Skip to main content

Advertisement

Log in

Engineered-extracellular vesicles as an optimistic tool for microRNA delivery for osteoarthritis treatment

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Worldwide, osteoarthritis (OA) is one of the most common chronic diseases. In OA, profiling gene expression changes occur and cartilage tissue homeostasis is lost. Suggestions for OA treatment include regulation of gene expressions via the use of microRNAs (miRNAs). However, problems exist with the use of miRNAs, the most important of which is the delivery of sufficient amounts of effective miRNAs to save cartilage tissue. The engineering of extracellular vesicles (EVs) with the use of advanced techniques would be an efficient OA treatment. Therefore, we discuss the importance of miRNAs in terms of cartilage tissue regeneration and review recent advances in production of enriched EVs and miRNA delivery by EVs for future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3′ UTR:

3′ Untranslated region

3D:

Three-dimensional

ACI:

Autologous chondrocyte implantation

AD-MSCs:

Adipose-derived MSCs

BM-MSCs:

Bone marrow-derived MSCs

COL II:

Type II collagen

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

FUT1:

Fucosyltransferase 1

GAGs:

Glycosaminoglycans

hBM-MSCs:

Human bone marrow MSCs

HDAC4:

Histone deacetylase 4

HEK293:

Human embryonic kidney cell line 293

HPGD:

15-Hydroxyprostaglandin dehydrogenase

IL-1β:

Interleukin-1β

miRNA:

MicroRNAs

MMP-13:

Matrix metallopeptidase 13*

MSC:

Mesenchymal stromal/stem cell

MSC-EVs:

MSC-extracellular vesicles

mTOR:

Mammalian target of rapamycin

MVBs:

Multivesicular bodies

MVs:

Microvesicles

NF-κB:

Nuclear factor-κB

OA:

Osteoarthritis

OACs:

Osteoarthritic chondrocytes

PEG:

Polyethylene glycol

PGs:

Proteoglycans

PPARA:

Peroxisome proliferator activated receptor alpha

RISC:

RNA-induced silencing complex

Runx2:

Runt-related transcription factor2

SDSCs:

Synovium-derived MSCs

SMAD:

Sma and Mad related

TNF:

Tumor necrosis factor

References

  1. Aigner T, McKenna L (2002) Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci 59(1):5–18

    Article  CAS  PubMed  Google Scholar 

  2. Yagi R, McBurney D, Laverty D, Weiner S Jr (2005) Intrajoint comparisons of gene expression patterns in human osteoarthritis suggests a change in chondrocyte phenotype. J Orthop Res 26(5):1128–1138

    Article  Google Scholar 

  3. Zhong L, Huang X, Karperien M, Post JN (2016) Correlation between gene expression and osteoarthritis progression in human. Int J Mol Sci 17(7):1126. https://doi.org/10.3390/ijms17071126

    Article  CAS  PubMed Central  Google Scholar 

  4. Nam Y, Rim YA, Lee J, Ju JH (2018) Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int 2018:8490489–8490489. https://doi.org/10.1155/2018/8490489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014:970607. https://doi.org/10.1155/2014/970607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S (2011) MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS ONE 6(7):e21679. https://doi.org/10.1371/journal.pone.0021679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Z, Kang Y, Zhang Z, Zhang H, Duan X, Liu J, Li X, Liao W (2012) Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthr Cartil 20(12):1638–1646. https://doi.org/10.1016/j.joca.2012.08.024

    Article  CAS  Google Scholar 

  8. Collino F, Bruno S, Lindoso RS, Camussi G (2014) miRNA expression in mesenchymal stem cells. Curr Pathobiol Rep 2(3):101–107. https://doi.org/10.1007/s40139-014-0045-z

    Article  Google Scholar 

  9. Lewis BPBC, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  10. Sohn D, Sokolove J, Sharpe O, Erhart J, Chandra P, Lahey L, Lindstrom T, Hwang I, Boyer K, Andriacchi T, Robinson W (2012) Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther 14(1):R7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iliopoulos D, Malizos K, Oikonomou P, Tsezou A (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3(11):e3740

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hou C, Yang Z, Kang Y, Zhang Z, Fu M, He A, Zhang Z, Liao W (2015) MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway. FEBS Lett 589(9):1040–1047. https://doi.org/10.1016/j.febslet.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  13. Hou C, Zhang Z, Zhang Z, Wu P, Zhao X, Fu M, Sheng P, Kang Y, Liao W (2015) Presence and function of microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal stem cells. Mol Med Rep 12(4):4877–4886. https://doi.org/10.3892/mmr.2015.4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meng F, Zhang Z, Chen W, Huang G, He A, Hou C, Long Y, Yang Z, Zhang Z, Liao W (2016) MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses. Osteoarthr Cartil 24(5):932–941

    Article  CAS  Google Scholar 

  15. Vonk LA, Kragten AH, Ghazi zadeh L, Bleijs MW, Dhert WJ, Saris DB, Creemers LB (2014) The role Of MicroRNAs in osteoarthritis. Paper presented at the ORS (Orthopaedic Research Society) Annual Meeting, New Orleans, Louisiana 70113, United States.

  16. Zhou B, Li H, Shi J (2017) miR27 inhibits the NF-κB signaling pathway by targeting leptin in osteoarthritic chondrocytes. Int J Mol Med 40(2):523–530

    Article  CAS  PubMed  Google Scholar 

  17. Chen S, Xu Z, Shao J, Fu P, Wu H (2019) MicroRNA-218 promotes early chondrogenesis of mesenchymal stem cells and inhibits later chondrocyte maturation. BMC Biotechnol 19(1):6–6. https://doi.org/10.1186/s12896-018-0496-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Elfenbein A, Simons M (2010) Auxiliary and autonomous proteoglycan signaling networks. Methods Enzymol 480:3–31. https://doi.org/10.1016/S0076-6879(10)80001-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malemud CJ (1991) Changes in proteoglycans in osteoarthritis: biochemistry, ultrastructure and biosynthetic processing. J Rheumatol Suppl 27:60–62

    CAS  PubMed  Google Scholar 

  20. Little C, Ghosh P, Bellenger C (1996) Topographic variation in biglycan and decorin synthesis by articular cartilage in the early stages of osteoarthritis: An experimental study in sheep. J Orthop Res 14:433–444. https://doi.org/10.1002/jor.1100140314

    Article  CAS  PubMed  Google Scholar 

  21. Craddock RJ, Hodson NW, Ozols M, Shearer T, Hoyland JA, Sherratt MJ (2018) Extracellular matrix fragmentation in young, healthy cartilaginous tissues. Eur Cells Mater 35:34–53

    Article  CAS  Google Scholar 

  22. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, Takada S, Lotz MK, Ueno-Kudo H, Asahara H (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24(11):1173–1185. https://doi.org/10.1101/gad.1915510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468. https://doi.org/10.1177/1941738109350438

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lin PM, Chen CT, Torzilli PA (2004) Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3-and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthr Cartil 12(6):485–496

    Article  Google Scholar 

  25. Konttinen YT, Ruuttilal P, Hukkanen M, Santavirta S (2005) Chondrocyte-mediated collagenolysis correlates with cartilage destruction grades in osteoarthritis. Clin Exp Rheumatol 23(1):19–26

    CAS  PubMed  Google Scholar 

  26. Hou C, Zhang Z, Yang Z, Wu P, Gu M, Liao W (2014) miR-381-3p participates in chondrogenesis and cartilage degradation by alleviating collagen 2 expression and enhancing mmp13 expression. Osteoarthr Cartil 22:S320–S321. https://doi.org/10.1016/j.joca.2014.02.593

    Article  Google Scholar 

  27. Xu J, Lv S, Hou Y, Xu K, Sun D, Zheng Y, Zhang Z, Li X, Li Y, Chi G (2018) miR-27b promotes type II collagen expression by targetting peroxisome proliferator-activated receptor-γ2 during rat articular chondrocyte differentiation. Biosci Rep 38(1):BSR20171109. https://doi.org/10.1042/bsr20171109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang HGB, Zhang Y, Chen L, Ying D, Dong S (2011) MicroRNA-145 Regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS ONE 6(7):1–11

    Google Scholar 

  29. Lee DSY, Paik S, Lee KM, Jang Y, Lee JW (2014) microRNA-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9. Stem Cells Dev 23(15):1798–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu C, Wang Y (2018) MicroRNA-19a promotes cell viability and migration of chondrocytes via up-regulating SOX9 through NF-κB pathway. Biomed Pharmacother 98:746–753. https://doi.org/10.1016/j.biopha.2017.11.132

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Huang X, Yuan Y (2017) MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a. Am J Transl Res 9(1):136–145

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Begum R, Kafienah W (2018) Mesenchymal stem cell chondroinduction on cellulose-silk composites is driven by substrate elasticity. bioRxiv. https://doi.org/10.1101/383307

    Article  Google Scholar 

  33. Kim D, Song J, Jin EJ (2010) MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem 285(35):26900–26907. https://doi.org/10.1074/jbc.M110.115105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang J, Qin S, Yi C, Ma G, Zhu H, Zhou W, Xiong Y, Zhu X, Wang Y, He L, Guo X (2011) MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett 585(19):2992–2997. https://doi.org/10.1016/j.febslet.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Hu J, Pan Y, Shan Y, Jiang L, Qi X, Jia L (2018) miR-140-5p/miR-149 affects chondrocyte proliferation, apoptosis, and autophagy by targeting FUT1 in osteoarthritis. Inflammation. https://doi.org/10.1007/s10753-018-0750-6

    Article  PubMed  Google Scholar 

  36. Dai Y, Liu S, Xie X, Ding M, Zhou Q, Zhou X (2019) MicroRNA-31 promotes chondrocyte proliferation by targeting C-X-C motif chemokine ligand 12. Mol Med Rep 19(3):2231–2237. https://doi.org/10.3892/mmr.2019.9859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Xu S, Huang E, Zhou H, Li B, Shao C, Yang Y (2018) MicroRNA-130a regulates chondrocyte proliferation and alleviates osteoarthritis through PTEN/PI3K/Akt signaling pathway. Int J Mol Med. https://doi.org/10.3892/ijmm.2018.3551

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yingjie Guan XY, Qian Chen. (2014) MicroRNA-146a Is a hypertrophic cartilage-specific microrna induced by mechanical loading. Paper presented at the ORS (Orthopaedic Research Society) Annual Meeting, New Orleans, Louisiana 70113, United States Poster No: 1265.

  39. Gabler J, Ruetze M, Kynast KL, Grossner T, Diederichs S, Richter W (2015) Stage-specific miRs in chondrocyte maturation: differentiation-dependent and hypertrophy-related miR clusters and the miR-181 family. Tissue Eng Part A 21(23–24):2840–2851. https://doi.org/10.1089/ten.TEA.2015.0352

    Article  CAS  PubMed  Google Scholar 

  40. Chen W, Sheng P, Huang Z, Meng F, Kang Y, Huang G, Zhang Z, Liao W, Zhang Z (2016) MicroRNA-381 regulates chondrocyte hypertrophy by inhibiting histone deacetylase 4 expression. Int J Mol Med. https://doi.org/10.3390/ijms17091377

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li C, Hu Q, Chen Z, Shen B, Yang J, Kang P, Zhou Z, Pei F (2018) MicroRNA-140 Suppresses Human Chondrocytes Hypertrophy By Targeting SMAD1 and controlling the bone morphogenetic protein pathway in osteoarthritis. Am J Med Sci 355(5):477–487. https://doi.org/10.1016/j.amjms.2018.01.004

    Article  PubMed  Google Scholar 

  42. Zhao X, Li H, Wang L (2019) MicroRNA-107 regulates autophagy and apoptosis of osteoarthritis chondrocytes by targeting TRAF3. Int Immunopharmacol 71:181–187. https://doi.org/10.1016/j.intimp.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  43. Zhao X, Wang T, Cai B, Wang X, Feng W, Han Y, Li D, Li S, Liu J (2019) MicroRNA-495 enhances chondrocyte apoptosis, senescence and promotes the progression of osteoarthritis by targeting AKT1. Am J Transl Res 11(4):2232–2244

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen L, Li Q, Wang J, Jin S, Zheng H, Lin J, He F, Zhang H, Ma S, Mei J, Yu J (2017) MiR-29b-3p promotes chondrocyte apoptosis and facilitates the occurrence and development of osteoarthritis by targeting PGRN. J Cell Mol Med 21(12):3347–3359. https://doi.org/10.1111/jcmm.13237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang W, Hsu P, Zhong B, Guo S, Zhang C, Wang Y, Luo C, Zhan Y, Zhang C (2018) MiR-34a enhances chondrocyte apoptosis, senescence and facilitates development of osteoarthritis by targeting DLL1 and regulating PI3K/AKT pathway. Cell Physiol Biochem 48(3):1304–1316. https://doi.org/10.1159/000492090

    Article  CAS  PubMed  Google Scholar 

  46. Ma Y, Wu Y, Chen J, Huang K, Ji B, Chen Z, Wang Q, Ma J, Shen S, Zhang J (2019) miR-10a-5p promotes chondrocyte apoptosis in osteoarthritis by targeting HOXA1. Mol Ther-Nucl Acid 14:398–409

    Article  CAS  Google Scholar 

  47. D'Adamo S, Alvarez-Garcia O, Muramatsu Y, Flamigni F, Lotz M (2016) MicroRNA-155 suppresses autophagy in chondrocytes by modulating expression of autophagy proteins. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2016.01.005

    Article  Google Scholar 

  48. Lian W-S, Ko J-Y, Wu R-W, Sun Y-C, Chen Y-S, Wu S-L, Weng L-H, Jahr H, Wang F-S (2018) MicroRNA-128a represses chondrocyte autophagy and exacerbates knee osteoarthritis by disrupting Atg12. Cell Death Dis 9(9):919–919. https://doi.org/10.1038/s41419-018-0994-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen G, Gao X, Wang J, Yang C, Wang Y, Liu Y, Zou W, Liu T (2016) Hypoxia-induced microRNA-146a represses Bcl-2 through Traf6/IRAK1 but not Smad4 to promote chondrocyte autophagy. Biol Chem. https://doi.org/10.1515/hsz-2016-0211

    Article  PubMed  Google Scholar 

  50. Li H, Miao D, Zhu Q, Huang J, Lu G, Xu W (2017) MicroRNA-17-5p contributes to osteoarthritis progression by binding p62/SQSTM1. Exp Ther Med. https://doi.org/10.3892/etm.2017.5622

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen Z, Jin T, Lu Y (2016) AntimiR-30b inhibits TNF-α mediated apoptosis and attenuated cartilage degradation through enhancing autophagy. Cell Physiol Biochem 40:883–894. https://doi.org/10.1159/000453147

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Huang J, Dai L, Yu D, Chen Q, Zhang X, Dai K (2012) miR-146a, an IL-1β responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthr Res Ther 14(2):R75

    Article  CAS  Google Scholar 

  53. Li P, Wei X, Guan Y, Chen Q, Zhao T, Sun C, Wei L (2014) MicroRNA-1 regulates chondrocyte phenotype by repressing histone deacetylase 4 during growth plate development. FASEB J 28(9):3930–3941. https://doi.org/10.1096/fj.13-249318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580(17):4214–4217. https://doi.org/10.1016/j.febslet.2006.06.080

    Article  CAS  PubMed  Google Scholar 

  55. Pomatto MAC, Gai C, Deregibus MC, Tetta C, Camussi G (2018) Noncoding RNAs carried by extracellular vesicles in endocrine diseases. Int J Endocrinol 2018:4302096–4302096. https://doi.org/10.1155/2018/4302096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM (2010) Exosomes: Fit to deliver small RNA. Commun Integr Biol 3(5):447–450. https://doi.org/10.4161/cib.3.5.12339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Daniel R, Smith J (2008) Integration site selection by retroviral vectors: molecular mechanism and clinical consequences. Hum Gene Ther 19:557–568. https://doi.org/10.1089/hum.2007.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, Kiwada H (2006) Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 112(1):15–25. https://doi.org/10.1016/j.jconrel.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  59. Pfeifer P, Werner N, Jansen F (2015) Role and function of MicroRNAs in extracellular vesicles in cardiovascular biology. Biomed Res Int 2015:161393–161393. https://doi.org/10.1155/2015/161393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Toh WS, Lai RC, Hui JHP, Lim SK (2017) MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Semin Cell Dev Biol 67:56–64. https://doi.org/10.1016/j.semcdb.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  61. Kastelowitz N, Yin H (2014) Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes. ChemBioChem 15(7):923–928. https://doi.org/10.1002/cbic.201400043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffer PJ, Saris DBF, Lorenowicz MJ (2018) Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics 8(4):906–920. https://doi.org/10.7150/thno.20746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rojewski MT, Weber BM, Schrezenmeier H (2008) Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus Med Hemother 35(3):168–184. https://doi.org/10.1159/000129013

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hyenne V, Labouesse M, Goetz JG (2018) The small GTPase Ral orchestrates MVB biogenesis and exosome secretion. Small GTPases 9(6):445–451. https://doi.org/10.1080/21541248.2016.1251378

    Article  CAS  PubMed  Google Scholar 

  65. Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797. https://doi.org/10.1093/biosci/biv084

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rocha S, Carvalho J, Oliveira P, Voglstaetter M, Schvartz D, Thomsen AR, Walter N, Khanduri R, Sanchez J-C, Keller A, Oliveira C, Nazarenko I (2019) 3D Cellular architecture affects microrna and protein cargo of extracellular vesicles. Adv Sci 6(4):1800948. https://doi.org/10.1002/advs.201800948

    Article  CAS  Google Scholar 

  67. Rybak K, Robatzek S (2019) Functions of extracellular vesicles in immunity and virulence. Plant Physiol 179(4):1236. https://doi.org/10.1104/pp.18.01557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu S, Machairaki V, Bai H, Ding Z, Li J, Witwer K, Cheng L (2019) Highly purified human extracellular vesicles produced by stem cells alleviate aging cellular phenotypes of senescent human cells: stem cell-derived exosomes alleviate aging traits. Stem Cells. https://doi.org/10.1002/stem.2996

    Article  PubMed  PubMed Central  Google Scholar 

  69. Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang X-N (2018) Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front Immunol 9:2538–2538. https://doi.org/10.3389/fimmu.2018.02538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim IKKS, Choi SM, Youn BS, Kim HS (2016) Extracellular vesicles as drug delivery vehicles for rheumatoid arthritis. Curr Stem Cell Res Ther 11(4):329–342

    Article  CAS  PubMed  Google Scholar 

  71. Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig A-K, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med 4(10):1131–1143. https://doi.org/10.5966/sctm.2015-0078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee WY, Wang B (2017) Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Transl 9:76–88. https://doi.org/10.1016/j.jot.2017.03.005

    Article  Google Scholar 

  73. Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y, Kuroda M, Ochiya T (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197–1197. https://doi.org/10.1038/srep01197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS (2016) Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil 24(12):2135–2140. https://doi.org/10.1016/j.joca.2016.06.022

    Article  CAS  Google Scholar 

  75. Mentkowski KI, Snitzer JD, Rusnak S, Lang JK (2018) therapeutic potential of engineered extracellular vesicles. AAPS J 20(3):50. https://doi.org/10.1208/s12248-018-0211-z

    Article  CAS  PubMed  Google Scholar 

  76. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452. https://doi.org/10.1074/jbc.M110.107821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cha JM, Shin EK, Sung JH, Moon GJ, Kim EH, Cho YH, Dal Park H, Bae H, Kim J, Bang OY (2018) Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep. https://doi.org/10.1038/s41598-018-19211-6

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ohno S-i, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191. https://doi.org/10.1038/mt.2012.180

    Article  CAS  PubMed  Google Scholar 

  79. Tan S, Barker N (2013) Engineering the niche for stem cells. Growth Factors 31(6):175–184. https://doi.org/10.3109/08977194.2013.859683

    Article  CAS  PubMed  Google Scholar 

  80. Dahlin RL, Meretoja VV, Ni M, Kasper FK, Mikos AG (2014) Chondrogenic phenotype of articular chondrocytes in monoculture and co-culture with mesenchymal stem cells in flow perfusion. Tissue Eng Part A 20(21–22):2883–2891. https://doi.org/10.1089/ten.TEA.2014.0107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dahlin RL, Ni M, Meretoja VV, Kasper FK, Mikos AG (2014) TGF-β3-induced chondrogenesis in co-cultures of chondrocytes and mesenchymal stem cells on biodegradable scaffolds. Biomaterials 35(1):123–132. https://doi.org/10.1016/j.biomaterials.2013.09.086

    Article  CAS  PubMed  Google Scholar 

  82. Meretoja VV, Dahlin RL, Wright S, Kasper FK, Mikos AG (2014) Articular chondrocyte redifferentiation in 3D co-cultures with mesenchymal stem cells. Tissue Eng Part C Methods 20(6):514–523. https://doi.org/10.1089/ten.tec.2013.0532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baghban Eslaminejad MR, Falahi F, Nazarian H, Taghiyar L, Daneshzadeh MT (2007) Diffrentiation potential and culture requirements of mesenchmal stem cell from ovine bone marrow for tissue regeneration application. Iran J Vet Surg (IJVS) 2(5):53–65

    Google Scholar 

  84. Taghiyar L, Baghban Eslaminejad MR (2006) Study of chondrogenic effects of chondrocytes cocultured with murine bone marrow-drived mesenchymal stem cell. Int J Stem Cell 4(3):215–224

    Google Scholar 

  85. Thomas D, O'Brien T, Pandit A (2018) Tissue engineering: toward customized extracellular niche engineering: progress in cell-entrapment technologies. Adv Mater 30:1870006. https://doi.org/10.1002/adma.201870006

    Article  CAS  Google Scholar 

  86. Hansmann J, Egger D, Kasper C (2018) Advanced dynamic cell and tissue culture. Bioengineering (Basel) 5(3):65. https://doi.org/10.3390/bioengineering5030065

    Article  Google Scholar 

  87. Pomatto M, Bussolati B, D’Antico S, Ghiotto S, Tetta C, Brizzi M, Camussi G (2019) Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol Ther Methods Clin Dev 13:133–144. https://doi.org/10.1016/j.omtm.2019.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM (2016) Oncogene knockdown via active loading of small rnas into extracellular vesicles by sonication. Cell Mol Bioeng. https://doi.org/10.1007/s12195-016-0457-4

    Article  PubMed  Google Scholar 

  89. Kooijmans S, Stremersch S, Braeckmans K, De Smedt S, Hendrix A, Wood M, Schiffelers R, Raemdonck K, Vader P (2013) Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release. https://doi.org/10.1016/j.jconrel.2013.08.014

    Article  PubMed  Google Scholar 

  90. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12(3):655–664. https://doi.org/10.1016/j.nano.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  91. Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y (2017) Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 312(1):L110–L121. https://doi.org/10.1152/ajplung.00423.2016

    Article  PubMed  Google Scholar 

  92. Behbehani GK, Thom C, Zunder ER, Finck R, Gaudilliere B, Fragiadakis GK, Fantl WJ, Nolan GP (2014) Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining. Cytometry A 85(12):1011–1019. https://doi.org/10.1002/cyto.a.22573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015) Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 207:18–30. https://doi.org/10.1016/j.jconrel.2015.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Güçlü Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258. https://doi.org/10.1080/10408390600698197

    Article  CAS  PubMed  Google Scholar 

  95. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D (2017) Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 38(6):754–763. https://doi.org/10.1038/aps.2017.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Akers JC, Ramakrishnan V, Yang I, Hua W, Mao Y, Carter BS, Chen CC (2016) Optimizing preservation of extracellular vesicular miRNAs derived from clinical cerebrospinal fluid. Cancer Biomark 17(2):125–132. https://doi.org/10.3233/CBM-160609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jayachandran M, Miller V, Heit J, Owen W (2011) Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods 375:207–214. https://doi.org/10.1016/j.jim.2011.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335(1):201–204. https://doi.org/10.1016/j.canlet.2013.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pan J, Alimujiang M, Chen Q, Shi H, Luo X (2018) Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction−induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem 120(3):4433–4443. https://doi.org/10.1002/jcb.27731

    Article  CAS  PubMed  Google Scholar 

  100. Tapparo M, Bruno S, Collino F, Togliatto G, Deregibus MC, Provero P, Wen S, Quesenberry PJ, Camussi G (2019) Renal regenerative potential of extracellular vesicles derived from miRNA-engineered mesenchymal stromal cells. Int J Mol Sci 20(10):2381. https://doi.org/10.3390/ijms20102381

    Article  CAS  PubMed Central  Google Scholar 

  101. Shi B, Wang Y, Zhao R, Long X, Deng W, Wang Z, Fan GC (2018) Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLOS ONE 13(2):e0191616. https://doi.org/10.1371/journal.pone.0191616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang J, Zhang X, Chen X, Wang L, Yang G (2017) Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 7:278–287. https://doi.org/10.1016/j.omtn.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Zhang J, Miao Z (2019) Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng 13(1):71. https://doi.org/10.1186/s13036-019-0193-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang B, Yao K, Huuskes BM, Shen HH, Zhuang J, Godson C, Brennan EP, Wilkinson-Berka JL, Wise AF, Ricardo SD (2016) Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther 24(7):1290–1301. https://doi.org/10.1038/mt.2016.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen L, Lu FB, Chen DZ, Wu JL, Hu ED, Xu LM, Zheng MH, Li H, Huang Y, Jin XY, Gong YW, Lin Z, Wang XD, Chen YP (2018) BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Mol Immunol 93:38–46. https://doi.org/10.1016/j.molimm.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  106. Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, Zhang CQ (2017) Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 7(1):180–195. https://doi.org/10.7150/thno.17133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing the review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohamadreza Baghaban Eslaminejad.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, A., Hosseini, S. & Baghaban Eslaminejad, M. Engineered-extracellular vesicles as an optimistic tool for microRNA delivery for osteoarthritis treatment. Cell. Mol. Life Sci. 78, 79–91 (2021). https://doi.org/10.1007/s00018-020-03585-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03585-w

Keywords