Skip to main content

Plant vascular development: mechanisms and environmental regulation

Abstract

Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171(2):287–304. https://doi.org/10.1016/j.cell.2017.09.030(Epub 2017/10/07. PubMed PMID: 28985561)

    CAS  Article  PubMed  Google Scholar 

  2. Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y et al (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55(4):294–388. https://doi.org/10.1111/jipb.12041(Epub 2013/03/07. PubMed PMID: 23462277)

    CAS  Article  PubMed  Google Scholar 

  3. Nelson T, Dengler N (1997) Leaf vascular pattern formation. Plant Cell 9(7):1121–1135. https://doi.org/10.1105/tpc.9.7.1121(Epub 1997/07/01. PubMed PMID: 12237378; PubMed Central PMCID: PMCPMC156985)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Agusti J, Greb T (2013) Going with the wind-adaptive dynamics of plant secondary meristems. Mech Dev 130(1):34–44. https://doi.org/10.1016/j.mod.2012.05.011(Epub 2012/06/14. PubMed PMID: 22691403; PubMed Central PMCID: PMCPMC3560032)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Esau K (1961) Anatomy of seed plants. Wiley, New York

    Google Scholar 

  6. Spicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186(3):577–592. https://doi.org/10.1111/j.1469-8137.2010.03236.x

    CAS  Article  PubMed  Google Scholar 

  7. Ruonala R, Ko D, Helariutta Y (2017) Genetic networks in plant vascular development. Annu Rev Genet 51:335–359. https://doi.org/10.1146/annurev-genet-120116-024525(Epub 2017/09/12. PubMed PMID: 28892639)

    CAS  Article  PubMed  Google Scholar 

  8. Cano-Delgado A, Lee JY, Demura T (2010) Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol 26:605–637. https://doi.org/10.1146/annurev-cellbio-100109-104107(Epub 2010/07/02. PubMed PMID: 20590454)

    CAS  Article  PubMed  Google Scholar 

  9. Berleth T, Jurgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118(2):575–587

    Google Scholar 

  10. Hartke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  Google Scholar 

  11. Busse JS, Evert RF (1999) Pattern of differentiation of the first vascular elements in the embryo and seedling of Arabidopsis thaliana. Int J Plant Sci 160:1–13

    Article  Google Scholar 

  12. Mayer U, Ruiz RAT, Berleth T, Miséra S, Jürgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353(6343):402–407. https://doi.org/10.1038/353402a0

    Article  Google Scholar 

  13. Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49(3):387–398. https://doi.org/10.1111/j.1365-313X.2006.02977.x(Epub 2007/01/16. PubMed PMID: 17217464)

    CAS  Article  PubMed  Google Scholar 

  14. Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jurgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10(2):265–270. https://doi.org/10.1016/j.devcel.2005.12.001(Epub 2006/02/07. PubMed PMID: 16459305)

    CAS  Article  PubMed  Google Scholar 

  15. Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16(13):1610–1615. https://doi.org/10.1101/gad.229402(Epub 2002/07/09. PubMed PMID: 12101120; PubMed Central PMCID: PMCPMC186366)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126(7):1387–1395 (Epub 1999/03/09. PubMed PMID: 10068632)

    CAS  PubMed  Google Scholar 

  17. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435(7041):446–451. https://doi.org/10.1038/nature03542(Epub 2005/05/27. PubMed PMID: 15917798)

    CAS  Article  PubMed  Google Scholar 

  18. Schlereth A, Moller B, Liu W, Kientz M, Flipse J, Rademacher EH et al (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464(7290):913–916. https://doi.org/10.1038/nature08836(Epub 2010/03/12. PubMed PMID: 20220754)

    CAS  Article  PubMed  Google Scholar 

  19. Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103(29):11081–11085. https://doi.org/10.1073/pnas.0602038103(Epub 2006/07/13. PubMed PMID: 16832061; PubMed Central PMCID: PMCPMC1544176)

    CAS  Article  PubMed  Google Scholar 

  20. Rybel De B, Moller B, Yoshida S, Grabowicz I, Barbier de Reuille P, Boeren S et al (2013) A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev Cell 24(4):426–437. https://doi.org/10.1016/j.devcel.2012.12.013(Epub 2013/02/19. PubMed PMID: 23415953)

    CAS  Article  Google Scholar 

  21. Vera-Sirera F, Rybel De B, Urbez C, Kouklas E, Pesquera M, Alvarez-Mahecha JC et al (2015) A bHLH-based feedback loop restricts vascular cell proliferation in plants. Dev Cell 35(4):432–443. https://doi.org/10.1016/j.devcel.2015.10.022(Epub 2015/11/27. PubMed PMID: 26609958)

    CAS  Article  PubMed  Google Scholar 

  22. Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, Heo JO et al (2019) Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565(7740):490–494. https://doi.org/10.1038/s41586-018-0839-y(Epub 2019/01/11. PubMed PMID: 30626969)

    CAS  Article  PubMed  Google Scholar 

  23. Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Bengey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943

    CAS  Article  Google Scholar 

  24. Baum SF, Dubrovsky JG, Rost TL (2002) Apical organization and maturation of the cortex and vascular cylonder in Arabidopsis thaliana (Brassicaceae) roots. Am J Bot 89(6):908–920

    Article  Google Scholar 

  25. Campbell L, Turner S (2017) Regulation of vascular cell division. J Exp Bot 68(1):27–43. https://doi.org/10.1093/jxb/erw448(Epub 2016/12/15. PubMed PMID: 27965363)

    CAS  Article  PubMed  Google Scholar 

  26. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119(1):71–84

    CAS  PubMed  Google Scholar 

  27. Mellor N, Adibi M, El-Showk S, Rybel De B, King J, Mahonen AP et al (2017) Theoretical approaches to understanding root vascular patterning: a consensus between recent models. J Exp Bot 68(1):5–16. https://doi.org/10.1093/jxb/erw410(Epub 2016/11/12. PubMed PMID: 27837006)

    CAS  Article  PubMed  Google Scholar 

  28. Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465(7296):316–321. https://doi.org/10.1038/nature08977(Epub 2010/04/23. PubMed PMID: 20410882; PubMed Central PMCID: PMCPMC2967782)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Ramachandran P, Wang G, Augstein F, Vries de J, Carlsbecker A (2018) Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development. https://doi.org/10.1242/dev.159202(Epub 2018/01/24. PubMed PMID: 29361572)

    Article  PubMed  Google Scholar 

  30. Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98

    Article  Google Scholar 

  31. Mahonen AP, Higuchi M, Tormakangas K, Miyawaki K, Pischke MS, Sussman MR et al (2006) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16(11):1116–1122. https://doi.org/10.1016/j.cub.2006.04.030(Epub 2006/06/07. PubMed PMID: 16753566)

    CAS  Article  PubMed  Google Scholar 

  32. Ohashi-Ito K, Saegusa M, Iwamoto K, Oda Y, Katayama H, Kojima M et al (2014) A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr Biol 24(17):2053–2058. https://doi.org/10.1016/j.cub.2014.07.050(Epub 2014/08/19. PubMed PMID: 25131670)

    CAS  Article  PubMed  Google Scholar 

  33. Bishopp A, Lehesranta S, Vaten A, Help H, El-Showk S, Scheres B et al (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21(11):927–932. https://doi.org/10.1016/j.cub.2011.04.049(Epub 2011/05/31. PubMed PMID: 21620705)

    CAS  Article  PubMed  Google Scholar 

  34. Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J et al (2011) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21(11):917–926. https://doi.org/10.1016/j.cub.2011.04.017(Epub 2011/05/31. PubMed PMID: 21620702)

    CAS  Article  PubMed  Google Scholar 

  35. Rybel De B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novak O et al (2014) Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345(6197):1255215. https://doi.org/10.1126/science.1255215(Epub 2014/08/12. PubMed PMID: 25104393)

    CAS  Article  Google Scholar 

  36. Knott JM (2009) Biosynthesis of long-chain polyamines by crenarchaeal polyamine synthases from Hyperthermus butylicus and Pyrobaculum aerophilum. FEBS Lett 583(21):3519–3524. https://doi.org/10.1016/j.febslet.2009.10.014(Epub 2009/10/14. PubMed PMID: 19822146)

    CAS  Article  PubMed  Google Scholar 

  37. Knott JM, Romer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581(16):3081–3086. https://doi.org/10.1016/j.febslet.2007.05.074(Epub 2007/06/15. PubMed PMID: 17560575)

    CAS  Article  PubMed  Google Scholar 

  38. Baima S, Forte V, Possenti M, Penalosa A, Leoni G, Salvi S et al (2014) Negative feedback regulation of auxin signaling by ATHB8/ACL5-BUD2 transcription module. Mol Plant 7(6):1006–1025. https://doi.org/10.1093/mp/ssu051(Epub 2014/04/30. PubMed PMID: 24777988)

    CAS  Article  PubMed  Google Scholar 

  39. Imai A, Hanzawa Y, Komura M, Yamamoto KT, Komeda Y, Takahashi T (2006) The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development 133(18):3575–3585. https://doi.org/10.1242/dev.02535(Epub 2006/08/29. PubMed PMID: 16936072)

    CAS  Article  PubMed  Google Scholar 

  40. Katayama H, Iwamoto K, Kariya Y, Asakawa T, Kan T, Fukuda H et al (2015) A negative feedback loop controlling bHLH complexes is involved in vascular cell division and differentiation in the root apical meristem. Curr Biol 25(23):3144–3150. https://doi.org/10.1016/j.cub.2015.10.051(Epub 2015/12/01. PubMed PMID: 26616019)

    CAS  Article  PubMed  Google Scholar 

  41. Muniz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL et al (2008) ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135(15):2573–2582. https://doi.org/10.1242/dev.019349(Epub 2008/07/05. PubMed PMID: 18599510)

    CAS  Article  PubMed  Google Scholar 

  42. Milhinhos A, Prestele J, Bollhöner B, Matos A, Vera-Sirera F, Rambla JL et al (2013) Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem. Plant J 75(4):685–698

    CAS  Article  Google Scholar 

  43. Sole-Gil A, Hernandez-Garcia J, Lopez-Gresa MP, Blazquez MA, Agusti J (2019) Conservation of thermospermine synthase activity in vascular and non-vascular plants. Front Plant Sci 10:663. https://doi.org/10.3389/fpls.2019.00663(Epub 2019/06/28. PubMed PMID: 31244864; PubMed Central PMCID: PMCPMC6579911)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426(6963):181–186. https://doi.org/10.1038/nature02100(Epub 2003/11/14. PubMed PMID: 14614507)

    CAS  Article  PubMed  Google Scholar 

  45. Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthelemy J et al (2008) High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20(6):1494–1503. https://doi.org/10.1105/tpc.107.056069(Epub 2008/06/05. PubMed PMID: 18523061; PubMed Central PMCID: PMCPMC2483377)

    Article  PubMed  PubMed Central  Google Scholar 

  46. Furuta KM, Yadav SR, Lehesranta S, Belevich I, Miyashima S, Heo JO et al (2014) Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345(6199):933–937. https://doi.org/10.1126/science.1253736(Epub 2014/08/02. PubMed PMID: 25081480)

    CAS  Article  PubMed  Google Scholar 

  47. Kondo Y, Nurani AM, Saito C, Ichihashi Y, Saito M, Yamazaki K, Mitsuda N, Ohme-Takagi M, Fukuda H (2016) Vascular cell induction culture system using Arabidopsis leaves (VISUAL) reveals the sequential differentiation of sieve element-like cells. Plant Cell 28(6):1250–1262. https://doi.org/10.1105/tpc.16.00027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Truernit E, Bauby H, Belcram K, Barthelemy J, Palauqui JC (2012) OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana. Development 139(137):1306–1315. https://doi.org/10.1242/dev.072629(Epub 2012/03/08. PubMed PMID: 22395740)

    CAS  Article  PubMed  Google Scholar 

  49. Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18(6):700–714. https://doi.org/10.1101/gad.1187704(Epub 2004/03/20. PubMed PMID: 15031265; PubMed Central PMCID: PMCPMC387244)

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rodriguez-Villalon A, Gujas B, Kang YH, Breda AS, Cattaneo P, Depuydt S et al (2014) Molecular genetic framework for protophloem formation. Proc Natl Acad Sci USA 111(31):11551–11556. https://doi.org/10.1073/pnas.1407337111(Epub 2014/07/23. PubMed PMID: 25049386; PubMed Central PMCID: PMCPMC4128119)

    CAS  Article  PubMed  Google Scholar 

  51. Marhava P, Bassukas AEL, Zourelidou M, Kolb M, Moret B, Fastner A et al (2018) A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Nature 558(7709):297–300. https://doi.org/10.1038/s41586-018-0186-z(Epub 2018/06/08. PubMed PMID: 29875411)

    CAS  Article  PubMed  Google Scholar 

  52. Depuydt S, Rodriguez-Villalon A, Santuari L, Wyser-Rmili C, Ragni L, Hardtke CS (2013) Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proc Natl Acad Sci USA 110(17):7074–7079. https://doi.org/10.1073/pnas.1222314110(Epub 2013/04/10. PubMed PMID: 23569225; PubMed Central PMCID: PMCPMC3637694)

    Article  PubMed  Google Scholar 

  53. Kang YH, Hardtke CS (2016) Arabidopsis MAKR5 is a positive effector of BAM3-dependent CLE45 signaling. EMBO Rep 17(8):1145–1154. https://doi.org/10.15252/embr.201642450(Epub 2016/06/30. PubMed PMID: 27354416; PubMed Central PMCID: PMCPMC4967951)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Breda AS, Hazak O, Schultz P, Anne P, Graeff M, Simon R et al (2019) Cellular insulator against CLE45 peptide signaling. Curr Biol 29(15):2501–2508. https://doi.org/10.1016/j.cub.2019.06.037(Epub 2019/07/23. PubMed PMID: 31327718)

    CAS  Article  PubMed  Google Scholar 

  55. Rodriguez-Villalon A, Gujas B, Wijk van R, Munnik T, Hardtke CS (2015) Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching. Development 142(8):1437–1446. https://doi.org/10.1242/dev.118364(Epub 2015/03/31. PubMed PMID: 25813544)

    CAS  Article  PubMed  Google Scholar 

  56. Gujas B, Cruz TMD, Kastanaki E, Vermeer JEM, Munnik T, Rodriguez-Villalon A (2017) Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in Arabidopsis thaliana roots. Development 144(19):3578–3589. https://doi.org/10.1242/dev.155788(Epub 2017/08/31. PubMed PMID: 28851711; PubMed Central PMCID: PMCPMC5665488)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Wallner E-S, Lopez-Salmeron V, Belevich I, Poschet G, Jung I, Grunwald K, Sevilem I, Jokitalo E, Hell R, Helariutta Y, Agusti J, Lebovka I, Greb T (2017) Strigolactone- and karrikin-independent SMXL proteins are central regulators of phloem formation. Curr Biol 27:1241–1247

    CAS  Article  Google Scholar 

  58. Hickey LJ (1973) Classification of the architecture of dicotyledonous leaves. Am J Bot 60(1):17–33

    Article  Google Scholar 

  59. Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–162

    Article  Google Scholar 

  60. Sachs T (1989) The development of vascular networks during leaf development. Curr Top Plant Biochem Physiol 8:168–183

    Google Scholar 

  61. Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131(3):1327–1339. https://doi.org/10.1104/pp.013623(Epub 2003/03/20. PubMed PMID: 12644682; PubMed Central PMCID: PMCPMC166892)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20(8):1015–1027. https://doi.org/10.1101/gad.1402406(Epub 2006/04/19. PubMed PMID: 16618807; PubMed Central PMCID: PMCPMC1472298)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Donner TJ, Sherr I, Scarpella E (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136(19):3235–3246. https://doi.org/10.1242/dev.037028(Epub 2009/08/28. PubMed PMID: 19710171)

    Article  PubMed  Google Scholar 

  64. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A et al (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13(20):1768–1774 (Epub 2003/10/17. PubMed PMID: 14561401)

    CAS  Article  Google Scholar 

  65. Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17(12):1061–1066. https://doi.org/10.1016/j.cub.2007.05.049

    CAS  Article  PubMed  Google Scholar 

  66. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M et al (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci 105(39):15208–15213. https://doi.org/10.1073/pnas.0808444105

    Article  PubMed  Google Scholar 

  67. Etchells JP, Provost CM, Mishra L, Turner SR (2013) WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140(10):89. https://doi.org/10.1242/dev.091314

    CAS  Article  Google Scholar 

  68. Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in arabidopsis. Plant Cell 22(8):2618–2629. https://doi.org/10.1105/tpc.110.076083

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Ito Y, Nakanomio I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313(5788):842–855. https://doi.org/10.1126/science.1128436

    CAS  Article  PubMed  Google Scholar 

  70. Turner S, Sieburth LE (2003) Vascular patterning. Arabidopsis Book 2:e0073. https://doi.org/10.1199/tab.0073(Epub 2003/01/01. PubMed PMID: 22303224; PubMed Central PMCID: PMCPMC3243335)

    Article  PubMed  PubMed Central  Google Scholar 

  71. Courtois-Moreau CL, Pesquet E, Sjodin A, Muñiz L, Bollhoner B, Kaneda M, Samuels L, Jansson S, Tuominen H (2009) A unique program for cell death in xylem fibers of Populus stem. Plant J 58:260–274. https://doi.org/10.1111/j.1365-313X.2008.03777.x

    CAS  Article  PubMed  Google Scholar 

  72. Ohashi-Ito K, Oda Y, Fukuda H (2010) Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22(10):3461–3473

    CAS  Article  Google Scholar 

  73. Ikematsu S, Tasaka M, Torii KU, Uchida N (2017) ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. New Phytol 213:1697–1709

    CAS  Article  Google Scholar 

  74. Fischer U, Teichmann T (2017) The ERECTA and ERECTA-like genes control a developmental shift during xylem formation in Arabidopsis. New Phytol 213:1562–1563

    Article  Google Scholar 

  75. Felipo-Benavent A, Urbez C, Blanco-Tourinan N, Serrano-Mislata A, Baumberger N, Achard P et al (2018) Regulation of xylem fiber differentiation by gibberellins through DELLA-KNAT1 interaction. Development 145(23):89. https://doi.org/10.1242/dev.164962(Epub 2018/11/06. PubMed PMID: 30389856)

    CAS  Article  Google Scholar 

  76. Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J, Hall HC, Helizon H, Jin X, Helariutta Y, Nilsson O, Polle A, Fischer U (2014) Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development 141:4311–4319

    CAS  Article  Google Scholar 

  77. Milhinhos A, Vera-Sirera F, Blanco-Tourinan N, Mari-Carmona C, Carrio-Segui A, Forment J et al (2019) SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1807863116(Epub 2019/08/25. PubMed PMID: 31444299)

    Article  PubMed  Google Scholar 

  78. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19(1):270–280

    CAS  Article  Google Scholar 

  79. Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18(11):3158–3170

    CAS  Article  Google Scholar 

  80. Siebers T, Catarino B, Agusti J (2017) Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta). Planta 245(3):539–548. https://doi.org/10.1007/s00425-016-2623-2

    CAS  Article  PubMed  Google Scholar 

  81. Taylor-Teeples M, Lin L, Lucas de M, Turco G, Toal TW, Gaudinier A et al (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536):7571–7575. https://doi.org/10.1038/nature14099(Epub 2014/12/24. PubMed PMID: 25533953; PubMed Central PMCID: PMCPMC4333722)

    CAS  Article  Google Scholar 

  82. Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114(4):594–600

    CAS  Article  Google Scholar 

  83. Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23(4):1322–1336. https://doi.org/10.1105/tpc.111.084020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T (2011) Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet 7(2):e1001312

    CAS  Article  Google Scholar 

  85. Thamm A, Sanegre-Sans S, Paisley J, Meader S, Milhinhos A, Contera S et al (2019) A simple mathematical model of allometric exponential growth describes the early three-dimensional growth dynamics of secondary xylem in Arabidopsis roots. R Soc Open Sci. https://doi.org/10.1098/rsos.190126

    Article  PubMed  PubMed Central  Google Scholar 

  86. Etchells JP, Mishra L, Kumar M, Campbell L, Turner SR (2015) Wood formation in trees is increased by manipulating PXY-regulated cell division. Curr Biol 25(8):1050–1055. https://doi.org/10.1016/j.cub.2015.02.023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T, Grunwald K et al (2018) Spatial specificity of auxin responses coordinates wood formation. Nat Commun 9(1):875. https://doi.org/10.1038/s41467-018-03256-2(Epub 2018/03/02. PubMed PMID: 29491423; PubMed Central PMCID: PMCPMC5830446)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Han S, Cho H, Noh J, Qi J, Jung H-J, Nam H, Lee S, Hwang D, Greb T, Hwang I (2018) BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. Nat Plants 4:605–614. https://doi.org/10.1038/s41477-018-0180-3

    CAS  Article  PubMed  Google Scholar 

  89. Smetana O, Makila R, Lyu M, Amiryousefi A, Sanchez Rodriguez F, Wu MF et al (2019) High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565(7740):485–489. https://doi.org/10.1038/s41586-018-0837-0(Epub 2019/01/11. PubMed PMID: 30626967)

    CAS  Article  PubMed  Google Scholar 

  90. Snow R (1935) Activation of cambial growth by pure hormones. New Phytol 34(5):14

    Article  Google Scholar 

  91. Bhalerao RP, Fischer U (2014) Auxin gradients across wood-instructive or incidental? Physiol Plant 151(1):43–51. https://doi.org/10.1111/ppl.12134(Epub 2013/11/30. PubMed PMID: 24286229)

    CAS  Article  PubMed  Google Scholar 

  92. Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115(2):577–585. https://doi.org/10.1104/pp.115.2.577(Epub 2002/09/12. PubMed PMID: 12223825; PubMed Central PMCID: PMCPMC158517)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in scots pine by positional signaling. Plant Physiol 117(1):113–121. https://doi.org/10.1104/pp.117.1.113(Epub 1998/05/22. PubMed PMID: 9576780; PubMed Central PMCID: PMCPMC34994)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Mazur E, Kurczynska EU (2012) Rays, intrusive growth, and storied cambium in the inflorescence stems of Arabidopsis thaliana (L.) Heynh. Protoplasma 249(1):217–220. https://doi.org/10.1007/s00709-011-0266-5(Epub 2011/02/12. PubMed PMID: 21311923; PubMed Central PMCID: PMCPMC3249544)

    CAS  Article  PubMed  Google Scholar 

  95. Mazur E, Kurczynska EU, Friml J (2014) Cellular events during interfascicular cambium ontogenesis in inflorescence stems of Arabidopsis. Protoplasma 251(5):1125–1139. https://doi.org/10.1007/s00709-014-0620-5(Epub 2014/02/15. PubMed PMID: 24526327)

    CAS  Article  PubMed  Google Scholar 

  96. Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C et al (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20(4):843–855. https://doi.org/10.1105/tpc.107.055798(Epub 2008/04/22. PubMed PMID: 18424614; PubMed Central PMCID: PMCPMC2390731)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Suer S, Agusti J, Sanchez J, Schwarz M, Greb T (2011) WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23(9):3247–3259. https://doi.org/10.1105/tpc.111.087874

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Ko J-H, Han K-H, Park S, Yang J (2004) Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135(2):1069–1083. https://doi.org/10.1104/pp.104.038844

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Little CHA, MacDonald JE, Olsson O (2002) Involvement of indole-3-acetic acid in fascicular and interfascicular cambial growth and interfascicular extraxylary fiber differentiation in Arabidopsis thaliana inflorescence stems. Int J Plant Sci 163:519–529

    CAS  Article  Google Scholar 

  100. Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. PNAS 108(50):6. https://doi.org/10.1073/pnas.1111902108

    Article  Google Scholar 

  101. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K et al (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105(50):20027–20031. https://doi.org/10.1073/pnas.0805619105(Epub 2008/12/17. PubMed PMID: 19074290; PubMed Central PMCID: PMCPMC2605004)

    Article  PubMed  Google Scholar 

  102. Smet W, Sevilem I, Luis Balaguer de MA, Wybouw B, Mor E, Miyashima S et al (2019) DOF2.1 controls cytokinin-dependent vascular cell proliferation downstream of TMO5/LHW. Curr Biol 29(3):520–529. https://doi.org/10.1016/j.cub.2018.12.041(Epub 2019/01/29. PubMed PMID: 30686737; PubMed Central PMCID: PMCPMC6370950)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18(7):784–788. https://doi.org/10.1038/77355(Epub 2000/07/11. PubMed PMID: 10888850)

    CAS  Article  PubMed  Google Scholar 

  104. Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63(5):811–822. https://doi.org/10.1111/j.1365-313X.2010.04283.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Etchells JP, Provost CM, Turner SR (2012) Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling. PLoS Genet 8(11):e1002997. https://doi.org/10.1371/journal.pgen.1002997(Epub 2012/11/21. PubMed PMID: 23166504; PubMed Central PMCID: PMCPMC3499249)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Campbell L, Etchells JP, Cooper M, Kumar M, Turner SR (2018) An essential role for abscisic acid in the regulation of xylem fibre differentiation. Development. https://doi.org/10.1242/dev.161992(Epub 2018/10/26. PubMed PMID: 30355726)

    Article  PubMed  PubMed Central  Google Scholar 

  107. Iakimova ET, Woltering EJ (2017) Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. Planta 245(4):681–705. https://doi.org/10.1007/s00425-017-2656-1(Epub 2017/02/15. PubMed PMID: 28194564; PubMed Central PMCID: PMCPMC5357506)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93(10):1490–1500. https://doi.org/10.3732/ajb.93.10.1490(Epub 2006/10/01. PubMed PMID: 21642096)

    Article  PubMed  Google Scholar 

  109. Agusti J, Zapater M, Iglesias DJ, Cercós M, Tadeo FR, Talón M (2007) Differential expression of putative 9-cis-epoxycarotenoid dioxygenases and abscisic acid accumulation in water stressed vegetative and reproductive tissues of citrus. Plant Sci 172(1):85–94

    CAS  Article  Google Scholar 

  110. Bloch D, Puli MR, Mosquna A, Yalovsky S (2019) Abiotic stress modulates root patterning via ABA-regulated microRNA expression in the endodermis initials. Development 146(17):89. https://doi.org/10.1242/dev.177097(Epub 2019/08/11. PubMed PMID: 31399468)

    CAS  Article  Google Scholar 

  111. Agusti J, Gimeno J, Merelo P, Serrano R, Cercos M, Conesa A et al (2012) Early gene expression events in the laminar abscission zone of abscission-promoted citrus leaves after a cycle of water stress/rehydration: involvement of CitbHLH1. J Exp Bot 63(17):6079–6091. https://doi.org/10.1093/jxb/ers270(Epub 2012/10/03. PubMed PMID: 23028022; PubMed Central PMCID: PMCPMC3481208)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Gomez-Cadenas A, Tadeo FR, Talon M, Primo-Millo E (1996) Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol 112(1):401–408. https://doi.org/10.1104/pp.112.1.401(Epub 1996/09/01. PubMed PMID: 12226398; PubMed Central PMCID: PMCPMC157962)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27(7):985–992. https://doi.org/10.1093/treephys/27.7.985(Epub 2007/04/04. PubMed PMID: 17403651)

    Article  PubMed  Google Scholar 

  114. Fonti P, Heller O, Cherubini P, Rigling A, Arend M (2013) Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biol (Stuttgart, Germany) 15(Suppl 1):210–219. https://doi.org/10.1111/j.1438-8677.2012.00599.x(Epub 2012/05/23. PubMed PMID: 22612857)

    Article  Google Scholar 

  115. Eldhuset TD, Nagy NE, Volarik D, Borja I, Gebauer R, Yakovlev IA, Krokene P (2013) Drought affects tracheid structure, dehydrin expression, and above- and belowground growth in 5-year-old Norway spruce. Plant Soil 366:305–320

    CAS  Article  Google Scholar 

  116. Rita A, Cherubini P, Leonardi S, Todaro L, Borghetti M (2015) Functional adjustments of xylem anatomy to climatic variability: insights from long-term Ilex aquifolium tree-ring series. Tree Physiol 35(8):817–828. https://doi.org/10.1093/treephys/tpv055(Epub 2015/07/05. PubMed PMID: 26142450)

    Article  PubMed  Google Scholar 

  117. Pegler JL, Oultram JMJ, Grof CPL, Eamens AL (2019) Profiling the abiotic stress responsive microRNA landscape of Arabidopsis thaliana. Plants 8(3):89. https://doi.org/10.3390/plants8030058(Epub 2019/03/13. PubMed PMID: 30857364; PubMed Central PMCID: PMCPMC6473545)

    CAS  Article  Google Scholar 

  118. Zhao Y, Lin S, Qiu Z, Cao D, Wen J, Deng X et al (2015) MicroRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiol 169(4):2539–2552. https://doi.org/10.1104/pp.15.01011(Epub 2015/10/30. PubMed PMID: 26511915; PubMed Central PMCID: PMCPMC4677895)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Tang S, Dong Y, Liang D, Zhang Z, Ye C-Y, Shuai P, Han X, Zhao Y, Yin W, Xia X (2015) Analysis of the drought stress-responsive transcriptome of black cottonwood (Populus trichocarpa) using deep RNA sequencing. Plant Mol Biol Rep 33:424–438

    CAS  Article  Google Scholar 

  120. Davies WJKG, Hartung W (2015) Long-distance ABA signalling and its relation to other signalling pathways in the detection of soil drying and the mediation of the plant's response to drought. J Plant Growth Regul 24:285–295

    Article  Google Scholar 

  121. Bano ADK, Bettin D, Hahn H (1993) Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soils. Funct Plant Biol 20:109–115

    CAS  Article  Google Scholar 

  122. Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T et al (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23(6):2169–2183. https://doi.org/10.1105/tpc.111.087395(Epub 2011/07/02. PubMed PMID: 21719693; PubMed Central PMCID: PMCPMC3160038)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Jang G, Chang SH, Um TY, Lee S, Kim JK, Choi YD (2017) Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Sci Rep 7(1):10212. https://doi.org/10.1038/s41598-017-10634-1(Epub 2017/09/02. PubMed PMID: 28860478; PubMed Central PMCID: PMCPMC5579306)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Ollas de C, Arbona V, Gomez-Cadenas A (2015) Jasmonoyl isoleucine accumulation is needed for abscisic acid build-up in roots of Arabidopsis under water stress conditions. Plant Cell Environ 38(10):2157–2170. https://doi.org/10.1111/pce.12536(Epub 2015/03/20. PubMed PMID: 25789569)

    CAS  Article  Google Scholar 

  125. Sellami S, Le Hir R, Thorpe MR, Aubry E, Wolff N, Vilaine F et al (2019) Arabidopsis natural accessions display adaptations in inflorescence growth and vascular anatomy to withstand high salinity during reproductive growth. Plants (Basel, Switzerland). https://doi.org/10.3390/plants8030061(Epub 2019/03/14. PubMed PMID: 30862126; PubMed Central PMCID: PMCPMC6473358)

    Article  Google Scholar 

  126. Shinohara S, Okamoto T, Motose H, Takahashi T (2019) Salt hypersensitivity is associated with excessive xylem development in a thermospermine-deficient mutant of Arabidopsis thaliana. Plant J. https://doi.org/10.1111/tpj.14448(Epub 2019/07/02. PubMed PMID: 31257654)

    Article  PubMed  Google Scholar 

  127. Escalante-Perez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP et al (2009) Salt stress affects xylem differentiation of grey poplar (Populus × canescens). Planta 229(2):299–309. https://doi.org/10.1007/s00425-008-0829-7(Epub 2008/10/24. PubMed PMID: 18946679)

    CAS  Article  PubMed  Google Scholar 

  128. Sanchez-Aguayo I, Rodriguez-Galan JM, Garcia R, Torreblanca J, Pardo JM (2004) Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants. Planta 220(2):278–285. https://doi.org/10.1007/s00425-004-1350-2(Epub 2004/08/24. PubMed PMID: 15322882)

    CAS  Article  PubMed  Google Scholar 

  129. Barzegargolchini B, Movafeghi A, Dehestani A, Mehrabanjoubani P (2017) Increased cell wall thickness of endodermis and protoxylem in Aeluropus littoralis roots under salinity: the role of LAC4 and PER64 genes. J Plant Physiol 218:127–134. https://doi.org/10.1016/j.jplph.2017.08.002(Epub 2017/08/19. PubMed PMID: 28818759)

    CAS  Article  PubMed  Google Scholar 

  130. Wessels B, Seyfferth C, Escamez S, Vain T, Antos K, Vahala J et al (2019) An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition. New Phytol. https://doi.org/10.1111/nph.15960(Epub 2019/05/28. PubMed PMID: 31125440)

    Article  PubMed  Google Scholar 

  131. Guo H, Wang Y, Wang L, Hu P, Wang Y, Jia Y et al (2017) Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnol J 15(1):107–121. https://doi.org/10.1111/pbi.12595(Epub 2016/07/03. PubMed PMID: 27368149; PubMed Central PMCID: PMCPMC5253473)

    CAS  Article  PubMed  Google Scholar 

  132. Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R (2013) Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol Plant 147(1):46–54. https://doi.org/10.1111/j.1399-3054.2012.01663.x(Epub 2012/06/12. PubMed PMID: 22680337)

    CAS  Article  PubMed  Google Scholar 

  133. Druart N, Johansson A, Baba K, Schrader J, Sjodin A, Bhalerao RR et al (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50(4):557–573. https://doi.org/10.1111/j.1365-313X.2007.03077.x(Epub 2007/04/11. PubMed PMID: 17419838)

    CAS  Article  PubMed  Google Scholar 

  134. Li WF, Ding Q, Chen JJ, Cui KM, He XQ (2009) Induction of PtoCDKB and PtoCYCB transcription by temperature during cambium reactivation in Populus tomentosa Carr. J Exp Bot 60(9):2621–2630. https://doi.org/10.1093/jxb/erp108(Epub 2009/05/06. PubMed PMID: 19414499; PubMed Central PMCID: PMCPMC2692011)

    Article  PubMed  PubMed Central  Google Scholar 

  135. Nick P (2008) Microtubules as sensors for abiotic stimuli. In: Nick P (ed) Plant cell monographs: plant microtubules. Springer, Berlin, pp 175–203

    Google Scholar 

  136. Rajangam AS, Kumar M, Aspeborg H, Guerriero G, Arvestad L, Pansri P et al (2008) MAP20, a microtubule-associated protein in the secondary cell walls of hybrid aspen, is a target of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile. Plant Physiol 148(3):1283–1294. https://doi.org/10.1104/pp.108.121913(Epub 2008/09/23. PubMed PMID: 18805954; PubMed Central PMCID: PMCPMC2577246)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. Stewart JJ, Demmig-Adams B, Cohu CM, Wenzl CA, Muller O, Adams WW 3rd (2016) Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe. Plant Cell Environ 39(7):1549–1558. https://doi.org/10.1111/pce.12720(Epub 2016/02/03. PubMed PMID: 26832121)

    CAS  Article  PubMed  Google Scholar 

  138. Jung CG, Hwang SG, Park YC, Park HM, Kim DS, Park DH et al (2015) Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations. J Plant Physiol 176:138–146. https://doi.org/10.1016/j.jplph.2015.01.001(Epub 2015/01/21. PubMed PMID: 25602612)

    CAS  Article  PubMed  Google Scholar 

  139. Yuan Y, Teng Q, Zhong R, Ye ZH (2013) The Arabidopsis DUF231 domain-containing protein ESK1 mediates 2-O- and 3-O-acetylation of xylosyl residues in xylan. Plant Cell Physiol 54(7):1186–1199. https://doi.org/10.1093/pcp/pct070(Epub 2013/05/11. PubMed PMID: 23659919)

    CAS  Article  PubMed  Google Scholar 

  140. Lefebvre V, Fortabat MN, Ducamp A, North HM, Maia-Grondard A, Trouverie J et al (2011) ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport. PLoS One 6(2):e16645. https://doi.org/10.1371/journal.pone.0016645(Epub 2011/03/17. PubMed PMID: 21408051; PubMed Central PMCID: PMCPMC3052256)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Xin Z, Mandaokar A, Chen J, Last RL, Browse J (2007) Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J 49(5):786–799. https://doi.org/10.1111/j.1365-313X.2006.02994.x(Epub 2007/02/24. PubMed PMID: 17316173)

    CAS  Article  PubMed  Google Scholar 

  142. Koizumi K, Yokoyama R, Nishitani K (2009) Mechanical load induces upregulation of transcripts for a set of genes implicated in secondary wall formation in the supporting tissue of Arabidopsis thaliana. J Plant Res 122(6):651–659. https://doi.org/10.1007/s10265-009-0251-7(Epub 2009/07/08. PubMed PMID: 19582540)

    Article  PubMed  Google Scholar 

  143. Love J, Bjorklund S, Vahala J, Hertzberg M, Kangasjarvi J, Sundberg B (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci USA 106(14):5984–5989. https://doi.org/10.1073/pnas.0811660106(Epub 2009/03/19. PubMed PMID: 19293381; PubMed Central PMCID: PMCPMC2657089)

    Article  PubMed  Google Scholar 

  144. Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135(1):212–220. https://doi.org/10.1104/pp.104.038927(Epub 2004/05/04. PubMed PMID: 15122024; PubMed Central PMCID: PMCPMC429355)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. De Zio E, Trupiano D, Karady M, Antoniadi I, Montagnoli A, Terzaghi M et al (2019) Tissue-specific hormone profiles from woody poplar roots under bending stress. Physiol Plant 165(1):101–113. https://doi.org/10.1111/ppl.12830(Epub 2018/09/07. PubMed PMID: 30187489)

    CAS  Article  PubMed  Google Scholar 

  146. Funada R, Miura T, Shimizu Y, Kinase T, Nakaba S, Kubo T et al (2008) Gibberellin-induced formation of tension wood in angiosperm trees. Planta 227(6):1409–1414. https://doi.org/10.1007/s00425-008-0712-6(Epub 2008/03/06. PubMed PMID: 18320214)

    CAS  Article  PubMed  Google Scholar 

  147. Landrein B, Kiss A, Sassi M, Chauvet A, Das P, Cortizo M et al (2015) Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. Elife 4:e07811. https://doi.org/10.7554/eLife.07811(Epub 2015/12/02. PubMed PMID: 26623515; PubMed Central PMCID: PMCPMC4666715)

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tang N, Shahzad Z, Lonjon F, Loudet O, Vailleau F, Maurel C (2018) Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis. Nat Commun 9(1):3884. https://doi.org/10.1038/s41467-018-06430-8(Epub 2018/09/27. PubMed PMID: 30250259; PubMed Central PMCID: PMCPMC6155316)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories is supported by funds from the Spanish Ministry of Science and Universities (BIO2016-79147-R to JA, and BFU2016-80621-P to MAB). JA holds a Ramón y Cajal contract (RYC-2014-15752). We are deeply grateful to Debra Westall (Universitat Politècnica de València) for revising the manuscript. Due to space limitations, not all relevant publications could be included in this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javier Agustí or Miguel A. Blázquez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agustí, J., Blázquez, M.A. Plant vascular development: mechanisms and environmental regulation. Cell. Mol. Life Sci. 77, 3711–3728 (2020). https://doi.org/10.1007/s00018-020-03496-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03496-w

Keywords

  • Cambium
  • Phloem
  • Xylem
  • Wood
  • Plasticity