed Central  Google Scholar 

  46. Berry GJ, Loeffelholz MJ, Williams-Bouyer N (2015) An investigation into laboratory misidentification of a bloodstream Klebsiella variicola infection. J Clin Microbiol 53(8):2793–2794. https://doi.org/10.1128/JCM.00841-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Potter RF, Lainhart W, Twentyman J, Wallace MA, Wang B, Burnham CA, Rosen DA, Dantas G (2018) Population structure, antibiotic resistance, and uropathogenicity of Klebsiella variicola. mBio. https://doi.org/10.1128/mbio.02481-18

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138. https://doi.org/10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  49. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270. https://doi.org/10.1038/nnano.2009.12

    Article  CAS  PubMed  Google Scholar 

  50. Mikheyev AS, Tin MM (2014) A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour 14(6):1097–1102. https://doi.org/10.1111/1755-0998.12324

    Article  CAS  PubMed  Google Scholar 

  51. Magi A, Giusti B, Tattini L (2017) Characterization of MinION nanopore data for resequencing analyses. Brief Bioinform 18(6):940–953. https://doi.org/10.1093/bib/bbw077

    Article  CAS  PubMed  Google Scholar 

  52. Magi A, Semeraro R, Mingrino A, Giusti B, D’Aurizio R (2018) Nanopore sequencing data analysis: state of the art, applications and challenges. Brief Bioinform 19(6):1256–1272. https://doi.org/10.1093/bib/bbx062

    Article  CAS  PubMed  Google Scholar 

  53. Antipov D, Korobeynikov A, McLean JS, Pevzner PA (2016) hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32(7):1009–1015. https://doi.org/10.1093/bioinformatics/btv688

    Article  CAS  PubMed  Google Scholar 

  54. Utturkar SM, Klingeman DM, Land ML, Schadt CW, Doktycz MJ, Pelletier DA, Brown SD (2014) Evaluation and validation of de novo and hybrid assembly techniques to derive high-quality genome sequences. Bioinformatics 30(19):2709–2716. https://doi.org/10.1093/bioinformatics/btu391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Coenye T, Vandamme P (2003) Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 228(1):45–49. https://doi.org/10.1016/S0378-1097(03)00717-1

    Article  CAS  PubMed  Google Scholar 

  56. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rampelotto PH, Sereia AFR, de Oliveira LFV, Margis R (2019) Exploring the Hospital microbiome by high-resolution 16S rRNA profiling. Int J Mol Sci. https://doi.org/10.3390/ijms20123099

    Article  PubMed  PubMed Central  Google Scholar 

  58. ElRakaiby MT, Gamal-Eldin S, Amin MA, Aziz RK (2019) Hospital Microbiome Variations As Analyzed by High-Throughput Sequencing. OMICS 23(9):426–438. https://doi.org/10.1089/omi.2019.0111

    Article  CAS  PubMed  Google Scholar 

  59. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36(18):e120. https://doi.org/10.1093/nar/gkn491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77(10):3219–3226. https://doi.org/10.1128/AEM.02810-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brooks JP, Edwards DJ, Harwich MD Jr, Rivera MC, Fettweis JM, Serrano MG, Reris RA, Sheth NU, Huang B, Girerd P, Vaginal Microbiome C, Strauss JF 3rd, Jefferson KK, Buck GA (2015) The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol 15:66. https://doi.org/10.1186/s12866-015-0351-6

    Article  PubMed  PubMed Central  Google Scholar 

  62. Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11(12):2639–2643. https://doi.org/10.1038/ismej.2017.119

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hewitt KM, Mannino FL, Gonzalez A, Chase JH, Caporaso JG, Knight R, Kelley ST (2013) Bacterial diversity in two Neonatal Intensive Care Units (NICUs). PLoS ONE 8(1):e54703. https://doi.org/10.1371/journal.pone.0054703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brooks B, Firek BA, Miller CS, Sharon I, Thomas BC, Baker R, Morowitz MJ, Banfield JF (2014) Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. Microbiome 2(1):1. https://doi.org/10.1186/2049-2618-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, Knight R, Knights D (2018) Evaluating the information content of shallow shotgun metagenomics. mSystems. https://doi.org/10.1128/mSystems.00069-18

    Article  PubMed  PubMed Central  Google Scholar 

  66. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12(10):902–903. https://doi.org/10.1038/nmeth.3589

    Article  CAS  PubMed  Google Scholar 

  67. Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46

    Article  PubMed  PubMed Central  Google Scholar 

  68. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson KS, Knight R, Caporaso JG, Segata N, Huttenhower C (2018) Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods 15(11):962–968. https://doi.org/10.1038/s41592-018-0176-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS (2018) Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med 24(12):1809–1814. https://doi.org/10.1038/s41591-018-0202-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ghurye JS, Cepeda-Espinoza V, Pop M (2016) Metagenomic assembly: overview, challenges and applications. Yale J Biol Med 89(3):353–362

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10):1674–1676. https://doi.org/10.1093/bioinformatics/btv033

    Article  CAS  PubMed  Google Scholar 

  72. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27(5):824–834. https://doi.org/10.1101/gr.213959.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40(20):e155. https://doi.org/10.1093/nar/gks678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Afiahayati SK, Sakakibara Y (2015) MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning. DNA Res 22(1):69–77. https://doi.org/10.1093/dnares/dsu041

    Article  CAS  PubMed  Google Scholar 

  75. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glockner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Genome Standards C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35(8):725–731. https://doi.org/10.1038/nbt.3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11(11):1144–1146. https://doi.org/10.1038/nmeth.3103

    Article  CAS  PubMed  Google Scholar 

  77. Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC (2019) New insights from uncultivated genomes of the global human gut microbiome. Nature 568(7753):505–510. https://doi.org/10.1038/s41586-019-1058-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moss EL, Maghini DG, Bhatt AS (2020) Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol 38(6):701–707. https://doi.org/10.1038/s41587-020-0422-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bertrand D, Shaw J, Kalathiyappan M, Ng AHQ, Kumar MS, Li C, Dvornicic M, Soldo JP, Koh JY, Tong C, Ng OT, Barkham T, Young B, Marimuthu K, Chng KR, Sikic M, Nagarajan N (2019) Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat Biotechnol 37(8):937–944. https://doi.org/10.1038/s41587-019-0191-2

    Article  CAS  PubMed  Google Scholar 

  80. Brinda K, Callendrello A, Ma KC, MacFadden DR, Charalampous T, Lee RS, Cowley L, Wadsworth CB, Grad YH, Kucherov G, O’Grady J, Baym M, Hanage WP (2020) Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing. Nat Microbiol 5(3):455–464. https://doi.org/10.1038/s41564-019-0656-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, Peto TEA, Crook DW, Stoesser N (2017) The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature. Clin Infect Dis 64(10):1435–1444. https://doi.org/10.1093/cid/cix132

    Article  PubMed  Google Scholar 

  82. Kanamori H, Weber DJ, Rutala WA (2016) Healthcare outbreaks associated with a water reservoir and infection prevention strategies. Clin Infect Dis 62(11):1423–1435. https://doi.org/10.1093/cid/ciw122

    Article  PubMed  Google Scholar 

  83. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K, Turner S, Brover S, Schoch CL, Kimchi A, DiCuccio M (2018) Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 68(7):2386–2392. https://doi.org/10.1099/ijsem.0.002809

    Article  PubMed  PubMed Central  Google Scholar 

  84. Brooks B, Olm MR, Firek BA, Baker R, Thomas BC, Morowitz MJ, Banfield JF (2017) Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome. Nat Commun 8(1):1814. https://doi.org/10.1038/s41467-017-02018-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Segerman B (2012) The genetic integrity of bacterial species: the core genome and the accessory genome, two different stories. Front Cell Infect Microbiol 2:116. https://doi.org/10.3389/fcimb.2012.00116

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960):798–804. https://doi.org/10.1038/nature02053

    Article  CAS  PubMed  Google Scholar 

  87. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693. https://doi.org/10.1093/bioinformatics/btv421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mostowy R, Croucher NJ, Andam CP, Corander J, Hanage WP, Marttinen P (2017) Efficient inference of recent and ancestral recombination within bacterial populations. Mol Biol Evol 34(5):1167–1182. https://doi.org/10.1093/molbev/msx066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163(1):367–374

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Dijkshoorn L, Ursing BM, Ursing JB (2000) Strain, clone and species: comments on three basic concepts of bacteriology. J Med Microbiol 49(5):397–401. https://doi.org/10.1099/0022-1317-49-5-397

    Article  CAS  PubMed  Google Scholar 

  92. Stimson J, Gardy J, Mathema B, Crudu V, Cohen T, Colijn C (2019) Beyond the SNP threshold: identifying outbreak clusters using inferred transmissions. Mol Biol Evol 36(3):587–603. https://doi.org/10.1093/molbev/msy242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Clark TG, Mallard K, Coll F, Preston M, Assefa S, Harris D, Ogwang S, Mumbowa F, Kirenga B, O’Sullivan DM, Okwera A, Eisenach KD, Joloba M, Bentley SD, Ellner JJ, Parkhill J, Jones-Lopez EC, McNerney R (2013) Elucidating emergence and transmission of multidrug-resistant tuberculosis in treatment experienced patients by whole genome sequencing. PLoS ONE 8(12):e83012. https://doi.org/10.1371/journal.pone.0083012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Coll F, Harrison EM, Toleman MS, Reuter S, Raven KE, Blane B, Palmer B, Kappeler ARM, Brown NM, Torok ME, Parkhill J, Peacock SJ (2017) Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aak9745

    Article  PubMed  PubMed Central  Google Scholar 

  95. Silva IN, Santos PM, Santos MR, Zlosnik JE, Speert DP, Buskirk SW, Bruger EL, Waters CM, Cooper VS, Moreira LM (2016) Long-term evolution of burkholderia multivorans during a chronic cystic fibrosis infection reveals shifting forces of selection. mSystems. https://doi.org/10.1128/mSystems.00029-16

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM, Groussin M, Xavier RJ, Alm EJ (2019) Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25(5):656-667 e658. https://doi.org/10.1016/j.chom.2019.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP, Kishony R (2014) Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nat Genet 46(1):82–87. https://doi.org/10.1038/ng.2848

    Article  CAS  PubMed  Google Scholar 

  98. David MD, Kearns AM, Gossain S, Ganner M, Holmes A (2006) Community-associated meticillin-resistant Staphylococcus aureus: nosocomial transmission in a neonatal unit. J Hosp Infect 64(3):244–250. https://doi.org/10.1016/j.jhin.2006.06.022

    Article  CAS  PubMed  Google Scholar 

  99. Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, Xi F, Li S, Li Y, Zhang Z, Yang X, Zhao M, Wang P, Guan Y, Cen Z, Zhao X, Christner M, Kobbe R, Loos S, Oh J, Yang L, Danchin A, Gao GF, Song Y, Li Y, Yang H, Wang J, Xu J, Pallen MJ, Wang J, Aepfelbacher M, Yang R, Consortium EcOHGAC-S (2011) Open-source genomic analysis of Shiga-toxin-producing E coli O104:H4. N Engl J Med 365(8):718–724. https://doi.org/10.1056/NEJMoa1107643

    Article  CAS  PubMed  Google Scholar 

  100. Tewolde R, Dallman T, Schaefer U, Sheppard CL, Ashton P, Pichon B, Ellington M, Swift C, Green J, Underwood A (2016) MOST: a modified MLST typing tool based on short read sequencing. PeerJ 4:e2308. https://doi.org/10.7717/peerj.2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Walk ST, Alm EW, Calhoun LM, Mladonicky JM, Whittam TS (2007) Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environ Microbiol 9(9):2274–2288. https://doi.org/10.1111/j.1462-2920.2007.01341.x

    Article  PubMed  Google Scholar 

  102. Nowrouzian FL, Adlerberth I, Wold AE (2006) Enhanced persistence in the colonic microbiota of Escherichia coli strains belonging to phylogenetic group B2: role of virulence factors and adherence to colonic cells. Microbes Infect 8(3):834–840. https://doi.org/10.1016/j.micinf.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  103. Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66(10):4555–4558. https://doi.org/10.1128/aem.66.10.4555-4558.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O (2018) ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom. https://doi.org/10.1099/mgen.0.000192

    Article  PubMed  PubMed Central  Google Scholar 

  105. D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477(7365):457–461. https://doi.org/10.1038/nature10388

    Article  CAS  PubMed  Google Scholar 

  106. Surette MD, Wright GD (2017) Lessons from the environmental antibiotic resistome. Annu Rev Microbiol 71:309–329. https://doi.org/10.1146/annurev-micro-090816-093420

    Article  CAS  PubMed  Google Scholar 

  107. Sandegren L, Andersson DI (2009) Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 7(8):578–588. https://doi.org/10.1038/nrmicro2174

    Article  CAS  PubMed  Google Scholar 

  108. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51. https://doi.org/10.1038/nrmicro3380

    Article  CAS  PubMed  Google Scholar 

  109. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, Savelkoul PH, Wolffs PF (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173. https://doi.org/10.3389/fmicb.2016.00173

    Article  Google Scholar 

  110. Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins JJ, Dehio C, Fortune S, Ghigo JM, Hardt WD, Harms A, Heinemann M, Hung DT, Jenal U, Levin BR, Michiels J, Storz G, Tan MW, Tenson T, Van Melderen L, Zinkernagel A (2019) Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 17(7):441–448. https://doi.org/10.1038/s41579-019-0196-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schrader SM, Vaubourgeix J, Nathan C (2020) Biology of antimicrobial resistance and approaches to combat it. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaz6992

    Article  PubMed  PubMed Central  Google Scholar 

  112. Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406(6797):775–781. https://doi.org/10.1038/35021219

    Article  CAS  PubMed  Google Scholar 

  113. Boolchandani M, D’Souza AW, Dantas G (2019) Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20(6):356–370. https://doi.org/10.1038/s41576-019-0108-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311(5759):374–377. https://doi.org/10.1126/science.1120800

    Article  PubMed  Google Scholar 

  115. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5(3):175–186. https://doi.org/10.1038/nrmicro1614

    Article  CAS  PubMed  Google Scholar 

  116. WHO (2019) WHO model lists of essential medicines. https://www.who.int/medicines/publications/essentialmedicines/en/.

  117. Duke Antimicrobial Stewardship Outreach Network (2017) Developing patient safety outcome measures and measurement tools for antibiotic stewardship programs, metrics guide. https://dason.medicine.duke.edu/system/files/page-attachments/704/dason-cdcfinalanalysistool-r11-21.pdf. Accessed 15 Aug 2020

  118. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53(12):5046–5054. https://doi.org/10.1128/AAC.00774-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45(4):1151–1161. https://doi.org/10.1128/AAC.45.4.1151-1161.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Potter RF, D’Souza AW, Dantas G (2016) The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat 29:30–46. https://doi.org/10.1016/j.drup.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pesesky MW, Hussain T, Wallace M, Wang B, Andleeb S, Burnham CA, Dantas G (2015) KPC and NDM-1 genes in related Enterobacteriaceae strains and plasmids from Pakistan and the United States. Emerg Infect Dis 21(6):1034–1037. https://doi.org/10.3201/eid2106.141504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martinez-Martinez L, Pascual A, Jacoby GA (1998) Quinolone resistance from a transferable plasmid. Lancet 351(9105):797–799. https://doi.org/10.1016/S0140-6736(97)07322-4

    Article  CAS  PubMed  Google Scholar 

  123. Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P (2005) Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother 49(8):3523–3525. https://doi.org/10.1128/AAC.49.8.3523-3525.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jacoby GA, Strahilevitz J, Hooper DC (2014) Plasmid-mediated quinolone resistance. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.PLAS-0006-2013

    Article  PubMed  Google Scholar 

  125. Gasparrini AJ, Markley JL, Kumar H, Wang B, Fang L, Irum S, Symister CT, Wallace M, Burnham CD, Andleeb S, Tolia NH, Wencewicz TA, Dantas G (2020) Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Commun Biol 3(1):241. https://doi.org/10.1038/s42003-020-0966-5

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jiang Y, Zhang Y, Lu J, Wang Q, Cui Y, Wang Y, Zhoa D, Du X, Liu H, Li X, Wu X, Hua X, Feng Y, Yu Y (2020) Clinical relevance and plasmid dynamics of mcr-1-positive Escherichia coli in China: a multicentre case-control and molecular epidemiological study. Lancet Microbe 1(1):E24–E33. https://doi.org/10.1016/S2666-5247(20)30001-X

    Article  CAS  PubMed  Google Scholar 

  127. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337(6098):1107–1111. https://doi.org/10.1126/science.1220761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204-212. https://doi.org/10.1093/nar/gku989

    Article  CAS  Google Scholar 

  129. Crofts TS, Gasparrini AJ, Dantas G (2017) Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 15(7):422–434. https://doi.org/10.1038/nrmicro.2017.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. McInnes RS, McCallum GE, Lamberte LE, van Schaik W (2020) Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr Opin Microbiol 53:35–43. https://doi.org/10.1016/j.mib.2020.02.002

    Article  CAS  PubMed  Google Scholar 

  131. Sun J, Liao XP, D’Souza AW, Boolchandani M, Li SH, Cheng K, Luis Martinez J, Li L, Feng YJ, Fang LX, Huang T, Xia J, Yu Y, Zhou YF, Sun YX, Deng XB, Zeng ZL, Jiang HX, Fang BH, Tang YZ, Lian XL, Zhang RM, Fang ZW, Yan QL, Dantas G, Liu YH (2020) Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nat Commun 11(1):1427. https://doi.org/10.1038/s41467-020-15222-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bhattacharyya RP, Bandyopadhyay N, Ma P, Son SS, Liu J, He LL, Wu L, Khafizov R, Boykin R, Cerqueira GC, Pironti A, Rudy RF, Patel MM, Yang R, Skerry J, Nazarian E, Musser KA, Taylor J, Pierce VM, Earl AM, Cosimi LA, Shoresh N, Beechem J, Livny J, Hung DT (2019) Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic susceptibility determination. Nat Med 25(12):1858–1864. https://doi.org/10.1038/s41591-019-0650-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. van Belkum A, Welker M, Pincus D, Charrier JP, Girard V (2017) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: what are the current issues? Ann Lab Med 37(6):475–483. https://doi.org/10.3343/alm.2017.37.6.475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49(11):1749–1755. https://doi.org/10.1086/647952

    Article  CAS  PubMed  Google Scholar 

  135. Clinical and Laboratory Standards Insitute (2019) Performance standards for antimicrobial susceptibility testing, vol M100Ed29. Wayne, PA. https://clsi.org/standards/products/microbiology/documents/m100/

  136. Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Osterlund A, Rodloff A, Steinbakk M, Urbaskova P, Vatopoulos A (2003) European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J Antimicrob Chemother 52(2):145–148. https://doi.org/10.1093/jac/dkg312

    Article  CAS  PubMed  Google Scholar 

  137. Prim N, Rivera A, Coll P, Mirelis B (2018) Is colistin susceptibility testing finally on the right track? Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02067-17

    Article  PubMed  PubMed Central  Google Scholar 

  138. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16(2):161–168. https://doi.org/10.1016/S1473-3099(15)00424-7

    Article  CAS  PubMed  Google Scholar 

  139. He T, Wang R, Liu D, Walsh TR, Zhang R, Lv Y, Ke Y, Ji Q, Wei R, Liu Z, Shen Y, Wang G, Sun L, Lei L, Lv Z, Li Y, Pang M, Wang L, Sun Q, Fu Y, Song H, Hao Y, Shen Z, Wang S, Chen G, Wu C, Shen J, Wang Y (2019) Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol 4(9):1450–1456. https://doi.org/10.1038/s41564-019-0445-2

    Article  CAS  PubMed  Google Scholar 

  140. Jarvinen AK, Laakso S, Piiparinen P, Aittakorpi A, Lindfors M, Huopaniemi L, Piiparinen H, Maki M (2009) Rapid identification of bacterial pathogens using a PCR- and microarray-based assay. BMC Microbiol 9:161. https://doi.org/10.1186/1471-2180-9-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70(1):119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  142. Ng LK, Martin I, Alfa M, Mulvey M (2001) Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 15(4):209–215. https://doi.org/10.1006/mcpr.2001.0363

    Article  CAS  PubMed  Google Scholar 

  143. Liu J, Gratz J, Amour C, Kibiki G, Becker S, Janaki L, Verweij JJ, Taniuchi M, Sobuz SU, Haque R, Haverstick DM, Houpt ER (2013) A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens. J Clin Microbiol 51(2):472–480. https://doi.org/10.1128/JCM.02658-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67(11):2640–2644. https://doi.org/10.1093/jac/dks261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zankari E, Allesoe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM (2017) PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 72(10):2764–2768. https://doi.org/10.1093/jac/dkx217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FS, Wright GD, McArthur AG (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45(D1):D566–D573. https://doi.org/10.1093/nar/gkw1004

    Article  CAS  PubMed  Google Scholar 

  147. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ, Tomita T, Zobel J, Holt KE (2014) SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 6(11):90. https://doi.org/10.1186/s13073-014-0090-6

    Article  PubMed  PubMed Central  Google Scholar 

  148. Clausen PT, Zankari E, Aarestrup FM, Lund O (2016) Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. J Antimicrob Chemother 71(9):2484–2488. https://doi.org/10.1093/jac/dkw184

    Article  CAS  PubMed  Google Scholar 

  149. Thai QK, Bos F, Pleiss J (2009) The Lactamase Engineering Database: a critical survey of TEM sequences in public databases. BMC Genomics 10:390. https://doi.org/10.1186/1471-2164-10-390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) Tuberculosis drug resistance mutation database. PLoS Med 6(2):e2. https://doi.org/10.1371/journal.pmed.1000002

    Article  CAS  PubMed  Google Scholar 

  151. Skov RL, Monnet DL (2016) Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill 21(9):30155. https://doi.org/10.2807/1560-7917.ES.2016.21.9.30155

    Article  PubMed  Google Scholar 

  152. Carnevali C, Morganti M, Scaltriti E, Bolzoni L, Pongolini S, Casadei G (2016) Occurrence of mcr-1 in colistin-resistant salmonella enterica isolates recovered from humans and animals in Italy, 2012 to 2015. Antimicrob Agents Chemother 60(12):7532–7534. https://doi.org/10.1128/AAC.01803-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ortega-Paredes D, Barba P, Zurita J (2016) Colistin-resistant Escherichia coli clinical isolate harbouring the mcr-1 gene in Ecuador. Epidemiol Infect 144(14):2967–2970. https://doi.org/10.1017/S0950268816001369

    Article  CAS  PubMed  Google Scholar 

  154. Teo JQ, Ong RT, Xia E, Koh TH, Khor CC, Lee SJ, Lim TP, Kwa AL (2016) mcr-1 in multidrug-resistant blaKPC-2-producing clinical enterobacteriaceae isolates in Singapore. Antimicrob Agents Chemother 60(10):6435–6437. https://doi.org/10.1128/AAC.00804-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Delgado-Blas JF, Ovejero CM, Abadia-Patino L, Gonzalez-Zorn B (2016) Coexistence of mcr-1 and blaNDM-1 in Escherichia coli from Venezuela. Antimicrob Agents Chemother 60(10):6356–6358. https://doi.org/10.1128/AAC.01319-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wong SC, Tse H, Chen JH, Cheng VC, Ho PL, Yuen KY (2016) Colistin-resistant enterobacteriaceae carrying the mcr-1 gene among patients in Hong Kong. Emerg Infect Dis 22(9):1667–1669. https://doi.org/10.3201/eid2209.160091

    Article  PubMed  PubMed Central  Google Scholar 

  157. von Wintersdorff CJ, Wolffs PF, van Niekerk JM, Beuken E, van Alphen LB, Stobberingh EE, Oude Lashof AM, Hoebe CJ, Savelkoul PH, Penders J (2016) Detection of the plasmid-mediated colistin-resistance gene mcr-1 in faecal metagenomes of Dutch travellers. J Antimicrob Chemother 71(12):3416–3419. https://doi.org/10.1093/jac/dkw328

    Article  CAS  Google Scholar 

  158. Kaminski J, Gibson MK, Franzosa EA, Segata N, Dantas G, Huttenhower C (2015) High-specificity targeted functional profiling in microbial communities with ShortBRED. PLoS Comput Biol 11(12):e1004557. https://doi.org/10.1371/journal.pcbi.1004557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pehrsson EC, Tsukayama P, Patel S, Mejia-Bautista M, Sosa-Soto G, Navarrete KM, Calderon M, Cabrera L, Hoyos-Arango W, Bertoli MT, Berg DE, Gilman RH, Dantas G (2016) Interconnected microbiomes and resistomes in low-income human habitats. Nature 533(7602):212–216. https://doi.org/10.1038/nature17672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gibson MK, Forsberg KJ, Dantas G (2015) Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J 9(1):207–216. https://doi.org/10.1038/ismej.2014.106

    Article  CAS  PubMed  Google Scholar 

  161. Eddy SR (2004) What is a hidden Markov model? Nat Biotechnol 22(10):1315–1316. https://doi.org/10.1038/nbt1004-1315

    Article  CAS  PubMed  Google Scholar 

  162. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432. https://doi.org/10.1093/nar/gky995

    Article  CAS  PubMed  Google Scholar 

  163. Liu B, Pop M (2009) ARDB–antibiotic resistance genes database. Nucleic Acids Res 37(Database issue):D443-447. https://doi.org/10.1093/nar/gkn656

    Article  CAS  PubMed  Google Scholar 

  164. Fernandez-Arrojo L, Guazzaroni ME, Lopez-Cortes N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21(6):725–733. https://doi.org/10.1016/j.copbio.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  165. Campbell TP, Sun X, Patel VH, Sanz C, Morgan D, Dantas G (2020) The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J 14(6):1584–1599. https://doi.org/10.1038/s41396-020-0634-2

    Article  PubMed  PubMed Central  Google Scholar 

  166. Forsberg KJ, Patel S, Wencewicz TA, Dantas G (2015) The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem Biol 22(7):888–897. https://doi.org/10.1016/j.chembiol.2015.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cohen LJ, Han S, Huang YH, Brady SF (2018) Identification of the colicin V bacteriocin gene cluster by functional screening of a human microbiome metagenomic library. ACS Infect Dis 4(1):27–32. https://doi.org/10.1021/acsinfecdis.7b00081

    Article  CAS  PubMed  Google Scholar 

  168. Wallace JC, Port JA, Smith MN, Faustman EM (2017) FARME DB: a functional antibiotic resistance element database. Database (Oxford). https://doi.org/10.1093/database/baw165

    Article  PubMed Central  Google Scholar 

  169. Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L, Luiken REC, Smit LAM, Schmitt H, Garcia AD, Hansen RB, Petersen TN, Bossers A, Ruppe E, Group E, Lund O, Hald T, Pamp SJ, Vigre H, Heederik D, Wagenaar JA, Mevius D, Aarestrup FM (2018) Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol 3(8):898-908. doi:https://doi.org/10.1038/s41564-018-0192-9

  170. Barczak AK, Gomez JE, Kaufmann BB, Hinson ER, Cosimi L, Borowsky ML, Onderdonk AB, Stanley SA, Kaur D, Bryant KF, Knipe DM, Sloutsky A, Hung DT (2012) RNA signatures allow rapid identification of pathogens and antibiotic susceptibilities. Proc Natl Acad Sci USA 109(16):6217–6222. https://doi.org/10.1073/pnas.1119540109

    Article  PubMed  PubMed Central  Google Scholar 

  171. Sangurdekar DP, Srienc F, Khodursky AB (2006) A classification based framework for quantitative description of large-scale microarray data. Genome Biol 7(4):R32. https://doi.org/10.1186/gb-2006-7-4-r32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hrabak J, Studentova V, Walkova R, Zemlickova H, Jakubu V, Chudackova E, Gniadkowski M, Pfeifer Y, Perry JD, Wilkinson K, Bergerova T (2012) Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50(7):2441–2443. https://doi.org/10.1128/JCM.01002-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Josten M, Dischinger J, Szekat C, Reif M, Al-Sabti N, Sahl HG, Parcina M, Bekeredjian-Ding I, Bierbaum G (2014) Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry. Int J Med Microbiol 304(8):1018–1023. https://doi.org/10.1016/j.ijmm.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  174. Figueroa-Espinosa R, Costa A, Cejas D, Barrios R, Vay C, Radice M, Gutkind G, Di Conza J (2019) MALDI-TOF MS based procedure to detect KPC-2 directly from positive blood culture bottles and colonies. J Microbiol Methods 159:120–127. https://doi.org/10.1016/j.mimet.2019.02.020

    Article  CAS  PubMed  Google Scholar 

  175. Banyoczki G, Goebel N, Antonucci F, Zollikofer C, Stuckmann G (1990) CT diagnosis in idiopathic thrombosis of the superior mesenteric vein. Rofo 153(2):192–196. https://doi.org/10.1055/s-2008-1033360

    Article  CAS  PubMed  Google Scholar 

  176. Sparbier K, Lange C, Jung J, Wieser A, Schubert S, Kostrzewa M (2013) MALDI biotyper-based rapid resistance detection by stable-isotope labeling. J Clin Microbiol 51(11):3741–3748. https://doi.org/10.1128/JCM.01536-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jung JS, Hamacher C, Gross B, Sparbier K, Lange C, Kostrzewa M, Schubert S (2016) Evaluation of a semiquantitative matrix-assisted laser desorption ionization-time of flight mass spectrometry method for rapid antimicrobial susceptibility testing of positive blood cultures. J Clin Microbiol 54(11):2820–2824. https://doi.org/10.1128/JCM.01131-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cawthon RM, Weiss R, Xu GF, Viskochil D, Culver M, Stevens J, Robertson M, Dunn D, Gesteland R, O’Connell P et al (1990) A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62(1):193–201. https://doi.org/10.1016/0092-8674(90)90253-b

    Article  CAS  PubMed  Google Scholar 

  179. Hatosy SM, Martiny AC (2015) The ocean as a global reservoir of antibiotic resistance genes. Appl Environ Microbiol 81(21):7593–7599. https://doi.org/10.1128/AEM.00736-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360. https://doi.org/10.1016/j.scitotenv.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  181. Evans DR, Griffith MP, Sundermann AJ, Shutt KA, Saul MI, Mustapha MM, Marsh JW, Cooper VS, Harrison LH, Van Tyne D (2020) Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. Elife. https://doi.org/10.7554/eLife.53886

    Article  PubMed  PubMed Central  Google Scholar 

  182. Lerat E, Ochman H (2004) Psi-Phi: exploring the outer limits of bacterial pseudogenes. Genome Res 14(11):2273–2278. https://doi.org/10.1101/gr.2925604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Carr VR, Shkoporov A, Hill C, Mullany P, Moyes DL (2020) Probing the mobilome: discoveries in the dynamic microbiome. Trends Microbiol. https://doi.org/10.1016/j.tim.2020.05.003

    Article  PubMed  Google Scholar 

  184. Jorgensen TS, Kiil AS, Hansen MA, Sorensen SJ, Hansen LH (2014) Current strategies for mobilome research. Front Microbiol 5:750. https://doi.org/10.3389/fmicb.2014.00750

    Article  PubMed  Google Scholar 

  185. Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303(6–7):298–304. https://doi.org/10.1016/j.ijmm.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  186. Smalla K, Jechalke S, Top EM (2015) Plasmid detection, characterization, and ecology. Microbiol Spectr 3 (1):PLAS-0038–2014. doi:https://doi.org/10.1128/microbiolspec.PLAS-0038-2014

  187. Pinilla-Redondo R, Cyriaque V, Jacquiod S, Sorensen SJ, Riber L (2018) Monitoring plasmid-mediated horizontal gene transfer in microbiomes: recent advances and future perspectives. Plasmid 99:56–67. https://doi.org/10.1016/j.plasmid.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  188. Emamalipour M, Seidi K, Zununi Vahed S, Jahanban-Esfahlan A, Jaymand M, Majdi H, Amoozgar Z, Chitkushev LT, Javaheri T, Jahanban-Esfahlan R, Zare P (2020) Horizontal gene transfer: from evolutionary flexibility to disease progression. Front Cell Dev Biol 8:229. https://doi.org/10.3389/fcell.2020.00229

    Article  PubMed  PubMed Central  Google Scholar 

  189. Conlan S, Park M, Deming C, Thomas PJ, Young AC, Coleman H, Sison C, Program NCS, Weingarten RA, Lau AF, Dekker JP, Palmore TN, Frank KM, Segre JA (2016) Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during Long-Term Patient Colonization. mBio. https://doi.org/10.1128/mBio.00742-16

    Article  PubMed  PubMed Central  Google Scholar 

  190. Partridge SR, Kwong SM, Firth N, Jensen SO (2018) Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00088-17

    Article  PubMed  PubMed Central  Google Scholar 

  191. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63(3):219–228. https://doi.org/10.1016/j.mimet.2005.03.018

    Article  CAS  PubMed  Google Scholar 

  192. Garcia-Fernandez A, Villa L, Moodley A, Hasman H, Miriagou V, Guardabassi L, Carattoli A (2011) Multilocus sequence typing of IncN plasmids. J Antimicrob Chemother 66(9):1987–1991. https://doi.org/10.1093/jac/dkr225

    Article  CAS  PubMed  Google Scholar 

  193. Valverde A, Canton R, Garcillan-Barcia MP, Novais A, Galan JC, Alvarado A, de la Cruz F, Baquero F, Coque TM (2009) Spread of bla(CTX-M-14) is driven mainly by IncK plasmids disseminated among Escherichia coli phylogroups A, B1, and D in Spain. Antimicrob Agents Chemother 53(12):5204–5212. https://doi.org/10.1128/AAC.01706-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Alvarado A, Garcillan-Barcia MP, de la Cruz F (2012) A degenerate primer MOB typing (DPMT) method to classify gamma-proteobacterial plasmids in clinical and environmental settings. PLoS ONE 7(7):e40438. https://doi.org/10.1371/journal.pone.0040438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Moller Aarestrup F, Hasman H (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58(7):3895–3903. https://doi.org/10.1128/AAC.02412-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Francia MV, Varsaki A, Garcillan-Barcia MP, Latorre A, Drainas C, de la Cruz F (2004) A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 28(1):79–100. https://doi.org/10.1016/j.femsre.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  197. Hazen TH, Mettus R, McElheny CL, Bowler SL, Nagaraj S, Doi Y, Rasko DA (2018) Diversity among blaKPC-containing plasmids in Escherichia coli and other bacterial species isolated from the same patients. Sci Rep 8(1):10291. https://doi.org/10.1038/s41598-018-28085-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pecora ND, Li N, Allard M, Li C, Albano E, Delaney M, Dubois A, Onderdonk AB, Bry L (2015) Genomically informed surveillance for carbapenem-resistant enterobacteriaceae in a health care system. mBio 6(4):e01030. https://doi.org/10.1128/mBio.01030-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Orlek A, Phan H, Sheppard AE, Doumith M, Ellington M, Peto T, Crook D, Walker AS, Woodford N, Anjum MF, Stoesser N (2017) Ordering the mob: Insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids. Plasmid 91:42–52. https://doi.org/10.1016/j.plasmid.2017.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Arredondo-Alonso S, Willems RJ, van Schaik W, Schurch AC (2017) On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microb Genom 3(10):e000128. https://doi.org/10.1099/mgen.0.000128

    Article  PubMed  PubMed Central  Google Scholar 

  201. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA (2016) plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 32(22):3380–3387. https://doi.org/10.1093/bioinformatics/btw493

    Article  CAS  PubMed  Google Scholar 

  202. Zhou F, Xu Y (2010) cBar: a computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics 26(16):2051–2052. https://doi.org/10.1093/bioinformatics/btq299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Krawczyk PS, Lipinski L, Dziembowski A (2018) PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 46(6):e35. https://doi.org/10.1093/nar/gkx1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Rozov R, Brown Kav A, Bogumil D, Shterzer N, Halperin E, Mizrahi I, Shamir R (2017) Recycler: an algorithm for detecting plasmids from de novo assembly graphs. Bioinformatics 33(4):475–482. https://doi.org/10.1093/bioinformatics/btw651

    Article  CAS  PubMed  Google Scholar 

  205. Antipov D, Raiko M, Lapidus A, Pevzner PA (2019) Plasmid detection and assembly in genomic and metagenomic data sets. Genome Res 29(6):961–968. https://doi.org/10.1101/gr.241299.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ, Peto T, Crook D, Woodford N, Walker AS, Phan H, Sheppard AE (2017) Plasmid classification in an Era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology. Front Microbiol 8:182. https://doi.org/10.3389/fmicb.2017.00182

    Article  PubMed  PubMed Central  Google Scholar 

  207. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW, Giess A, Pankhurst LJ, Vaughan A, Grim CJ, Cox HL, Yeh AJ, Modernising Medical Microbiology Informatics G, Sifri CD, Walker AS, Peto TE, Crook DW, Mathers AJ (2016) Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blaKPC. Antimicrob Agents Chemother 60 (6):3767-3778. doi:https://doi.org/10.1128/AAC.00464-16

  208. Galata V, Fehlmann T, Backes C, Keller A (2019) PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res 47(D1):D195–D202. https://doi.org/10.1093/nar/gky1050

    Article  CAS  PubMed  Google Scholar 

  209. Stoesser N, Giess A, Batty EM, Sheppard AE, Walker AS, Wilson DJ, Didelot X, Bashir A, Sebra R, Kasarskis A, Sthapit B, Shakya M, Kelly D, Pollard AJ, Peto TE, Crook DW, Donnelly P, Thorson S, Amatya P, Joshi S (2014) Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting. Antimicrob Agents Chemother 58(12):7347–7357. https://doi.org/10.1128/AAC.03900-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, Snitkin ES, Clark TA, Luong K, Song Y, Tsai YC, Boitano M, Dayal J, Brooks SY, Schmidt B, Young AC, Thomas JW, Bouffard GG, Blakesley RW, Program NCS, Mullikin JC, Korlach J, Henderson DK, Frank KM, Palmore TN, Segre JA (2014) Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med 6(254):254. https://doi.org/10.1126/scitranslmed.3009845

    Article  CAS  Google Scholar 

  211. Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38(15):e159. https://doi.org/10.1093/nar/gkq543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M, Emond-Rheault JG, Pongchaikul P, Santanirand P, Levesque RC, Fothergill JL, Winstanley C (2020) A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat Commun 11(1):1370. https://doi.org/10.1038/s41467-020-15081-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34(Database issue):D32-36. https://doi.org/10.1093/nar/gkj014

    Article  CAS  PubMed  Google Scholar 

  214. Hawkey J, Hamidian M, Wick RR, Edwards DJ, Billman-Jacobe H, Hall RM, Holt KE (2015) ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics 16:667. https://doi.org/10.1186/s12864-015-1860-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Cury J, Jove T, Touchon M, Neron B, Rocha EP (2016) Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res 44(10):4539–4550. https://doi.org/10.1093/nar/gkw319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Treepong P, Guyeux C, Meunier A, Couchoud C, Hocquet D, Valot B (2018) panISa: ab initio detection of insertion sequences in bacterial genomes from short read sequence data. Bioinformatics 34(22):3795–3800. https://doi.org/10.1093/bioinformatics/bty479

    Article  CAS  PubMed  Google Scholar 

  217. Durrant MG, Li MM, Siranosian BA, Montgomery SB, Bhatt AS (2020) A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 27(1):140-153 e149. https://doi.org/10.1016/j.chom.2019.10.022

    Article  CAS  PubMed  Google Scholar 

  218. Jorgensen TS, Xu Z, Hansen MA, Sorensen SJ, Hansen LH (2014) Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS ONE 9(2):e87924. https://doi.org/10.1371/journal.pone.0087924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Brown Kav A, Benhar I, Mizrahi I (2013) A method for purifying high quality and high yield plasmid DNA for metagenomic and deep sequencing approaches. J Microbiol Methods 95(2):272–279. https://doi.org/10.1016/j.mimet.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  220. Li LL, Norman A, Hansen LH, Sorensen SJ (2012) Metamobilomics–expanding our knowledge on the pool of plasmid encoded traits in natural environments using high-throughput sequencing. Clin Microbiol Infect 18(Suppl 4):5–7. https://doi.org/10.1111/j.1469-0691.2012.03862.x

    Article  CAS  PubMed  Google Scholar 

  221. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. DeMaere MZ, Darling AE (2019) bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes. Genome Biol 20(1):46. https://doi.org/10.1186/s13059-019-1643-1

    Article  PubMed  PubMed Central  Google Scholar 

  223. Press MO, Wiser AH, Kronenberg ZN, Langford KW, Shakya M, Lo C, Mueller KA, Sullivan S, Chain PSG, Liachko I (2017) Hi-C deconvolution of a human gut microbiome yields high-quality draft genomes and reveals plasmid-genome interactions. bioRxiv. https://doi.org/10.1101/198713

    Article  Google Scholar 

  224. DeMaere MZ, Liu MYZ, Lin E, Djordjevic SP, Charles IG, Worden P, Burke CM, Monahan LG, Gardiner M, Borody TJ, Darling AE (2020) Metagenomic Hi-C of a healthy human fecal microbiome transplant donor. Microbiol Resour Announc. https://doi.org/10.1128/MRA.01523-19

    Article  PubMed  PubMed Central  Google Scholar 

  225. Beitel CW, Froenicke L, Lang JM, Korf IF, Michelmore RW, Eisen JA, Darling AE (2014) Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ 2:e415. https://doi.org/10.7717/peerj.415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Burton JN, Liachko I, Dunham MJ, Shendure J (2014) Specieslevel deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3 (Bethesda) 4(7):1339–1346. https://doi.org/10.1534/g3.114.011825

    Article  Google Scholar 

  227. Marbouty M, Cournac A, Flot JF, Marie-Nelly H, Mozziconacci J, Koszul R (2014) Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. Elife 3:e03318. https://doi.org/10.7554/eLife.03318

    Article  PubMed  PubMed Central  Google Scholar 

  228. Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW, Roehe R, Watson M (2018) Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun 9(1):870. https://doi.org/10.1038/s41467-018-03317-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Yaffe E, Relman DA (2020) Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation. Nat Microbiol 5(2):343–353. https://doi.org/10.1038/s41564-019-0625-0

    Article  CAS  PubMed  Google Scholar 

  230. Stalder T, Press MO, Sullivan S, Liachko I, Top EM (2019) Linking the resistome and plasmidome to the microbiome. ISME J 13(10):2437–2446. https://doi.org/10.1038/s41396-019-0446-4

    Article  PubMed  PubMed Central  Google Scholar 

  231. Kent AG, Vill AC, Shi Q, Satlin MJ, Brito IL (2020) Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat Commun 11(1):4379. https://doi.org/10.1038/s41467-020-18164-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Group NCSP, Henderson DK, Palmore TN, Segre JA (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4(148):148ra116. Doi:https://doi.org/10.1126/scitranslmed.3004129

  233. Smibert OC, Aung AK, Woolnough E, Carter GP, Schultz MB, Howden BP, Seemann T, Spelman D, McGloughlin S, Peleg AY (2018) Mobile phones and computer keyboards: unlikely reservoirs of multidrug-resistant organisms in the tertiary intensive care unit. J Hosp Infect 99(3):295–298. https://doi.org/10.1016/j.jhin.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  234. Guerra-Assuncao JA, Houben RM, Crampin AC, Mzembe T, Mallard K, Coll F, Khan P, Banda L, Chiwaya A, Pereira RP, McNerney R, Harris D, Parkhill J, Clark TG, Glynn JR (2015) Recurrence due to relapse or reinfection with Mycobacterium tuberculosis: a whole-genome sequencing approach in a large, population-based cohort with a high HIV infection prevalence and active follow-up. J Infect Dis 211(7):1154–1163. https://doi.org/10.1093/infdis/jiu574

    Article  PubMed  Google Scholar 

  235. Donkor ES, Jamrozy D, Mills RO, Dankwah T, Amoo PK, Egyir B, Badoe EV, Twasam J, Bentley SD (2018) A genomic infection control study for Staphylococcus aureus in two Ghanaian hospitals. Infect Drug Resist 11:1757–1765. https://doi.org/10.2147/IDR.S167639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sharma H, Ong MR, Ready D, Coelho J, Groves N, Chalker V, Warren S (2019) Real-time whole genome sequencing to control a Streptococcus pyogenes outbreak at a national orthopaedic hospital. J Hosp Infect 103(1):21–26. https://doi.org/10.1016/j.jhin.2019.07.003

    Article  CAS  PubMed  Google Scholar 

  237. Sundermann AJ, Babiker A, Marsh JW, Shutt KA, Mustapha MM, Pasculle AW, Ezeonwuka C, Saul MI, Pacey MP, Van Tyne D, Ayres AM, Cooper VS, Snyder GM, Harrison LH (2020) Outbreak of vancomycin-resistant enterococcus faecium in interventional radiology: detection through whole-genome sequencing-based surveillance. Clin Infect Dis 70(11):2336–2343. https://doi.org/10.1093/cid/ciz666

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by awards to GD through the National Institute of Allergy and Infectious Diseases (NIAID: https://www.niaid.nih.gov/), the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD: https://www.nichd.nih.gov/), and the National Center for Complementary and Integrative Health (NCCIH: https://nccih.nih.gov/) of the National Institutes of Health (NIH) under award numbers R01AI123394, R01HD092414, and R01AT009741, respectively; the National Institute for Occupational Safety and Health (NIOSH: https://www.cdc.gov/niosh/index.htm) of the US Centers for Disease Control and Prevention (CDC) under award number R01OH011578; and the Congressionally Directed Medical Research Program (CDMRP: https://cdmrp.army.mil/prmrp/default) of the US Department of Defense (DOD) under award number W81XWH1810225. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin S. Blake or Gautam Dantas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blake, K.S., Choi, J. & Dantas, G. Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Cell. Mol. Life Sci. 78, 2585–2606 (2021). https://doi.org/10.1007/s00018-020-03717-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03717-2

Keywords

Navigation