Abstract
Stem/progenitor cells (SPCs) have been implicated to participate in vascular repair. However, the exact role of SPCs in endothelial repair of large vessels still remains controversial. This study aimed to delineate the cellular heterogeneity and possible functional role of endogenous vascular SPCs in large vessels. Using single-cell RNA-sequencing (scRNA-seq) and genetic lineage tracing mouse models, we uncovered the cellular heterogeneity of SPCs, i.e., c-Kit+ cells in the mouse aorta, and found that endogenous c-Kit+ cells acquire endothelial cell fate in the aorta under both physiological and pathological conditions. While c-Kit+ cells contribute to aortic endothelial turnover in the atheroprone regions during homeostasis, recipient c-Kit+ cells of nonbone marrow source replace both luminal and microvessel endothelial cells in transplant arteriosclerosis. Single-cell pseudotime analysis of scRNA-seq data and in vitro cell experiments suggest that vascular SPCs display endothelial differentiation potential and undergo metabolic reprogramming during cell differentiation, in which AKT/mTOR-dependent glycolysis is critical for endothelial gene expression. These findings demonstrate a critical role for c-Kit lineage cells in aortic endothelial turnover and replacement, and may provide insights into therapeutic strategies for vascular diseases.
This is a preview of subscription content, access via your institution.








Abbreviations
- 2-DG:
-
2-Deoxyglucose
- ECs:
-
Endothelial cells
- ECAR:
-
Extracellular acidification rate
- MSC:
-
Mesenchymal stromal cell
- NK:
-
Natural killer
- OCR:
-
Oxygen consumption rate
- RBC:
-
Red blood cells
- Sca-1/Ly6a:
-
Stem cell antigen-1/lymphocyte antigen 6 complex, locus A
- scRNA-seq:
-
Single-cell RNA-sequencing
- SMCs:
-
Smooth muscle cells
- SPCs:
-
Stem/progenitor cells
- TCA cycle:
-
Tricarboxylic acid cycle
- tdTomato/tdT:
-
Tandem dimer Tomato
- UMAP:
-
Uniform manifold approximation and projection
- VEGF:
-
Vascular endothelial growth factor
References
- 1.
Zhang L, Issa Bhaloo S, Chen T, Zhou B, Xu Q (2018) Role of resident stem cells in vessel formation and arteriosclerosis. Circ Res 122(11):1608–1624. https://doi.org/10.1161/CIRCRESAHA.118.313058
- 2.
Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 113(9):1258–1265. https://doi.org/10.1172/JCI19628
- 3.
Chen Y, Wong MM, Campagnolo P, Simpson R, Winkler B, Margariti A, Hu Y, Xu Q (2013) Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation. Arterioscler Thromb Vasc Biol 33(8):1844–1851. https://doi.org/10.1161/ATVBAHA.113.300902
- 4.
Fang S, Wei J, Pentinmikko N, Leinonen H, Salven P (2012) Generation of functional blood vessels from a single c-kit+ adult vascular endothelial stem cell. PLoS Biol 10(10):e1001407. https://doi.org/10.1371/journal.pbio.1001407
- 5.
Psaltis PJ, Puranik AS, Spoon DB, Chue CD, Hoffman SJ, Witt TA, Delacroix S, Kleppe LS, Mueske CS, Pan S, Gulati R, Simari RD (2014) Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature. Circ Res 115(3):364–375. https://doi.org/10.1161/CIRCRESAHA.115.303299
- 6.
Mekala SR, Worsdorfer P, Bauer J, Stoll O, Wagner N, Reeh L, Loew K, Eckner G, Kwok CK, Wischmeyer E, Dickinson ME, Schulze H, Stegner D, Benndorf RA, Edenhofer F, Pfeiffer V, Kuerten S, Frantz S, Ergun S (2018) Generation of cardiomyocytes from vascular adventitia-resident stem cells. Circ Res 123(6):686–699. https://doi.org/10.1161/CIRCRESAHA.117.312526
- 7.
Grun D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810. https://doi.org/10.1016/j.cell.2015.10.039
- 8.
Gu W, Ni Z, Tan YQ, Deng J, Zhang SJ, Lv ZC, Wang XJ, Chen T, Zhang Z, Hu Y, Jing ZC, Xu Q (2019) Adventitial cell atlas of wt (wild type) and ApoE (apolipoprotein E)-deficient mice defined by single-cell RNA sequencing. Arterioscler Thromb Vasc Biol 39(6):1055–1071. https://doi.org/10.1161/ATVBAHA.119.312399
- 9.
Gu W, Nowak WN, Xie Y, Le Bras A, Hu Y, Deng J, Issa Bhaloo S, Lu Y, Yuan H, Fidanis E, Saxena A, Kanno T, Mason AJ, Dulak J, Cai J, Xu Q (2019) Single-cell RNA-sequencing and metabolomics analyses reveal the contribution of perivascular adipose tissue stem cells to vascular remodeling. Arterioscleros Thrombos Vasc Biol ATVBAHA119312732. https://doi.org/10.1161/ATVBAHA.119.312732
- 10.
Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148(1–2):33–45. https://doi.org/10.1016/j.cell.2012.01.002
- 11.
van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC, Middleton RC, Marban E, Molkentin JD (2014) c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509(7500):337–341. https://doi.org/10.1038/nature13309
- 12.
Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, Jeong D, Sheng W, Bu L, Xu M, Huang GY, Hajjar RJ, Zhou B, Moon A, Cai CL (2015) Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun 6:8701. https://doi.org/10.1038/ncomms9701
- 13.
Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, Tian X, Nie Y, Hu S, Yan Y, Zhang L, Qiao Z, Wang QD, Lui KO, Zhou B (2016) Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res 26(1):119–130. https://doi.org/10.1038/cr.2015.143
- 14.
Vagnozzi RJ, Sargent MA, Lin SJ, Palpant NJ, Murry CE, Molkentin JD (2018) Genetic lineage tracing of Sca-1(+) cells reveals endothelial but not myogenic contribution to the murine heart. Circulation 138(25):2931–2939. https://doi.org/10.1161/CIRCULATIONAHA.118.035210
- 15.
Tang J, Li Y, Huang X, He L, Zhang L, Wang H, Yu W, Pu W, Tian X, Nie Y, Hu S, Wang QD, Lui KO, Zhou B (2018) Fate mapping of Sca1(+) cardiac progenitor cells in the adult mouse heart. Circulation 138(25):2967–2969. https://doi.org/10.1161/CIRCULATIONAHA.118.036210
- 16.
Neidig LE, Weinberger F, Palpant NJ, Mignone J, Martinson AM, Sorensen DW, Bender I, Nemoto N, Reinecke H, Pabon L, Molkentin JD, Murry CE, van Berlo JH (2018) Evidence for minimal cardiogenic potential of stem cell antigen 1-positive cells in the adult mouse heart. Circulation 138(25):2960–2962. https://doi.org/10.1161/CIRCULATIONAHA.118.035273
- 17.
Zhang L, Sultana N, Yan J, Yang F, Chen F, Chepurko E, Yang FC, Du Q, Zangi L, Xu M, Bu L, Cai CL (2018) Cardiac Sca-1(+) cells are not intrinsic stem cells for myocardial development, renewal, and repair. Circulation 138(25):2919–2930. https://doi.org/10.1161/CIRCULATIONAHA.118.035200
- 18.
Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. https://doi.org/10.1038/nn.2467
- 19.
Liu Q, Huang X, Zhang H, Tian X, He L, Yang R, Yan Y, Wang QD, Gillich A, Zhou B (2015) c-kit(+) cells adopt vascular endothelial but not epithelial cell fates during lung maintenance and repair. Nat Med 21(8):866–868. https://doi.org/10.1038/nm.3888
- 20.
Robinet P, Milewicz DM, Cassis LA, Leeper NJ, Lu HS, Smith JD (2018) Consideration of sex differences in design and reporting of experimental arterial pathology studies-statement from ATVB council. Arterioscler Thromb Vasc Biol 38(2):292–303. https://doi.org/10.1161/ATVBAHA.117.309524
- 21.
Dietrich H, Hu Y, Zou Y, Dirnhofer S, Kleindienst R, Wick G, Xu Q (2000) Mouse model of transplant arteriosclerosis: role of intercellular adhesion molecule-1. Arterioscler Thromb Vasc Biol 20(2):343–352. https://doi.org/10.1161/01.atv.20.2.343
- 22.
Hu Y, Davison F, Ludewig B, Erdel M, Mayr M, Url M, Dietrich H, Xu Q (2002) Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation 106(14):1834–1839. https://doi.org/10.1161/01.cir.0000031333.86845.dd
- 23.
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36(5):411–420. https://doi.org/10.1038/nbt.4096
- 24.
Dobnikar L, Taylor AL, Chappell J, Oldach P, Harman JL, Oerton E, Dzierzak E, Bennett MR, Spivakov M, Jorgensen HF (2018) Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat Commun 9(1):4567. https://doi.org/10.1038/s41467-018-06891-x
- 25.
McDonald AI, Shirali AS, Aragon R, Ma F, Hernandez G, Vaughn DA, Mack JJ, Lim TY, Sunshine H, Zhao P, Kalinichenko V, Hai T, Pelegrini M, Ardehali R, Iruela-Arispe ML (2018) Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities. Cell Stem Cell 23(2):210–225. https://doi.org/10.1016/j.stem.2018.07.011
- 26.
Tabula Muris C, Overall c, Logistical c, Organ c, processing, Library p, sequencing, Computational data a, Cell type a, Writing g, Supplemental text writing g, Principal i (2018) Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562(7727):367–372. https://doi.org/10.1038/s41586-018-0590-4
- 27.
Kalluri AS, Vellarikkal SK, Edelman ER, Nguyen L, Subramanian A, Ellinor PT, Regev A, Kathiresan S, Gupta RM (2019) Single cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.118.038362
- 28.
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14(10):979–982. https://doi.org/10.1038/nmeth.4402
- 29.
Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4(8):1184–1191. https://doi.org/10.1038/nprot.2009.97
- 30.
da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211
- 31.
Wang D, Li LK, Dai T, Wang A, Li S (2018) Adult stem cells in vascular remodeling. Theranostics 8(3):815–829. https://doi.org/10.7150/thno.19577
- 32.
Lennartsson J, Ronnstrand L (2012) Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 92(4):1619–1649. https://doi.org/10.1152/physrev.00046.2011
- 33.
Foteinos G, Hu Y, Xiao Q, Metzler B, Xu Q (2008) Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation 117(14):1856–1863. https://doi.org/10.1161/CIRCULATIONAHA.107.746008
- 34.
Chen Q, Yang M, Wu H, Zhou J, Wang W, Zhang H, Zhao L, Zhu J, Zhou B, Xu Q, Zhang L (2018) Genetic lineage tracing analysis of c-kit(+) stem/progenitor cells revealed a contribution to vascular injury-induced neointimal lesions. J Mol Cell Cardiol 121:277–286. https://doi.org/10.1016/j.yjmcc.2018.07.252
- 35.
Roostalu U, Aldeiri B, Albertini A, Humphreys N, Simonsen-Jackson M, Wong JKF, Cossu G (2018) Distinct cellular mechanisms underlie smooth muscle turnover in vascular development and repair. Circ Res 122(2):267–281. https://doi.org/10.1161/CIRCRESAHA.117.312111
- 36.
Ni Z, Deng J, Potter CMF, Nowak WN, Gu W, Zhang Z, Chen T, Chen Q, Hu Y, Zhou B, Xu Q, Zhang L (2019) Recipient c-Kit lineage cells repopulate smooth muscle cells of transplant arteriosclerosis in mouse models. Circ Res 125(2):223–241. https://doi.org/10.1161/CIRCRESAHA.119.314855
- 37.
Hu YH, Davison F, Zhang ZY, Xu QB (2003) Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation 108(25):3122–3127. https://doi.org/10.1161/01.Cir.0000105722.96112.67
- 38.
Shi CW, Russell ME, Bianchi C, Newell JB, Haber E (1994) Murine model of accelerated transplant arteriosclerosis. Circ Res 75(2):199–207. https://doi.org/10.1161/01.Res.75.2.199
- 39.
Chow LH, Huh S, Jiang J, Zhong R, Pickering JG (1996) Intimal thickening develops without humoral immunity in a mouse aortic allograft model of chronic vascular rejection. Circulation 94(12):3079–3082
- 40.
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P (2018) Endothelial cell metabolism. Physiol Rev 98(1):3–58. https://doi.org/10.1152/physrev.00001.2017
- 41.
Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51. https://doi.org/10.3389/fnmol.2011.00051
- 42.
Singec I, Jandial R, Crain A, Nikkhah G, Snyder EY (2007) The leading edge of stem cell therapeutics. Annu Rev Med 58:313–328. https://doi.org/10.1146/annurev.med.58.070605.115252
- 43.
Kipshidze N, Dangas G, Tsapenko M, Moses J, Leon MB, Kutryk M, Serruys P (2004) Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol 44(4):733–739. https://doi.org/10.1016/j.jacc.2004.04.048
- 44.
Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J (2018) Vasa vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front Immunol 9:706. https://doi.org/10.3389/fimmu.2018.00706
- 45.
Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328. https://doi.org/10.1038/nature13145
- 46.
Yu QC, Song W, Wang D, Zeng YA (2016) Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res 26(10):1079–1098. https://doi.org/10.1038/cr.2016.85
- 47.
Wakabayashi T, Naito H, Suehiro JI, Lin Y, Kawaji H, Iba T, Kouno T, Ishikawa-Kato S, Furuno M, Takara K, Muramatsu F, Weizhen J, Kidoya H, Ishihara K, Hayashizaki Y, Nishida K, Yoder MC, Takakura N (2018) CD157 Marks tissue-resident endothelial stem cells with homeostatic and regenerative properties. Cell Stem Cell 22(3):384–397. https://doi.org/10.1016/j.stem.2018.01.010
- 48.
Patel J, Seppanen EJ, Rodero MP, Wong HY, Donovan P, Neufeld Z, Fisk NM, Francois M, Khosrotehrani K (2017) Functional definition of progenitors versus mature endothelial cells reveals key SoxF-dependent differentiation process. Circulation 135(8):786–805. https://doi.org/10.1161/CIRCULATIONAHA.116.024754
- 49.
Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105(7):2783–2786. https://doi.org/10.1182/blood-2004-08-3057
- 50.
Naito H, Kidoya H, Sakimoto S, Wakabayashi T, Takakura N (2012) Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J 31(4):842–855. https://doi.org/10.1038/emboj.2011.465
- 51.
Woodfin A, Voisin MB, Nourshargh S (2007) PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 27(12):2514–2523. https://doi.org/10.1161/ATVBAHA.107.151456
- 52.
Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Yla-Herttuala S, Alitalo K, Weissman IL, Salven P (2008) Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105(18):6620–6625. https://doi.org/10.1073/pnas.0710516105
- 53.
Hagensen MK, Shim J, Falk E, Bentzon JF (2011) Flanking recipient vasculature, not circulating progenitor cells, contributes to endothelium and smooth muscle in murine allograft vasculopathy. Arterioscler Thromb Vasc Biol 31(4):808–813. https://doi.org/10.1161/ATVBAHA.110.221184
- 54.
Kamran P, Sereti KI, Zhao P, Ali SR, Weissman IL, Ardehali R (2013) Parabiosis in mice: a detailed protocol. J Vis Exp 2013:80. https://doi.org/10.3791/50556
- 55.
Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, Johnstrom P, Davenport AP, Kirkpatrick PJ, Arch BN, Pickard JD, Weissberg PL (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105(23):2708–2711
- 56.
Hall JL, Chatham JC, Eldar-Finkelman H, Gibbons GH (2001) Upregulation of glucose metabolism during intimal lesion formation is coupled to the inhibition of vascular smooth muscle cell apoptosis. Role of GSK3beta. Diabetes 50(5):1171–1179
- 57.
Tomas L, Edsfeldt A, Mollet IG, Perisic Matic L, Prehn C, Adamski J, Paulsson-Berne G, Hedin U, Nilsson J, Bengtsson E, Goncalves I, Bjorkbacka H (2018) Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur Heart J 39(24):2301–2310. https://doi.org/10.1093/eurheartj/ehy124
- 58.
Folmes CD, Dzeja PP, Nelson TJ, Terzic A (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11(5):596–606. https://doi.org/10.1016/j.stem.2012.10.002
- 59.
Lai L, Reineke E, Hamilton DJ, Cooke JP (2019) Glycolytic switch is required for transdifferentiation to endothelial lineage. Circulation 139(1):119–133. https://doi.org/10.1161/CIRCULATIONAHA.118.035741
- 60.
Rohlenova K, Veys K, Miranda-Santos I, De Bock K, Carmeliet P (2018) Endothelial cell metabolism in health and disease. Trends Cell Biol 28(3):224–236. https://doi.org/10.1016/j.tcb.2017.10.010
- 61.
He L, Li Y, Li Y, Pu W, Huang X, Tian X, Wang Y, Zhang H, Liu Q, Zhang L, Zhao H, Tang J, Ji H, Cai D, Han Z, Han Z, Nie Y, Hu S, Wang QD, Sun R, Fei J, Wang F, Chen T, Yan Y, Huang H, Pu WT, Zhou B (2017) Enhancing the precision of genetic lineage tracing using dual recombinases. Nat Med 23(12):1488–1498. https://doi.org/10.1038/nm.4437
- 62.
Leeper NJ, Hunter AL, Cooke JP (2010) Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 122(5):517–526. https://doi.org/10.1161/CIRCULATIONAHA.109.881441
Acknowledgements
This work was supported by grants from British Heart Foundation (RG/14/6/31144), National Natural Science Foundation of China (81220108004, 81570249, 81930010, 81870206, 91339102, 91639302, 91539103, and 31830039), Zhejiang Provincial Natural Science Foundation (LD18H020001) and Royal Society-Newton Advanced Fellowship (NA170109). Some panels in the figure were produced using Servier Medical Art under a Creative Commons Attribution 3.0 Unported License.
Author information
Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Deng, J., Ni, Z., Gu, W. et al. Single-cell gene profiling and lineage tracing analyses revealed novel mechanisms of endothelial repair by progenitors. Cell. Mol. Life Sci. 77, 5299–5320 (2020). https://doi.org/10.1007/s00018-020-03480-4
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Endothelial repair
- Lineage tracing
- Metabolism
- Single-cell RNA-sequencing
- Stem cells