Abstract
Worldwide, osteoarthritis (OA) is one of the most common chronic diseases. In OA, profiling gene expression changes occur and cartilage tissue homeostasis is lost. Suggestions for OA treatment include regulation of gene expressions via the use of microRNAs (miRNAs). However, problems exist with the use of miRNAs, the most important of which is the delivery of sufficient amounts of effective miRNAs to save cartilage tissue. The engineering of extracellular vesicles (EVs) with the use of advanced techniques would be an efficient OA treatment. Therefore, we discuss the importance of miRNAs in terms of cartilage tissue regeneration and review recent advances in production of enriched EVs and miRNA delivery by EVs for future clinical applications.



Similar content being viewed by others
Abbreviations
- 2D:
-
Two-dimensional
- 3′ UTR:
-
3′ Untranslated region
- 3D:
-
Three-dimensional
- ACI:
-
Autologous chondrocyte implantation
- AD-MSCs:
-
Adipose-derived MSCs
- BM-MSCs:
-
Bone marrow-derived MSCs
- COL II:
-
Type II collagen
- ECM:
-
Extracellular matrix
- EGFR:
-
Epidermal growth factor receptor
- FUT1:
-
Fucosyltransferase 1
- GAGs:
-
Glycosaminoglycans
- hBM-MSCs:
-
Human bone marrow MSCs
- HDAC4:
-
Histone deacetylase 4
- HEK293:
-
Human embryonic kidney cell line 293
- HPGD:
-
15-Hydroxyprostaglandin dehydrogenase
- IL-1β:
-
Interleukin-1β
- miRNA:
-
MicroRNAs
- MMP-13:
-
Matrix metallopeptidase 13*
- MSC:
-
Mesenchymal stromal/stem cell
- MSC-EVs:
-
MSC-extracellular vesicles
- mTOR:
-
Mammalian target of rapamycin
- MVBs:
-
Multivesicular bodies
- MVs:
-
Microvesicles
- NF-κB:
-
Nuclear factor-κB
- OA:
-
Osteoarthritis
- OACs:
-
Osteoarthritic chondrocytes
- PEG:
-
Polyethylene glycol
- PGs:
-
Proteoglycans
- PPARA:
-
Peroxisome proliferator activated receptor alpha
- RISC:
-
RNA-induced silencing complex
- Runx2:
-
Runt-related transcription factor2
- SDSCs:
-
Synovium-derived MSCs
- SMAD:
-
Sma and Mad related
- TNF:
-
Tumor necrosis factor
References
Aigner T, McKenna L (2002) Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci 59(1):5–18
Yagi R, McBurney D, Laverty D, Weiner S Jr (2005) Intrajoint comparisons of gene expression patterns in human osteoarthritis suggests a change in chondrocyte phenotype. J Orthop Res 26(5):1128–1138
Zhong L, Huang X, Karperien M, Post JN (2016) Correlation between gene expression and osteoarthritis progression in human. Int J Mol Sci 17(7):1126. https://doi.org/10.3390/ijms17071126
Nam Y, Rim YA, Lee J, Ju JH (2018) Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int 2018:8490489–8490489. https://doi.org/10.1155/2018/8490489
Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014:970607. https://doi.org/10.1155/2014/970607
Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S (2011) MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS ONE 6(7):e21679. https://doi.org/10.1371/journal.pone.0021679
Zhang Z, Kang Y, Zhang Z, Zhang H, Duan X, Liu J, Li X, Liao W (2012) Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthr Cartil 20(12):1638–1646. https://doi.org/10.1016/j.joca.2012.08.024
Collino F, Bruno S, Lindoso RS, Camussi G (2014) miRNA expression in mesenchymal stem cells. Curr Pathobiol Rep 2(3):101–107. https://doi.org/10.1007/s40139-014-0045-z
Lewis BPBC, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20
Sohn D, Sokolove J, Sharpe O, Erhart J, Chandra P, Lahey L, Lindstrom T, Hwang I, Boyer K, Andriacchi T, Robinson W (2012) Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther 14(1):R7
Iliopoulos D, Malizos K, Oikonomou P, Tsezou A (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3(11):e3740
Hou C, Yang Z, Kang Y, Zhang Z, Fu M, He A, Zhang Z, Liao W (2015) MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway. FEBS Lett 589(9):1040–1047. https://doi.org/10.1016/j.febslet.2015.02.017
Hou C, Zhang Z, Zhang Z, Wu P, Zhao X, Fu M, Sheng P, Kang Y, Liao W (2015) Presence and function of microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal stem cells. Mol Med Rep 12(4):4877–4886. https://doi.org/10.3892/mmr.2015.4008
Meng F, Zhang Z, Chen W, Huang G, He A, Hou C, Long Y, Yang Z, Zhang Z, Liao W (2016) MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses. Osteoarthr Cartil 24(5):932–941
Vonk LA, Kragten AH, Ghazi zadeh L, Bleijs MW, Dhert WJ, Saris DB, Creemers LB (2014) The role Of MicroRNAs in osteoarthritis. Paper presented at the ORS (Orthopaedic Research Society) Annual Meeting, New Orleans, Louisiana 70113, United States.
Zhou B, Li H, Shi J (2017) miR27 inhibits the NF-κB signaling pathway by targeting leptin in osteoarthritic chondrocytes. Int J Mol Med 40(2):523–530
Chen S, Xu Z, Shao J, Fu P, Wu H (2019) MicroRNA-218 promotes early chondrogenesis of mesenchymal stem cells and inhibits later chondrocyte maturation. BMC Biotechnol 19(1):6–6. https://doi.org/10.1186/s12896-018-0496-0
Elfenbein A, Simons M (2010) Auxiliary and autonomous proteoglycan signaling networks. Methods Enzymol 480:3–31. https://doi.org/10.1016/S0076-6879(10)80001-1
Malemud CJ (1991) Changes in proteoglycans in osteoarthritis: biochemistry, ultrastructure and biosynthetic processing. J Rheumatol Suppl 27:60–62
Little C, Ghosh P, Bellenger C (1996) Topographic variation in biglycan and decorin synthesis by articular cartilage in the early stages of osteoarthritis: An experimental study in sheep. J Orthop Res 14:433–444. https://doi.org/10.1002/jor.1100140314
Craddock RJ, Hodson NW, Ozols M, Shearer T, Hoyland JA, Sherratt MJ (2018) Extracellular matrix fragmentation in young, healthy cartilaginous tissues. Eur Cells Mater 35:34–53
Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, Takada S, Lotz MK, Ueno-Kudo H, Asahara H (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24(11):1173–1185. https://doi.org/10.1101/gad.1915510
Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468. https://doi.org/10.1177/1941738109350438
Lin PM, Chen CT, Torzilli PA (2004) Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3-and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthr Cartil 12(6):485–496
Konttinen YT, Ruuttilal P, Hukkanen M, Santavirta S (2005) Chondrocyte-mediated collagenolysis correlates with cartilage destruction grades in osteoarthritis. Clin Exp Rheumatol 23(1):19–26
Hou C, Zhang Z, Yang Z, Wu P, Gu M, Liao W (2014) miR-381-3p participates in chondrogenesis and cartilage degradation by alleviating collagen 2 expression and enhancing mmp13 expression. Osteoarthr Cartil 22:S320–S321. https://doi.org/10.1016/j.joca.2014.02.593
Xu J, Lv S, Hou Y, Xu K, Sun D, Zheng Y, Zhang Z, Li X, Li Y, Chi G (2018) miR-27b promotes type II collagen expression by targetting peroxisome proliferator-activated receptor-γ2 during rat articular chondrocyte differentiation. Biosci Rep 38(1):BSR20171109. https://doi.org/10.1042/bsr20171109
Yang HGB, Zhang Y, Chen L, Ying D, Dong S (2011) MicroRNA-145 Regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS ONE 6(7):1–11
Lee DSY, Paik S, Lee KM, Jang Y, Lee JW (2014) microRNA-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9. Stem Cells Dev 23(15):1798–1808
Yu C, Wang Y (2018) MicroRNA-19a promotes cell viability and migration of chondrocytes via up-regulating SOX9 through NF-κB pathway. Biomed Pharmacother 98:746–753. https://doi.org/10.1016/j.biopha.2017.11.132
Zhang Y, Huang X, Yuan Y (2017) MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a. Am J Transl Res 9(1):136–145
Begum R, Kafienah W (2018) Mesenchymal stem cell chondroinduction on cellulose-silk composites is driven by substrate elasticity. bioRxiv. https://doi.org/10.1101/383307
Kim D, Song J, Jin EJ (2010) MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem 285(35):26900–26907. https://doi.org/10.1074/jbc.M110.115105
Yang J, Qin S, Yi C, Ma G, Zhu H, Zhou W, Xiong Y, Zhu X, Wang Y, He L, Guo X (2011) MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett 585(19):2992–2997. https://doi.org/10.1016/j.febslet.2011.08.013
Wang Z, Hu J, Pan Y, Shan Y, Jiang L, Qi X, Jia L (2018) miR-140-5p/miR-149 affects chondrocyte proliferation, apoptosis, and autophagy by targeting FUT1 in osteoarthritis. Inflammation. https://doi.org/10.1007/s10753-018-0750-6
Dai Y, Liu S, Xie X, Ding M, Zhou Q, Zhou X (2019) MicroRNA-31 promotes chondrocyte proliferation by targeting C-X-C motif chemokine ligand 12. Mol Med Rep 19(3):2231–2237. https://doi.org/10.3892/mmr.2019.9859
Zhang Y, Xu S, Huang E, Zhou H, Li B, Shao C, Yang Y (2018) MicroRNA-130a regulates chondrocyte proliferation and alleviates osteoarthritis through PTEN/PI3K/Akt signaling pathway. Int J Mol Med. https://doi.org/10.3892/ijmm.2018.3551
Yingjie Guan XY, Qian Chen. (2014) MicroRNA-146a Is a hypertrophic cartilage-specific microrna induced by mechanical loading. Paper presented at the ORS (Orthopaedic Research Society) Annual Meeting, New Orleans, Louisiana 70113, United States Poster No: 1265.
Gabler J, Ruetze M, Kynast KL, Grossner T, Diederichs S, Richter W (2015) Stage-specific miRs in chondrocyte maturation: differentiation-dependent and hypertrophy-related miR clusters and the miR-181 family. Tissue Eng Part A 21(23–24):2840–2851. https://doi.org/10.1089/ten.TEA.2015.0352
Chen W, Sheng P, Huang Z, Meng F, Kang Y, Huang G, Zhang Z, Liao W, Zhang Z (2016) MicroRNA-381 regulates chondrocyte hypertrophy by inhibiting histone deacetylase 4 expression. Int J Mol Med. https://doi.org/10.3390/ijms17091377
Li C, Hu Q, Chen Z, Shen B, Yang J, Kang P, Zhou Z, Pei F (2018) MicroRNA-140 Suppresses Human Chondrocytes Hypertrophy By Targeting SMAD1 and controlling the bone morphogenetic protein pathway in osteoarthritis. Am J Med Sci 355(5):477–487. https://doi.org/10.1016/j.amjms.2018.01.004
Zhao X, Li H, Wang L (2019) MicroRNA-107 regulates autophagy and apoptosis of osteoarthritis chondrocytes by targeting TRAF3. Int Immunopharmacol 71:181–187. https://doi.org/10.1016/j.intimp.2019.03.005
Zhao X, Wang T, Cai B, Wang X, Feng W, Han Y, Li D, Li S, Liu J (2019) MicroRNA-495 enhances chondrocyte apoptosis, senescence and promotes the progression of osteoarthritis by targeting AKT1. Am J Transl Res 11(4):2232–2244
Chen L, Li Q, Wang J, Jin S, Zheng H, Lin J, He F, Zhang H, Ma S, Mei J, Yu J (2017) MiR-29b-3p promotes chondrocyte apoptosis and facilitates the occurrence and development of osteoarthritis by targeting PGRN. J Cell Mol Med 21(12):3347–3359. https://doi.org/10.1111/jcmm.13237
Zhang W, Hsu P, Zhong B, Guo S, Zhang C, Wang Y, Luo C, Zhan Y, Zhang C (2018) MiR-34a enhances chondrocyte apoptosis, senescence and facilitates development of osteoarthritis by targeting DLL1 and regulating PI3K/AKT pathway. Cell Physiol Biochem 48(3):1304–1316. https://doi.org/10.1159/000492090
Ma Y, Wu Y, Chen J, Huang K, Ji B, Chen Z, Wang Q, Ma J, Shen S, Zhang J (2019) miR-10a-5p promotes chondrocyte apoptosis in osteoarthritis by targeting HOXA1. Mol Ther-Nucl Acid 14:398–409
D'Adamo S, Alvarez-Garcia O, Muramatsu Y, Flamigni F, Lotz M (2016) MicroRNA-155 suppresses autophagy in chondrocytes by modulating expression of autophagy proteins. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2016.01.005
Lian W-S, Ko J-Y, Wu R-W, Sun Y-C, Chen Y-S, Wu S-L, Weng L-H, Jahr H, Wang F-S (2018) MicroRNA-128a represses chondrocyte autophagy and exacerbates knee osteoarthritis by disrupting Atg12. Cell Death Dis 9(9):919–919. https://doi.org/10.1038/s41419-018-0994-y
Chen G, Gao X, Wang J, Yang C, Wang Y, Liu Y, Zou W, Liu T (2016) Hypoxia-induced microRNA-146a represses Bcl-2 through Traf6/IRAK1 but not Smad4 to promote chondrocyte autophagy. Biol Chem. https://doi.org/10.1515/hsz-2016-0211
Li H, Miao D, Zhu Q, Huang J, Lu G, Xu W (2017) MicroRNA-17-5p contributes to osteoarthritis progression by binding p62/SQSTM1. Exp Ther Med. https://doi.org/10.3892/etm.2017.5622
Chen Z, Jin T, Lu Y (2016) AntimiR-30b inhibits TNF-α mediated apoptosis and attenuated cartilage degradation through enhancing autophagy. Cell Physiol Biochem 40:883–894. https://doi.org/10.1159/000453147
Li J, Huang J, Dai L, Yu D, Chen Q, Zhang X, Dai K (2012) miR-146a, an IL-1β responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthr Res Ther 14(2):R75
Li P, Wei X, Guan Y, Chen Q, Zhao T, Sun C, Wei L (2014) MicroRNA-1 regulates chondrocyte phenotype by repressing histone deacetylase 4 during growth plate development. FASEB J 28(9):3930–3941. https://doi.org/10.1096/fj.13-249318
Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580(17):4214–4217. https://doi.org/10.1016/j.febslet.2006.06.080
Pomatto MAC, Gai C, Deregibus MC, Tetta C, Camussi G (2018) Noncoding RNAs carried by extracellular vesicles in endocrine diseases. Int J Endocrinol 2018:4302096–4302096. https://doi.org/10.1155/2018/4302096
Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM (2010) Exosomes: Fit to deliver small RNA. Commun Integr Biol 3(5):447–450. https://doi.org/10.4161/cib.3.5.12339
Daniel R, Smith J (2008) Integration site selection by retroviral vectors: molecular mechanism and clinical consequences. Hum Gene Ther 19:557–568. https://doi.org/10.1089/hum.2007.148
Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, Kiwada H (2006) Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 112(1):15–25. https://doi.org/10.1016/j.jconrel.2006.01.005
Pfeifer P, Werner N, Jansen F (2015) Role and function of MicroRNAs in extracellular vesicles in cardiovascular biology. Biomed Res Int 2015:161393–161393. https://doi.org/10.1155/2015/161393
Toh WS, Lai RC, Hui JHP, Lim SK (2017) MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Semin Cell Dev Biol 67:56–64. https://doi.org/10.1016/j.semcdb.2016.11.008
Kastelowitz N, Yin H (2014) Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes. ChemBioChem 15(7):923–928. https://doi.org/10.1002/cbic.201400043
Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffer PJ, Saris DBF, Lorenowicz MJ (2018) Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics 8(4):906–920. https://doi.org/10.7150/thno.20746
Rojewski MT, Weber BM, Schrezenmeier H (2008) Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus Med Hemother 35(3):168–184. https://doi.org/10.1159/000129013
Hyenne V, Labouesse M, Goetz JG (2018) The small GTPase Ral orchestrates MVB biogenesis and exosome secretion. Small GTPases 9(6):445–451. https://doi.org/10.1080/21541248.2016.1251378
Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797. https://doi.org/10.1093/biosci/biv084
Rocha S, Carvalho J, Oliveira P, Voglstaetter M, Schvartz D, Thomsen AR, Walter N, Khanduri R, Sanchez J-C, Keller A, Oliveira C, Nazarenko I (2019) 3D Cellular architecture affects microrna and protein cargo of extracellular vesicles. Adv Sci 6(4):1800948. https://doi.org/10.1002/advs.201800948
Rybak K, Robatzek S (2019) Functions of extracellular vesicles in immunity and virulence. Plant Physiol 179(4):1236. https://doi.org/10.1104/pp.18.01557
Liu S, Machairaki V, Bai H, Ding Z, Li J, Witwer K, Cheng L (2019) Highly purified human extracellular vesicles produced by stem cells alleviate aging cellular phenotypes of senescent human cells: stem cell-derived exosomes alleviate aging traits. Stem Cells. https://doi.org/10.1002/stem.2996
Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang X-N (2018) Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front Immunol 9:2538–2538. https://doi.org/10.3389/fimmu.2018.02538
Kim IKKS, Choi SM, Youn BS, Kim HS (2016) Extracellular vesicles as drug delivery vehicles for rheumatoid arthritis. Curr Stem Cell Res Ther 11(4):329–342
Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig A-K, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med 4(10):1131–1143. https://doi.org/10.5966/sctm.2015-0078
Lee WY, Wang B (2017) Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Transl 9:76–88. https://doi.org/10.1016/j.jot.2017.03.005
Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y, Kuroda M, Ochiya T (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197–1197. https://doi.org/10.1038/srep01197
Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS (2016) Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil 24(12):2135–2140. https://doi.org/10.1016/j.joca.2016.06.022
Mentkowski KI, Snitzer JD, Rusnak S, Lang JK (2018) therapeutic potential of engineered extracellular vesicles. AAPS J 20(3):50. https://doi.org/10.1208/s12248-018-0211-z
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452. https://doi.org/10.1074/jbc.M110.107821
Cha JM, Shin EK, Sung JH, Moon GJ, Kim EH, Cho YH, Dal Park H, Bae H, Kim J, Bang OY (2018) Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep. https://doi.org/10.1038/s41598-018-19211-6
Ohno S-i, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191. https://doi.org/10.1038/mt.2012.180
Tan S, Barker N (2013) Engineering the niche for stem cells. Growth Factors 31(6):175–184. https://doi.org/10.3109/08977194.2013.859683
Dahlin RL, Meretoja VV, Ni M, Kasper FK, Mikos AG (2014) Chondrogenic phenotype of articular chondrocytes in monoculture and co-culture with mesenchymal stem cells in flow perfusion. Tissue Eng Part A 20(21–22):2883–2891. https://doi.org/10.1089/ten.TEA.2014.0107
Dahlin RL, Ni M, Meretoja VV, Kasper FK, Mikos AG (2014) TGF-β3-induced chondrogenesis in co-cultures of chondrocytes and mesenchymal stem cells on biodegradable scaffolds. Biomaterials 35(1):123–132. https://doi.org/10.1016/j.biomaterials.2013.09.086
Meretoja VV, Dahlin RL, Wright S, Kasper FK, Mikos AG (2014) Articular chondrocyte redifferentiation in 3D co-cultures with mesenchymal stem cells. Tissue Eng Part C Methods 20(6):514–523. https://doi.org/10.1089/ten.tec.2013.0532
Baghban Eslaminejad MR, Falahi F, Nazarian H, Taghiyar L, Daneshzadeh MT (2007) Diffrentiation potential and culture requirements of mesenchmal stem cell from ovine bone marrow for tissue regeneration application. Iran J Vet Surg (IJVS) 2(5):53–65
Taghiyar L, Baghban Eslaminejad MR (2006) Study of chondrogenic effects of chondrocytes cocultured with murine bone marrow-drived mesenchymal stem cell. Int J Stem Cell 4(3):215–224
Thomas D, O'Brien T, Pandit A (2018) Tissue engineering: toward customized extracellular niche engineering: progress in cell-entrapment technologies. Adv Mater 30:1870006. https://doi.org/10.1002/adma.201870006
Hansmann J, Egger D, Kasper C (2018) Advanced dynamic cell and tissue culture. Bioengineering (Basel) 5(3):65. https://doi.org/10.3390/bioengineering5030065
Pomatto M, Bussolati B, D’Antico S, Ghiotto S, Tetta C, Brizzi M, Camussi G (2019) Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol Ther Methods Clin Dev 13:133–144. https://doi.org/10.1016/j.omtm.2019.01.001
Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM (2016) Oncogene knockdown via active loading of small rnas into extracellular vesicles by sonication. Cell Mol Bioeng. https://doi.org/10.1007/s12195-016-0457-4
Kooijmans S, Stremersch S, Braeckmans K, De Smedt S, Hendrix A, Wood M, Schiffelers R, Raemdonck K, Vader P (2013) Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release. https://doi.org/10.1016/j.jconrel.2013.08.014
Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12(3):655–664. https://doi.org/10.1016/j.nano.2015.10.012
Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y (2017) Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 312(1):L110–L121. https://doi.org/10.1152/ajplung.00423.2016
Behbehani GK, Thom C, Zunder ER, Finck R, Gaudilliere B, Fragiadakis GK, Fantl WJ, Nolan GP (2014) Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining. Cytometry A 85(12):1011–1019. https://doi.org/10.1002/cyto.a.22573
Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015) Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 207:18–30. https://doi.org/10.1016/j.jconrel.2015.03.033
Güçlü Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258. https://doi.org/10.1080/10408390600698197
Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D (2017) Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 38(6):754–763. https://doi.org/10.1038/aps.2017.12
Akers JC, Ramakrishnan V, Yang I, Hua W, Mao Y, Carter BS, Chen CC (2016) Optimizing preservation of extracellular vesicular miRNAs derived from clinical cerebrospinal fluid. Cancer Biomark 17(2):125–132. https://doi.org/10.3233/CBM-160609
Jayachandran M, Miller V, Heit J, Owen W (2011) Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods 375:207–214. https://doi.org/10.1016/j.jim.2011.10.012
Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335(1):201–204. https://doi.org/10.1016/j.canlet.2013.02.019
Pan J, Alimujiang M, Chen Q, Shi H, Luo X (2018) Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction−induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem 120(3):4433–4443. https://doi.org/10.1002/jcb.27731
Tapparo M, Bruno S, Collino F, Togliatto G, Deregibus MC, Provero P, Wen S, Quesenberry PJ, Camussi G (2019) Renal regenerative potential of extracellular vesicles derived from miRNA-engineered mesenchymal stromal cells. Int J Mol Sci 20(10):2381. https://doi.org/10.3390/ijms20102381
Shi B, Wang Y, Zhao R, Long X, Deng W, Wang Z, Fan GC (2018) Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLOS ONE 13(2):e0191616. https://doi.org/10.1371/journal.pone.0191616
Yang J, Zhang X, Chen X, Wang L, Yang G (2017) Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 7:278–287. https://doi.org/10.1016/j.omtn.2017.04.010
Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Zhang J, Miao Z (2019) Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng 13(1):71. https://doi.org/10.1186/s13036-019-0193-0
Wang B, Yao K, Huuskes BM, Shen HH, Zhuang J, Godson C, Brennan EP, Wilkinson-Berka JL, Wise AF, Ricardo SD (2016) Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther 24(7):1290–1301. https://doi.org/10.1038/mt.2016.90
Chen L, Lu FB, Chen DZ, Wu JL, Hu ED, Xu LM, Zheng MH, Li H, Huang Y, Jin XY, Gong YW, Lin Z, Wang XD, Chen YP (2018) BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Mol Immunol 93:38–46. https://doi.org/10.1016/j.molimm.2017.11.008
Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, Zhang CQ (2017) Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 7(1):180–195. https://doi.org/10.7150/thno.17133
Author information
Authors and Affiliations
Contributions
All authors contributed to writing the review. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Consent for publication
All authors read and approved the final manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Esmaeili, A., Hosseini, S. & Baghaban Eslaminejad, M. Engineered-extracellular vesicles as an optimistic tool for microRNA delivery for osteoarthritis treatment. Cell. Mol. Life Sci. 78, 79–91 (2021). https://doi.org/10.1007/s00018-020-03585-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-020-03585-w


