Abstract
Over the last three decades, the scaffold proteins prohibitins-1 and -2 (PHB1/2) have emerged as key signaling proteins regulating a myriad of signaling pathways in health and diseases. Small molecules targeting PHBs display promising effects against cancers, osteoporosis, inflammatory, cardiac and neurodegenerative diseases. This review provides an updated overview of the various classes of PHB ligands, with an emphasis on their mechanism of action and therapeutic potential. We also describe how these ligands have been used to explore PHB signaling in different physiological and pathological settings.
This is a preview of subscription content, access via your institution.




















References
Ande SR, Xu YXZ, Mishra S (2017) Prohibitin: a potential therapeutic target in tyrosine kinase signaling. Signal Transduct Target Ther 2:17059. https://doi.org/10.1038/sigtrans.2017.59
Chowdhury D, Kumar D, Sarma P, Tangutur AD, Bhadra MP (2017) PHB in Cardiovascular and other diseases: present knowledge and implications. Curr Drug Targets 18(16):1836–1851. https://doi.org/10.2174/1389450117666160824161225
Koushyar S, Jiang WG, Dart DA (2015) Unveiling the potential of prohibitin in cancer. Cancer Lett 369(2):316–322. https://doi.org/10.1016/j.canlet.2015.09.012
Peng YT, Chen P, Ouyang RY, Song L (2015) Multifaceted role of prohibitin in cell survival and apoptosis. Apoptosis 20(9):1135–1149. https://doi.org/10.1007/s10495-015-1143-z
Theiss AL (1813) Sitaraman SV (2011) The role and therapeutic potential of prohibitin in disease. Biochim Biophys Acta 6:1137–1143. https://doi.org/10.1016/j.bbamcr.2011.01.033
Thuaud F, Ribeiro N, Nebigil CG, Desaubry L (2013) Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. Chem Biol 20(3):316–331. https://doi.org/10.1016/j.chembiol.2013.02.006
Sripathi SR, Sylvester O, He WL, Moser T, Um JY, Lamoke F, Ramakrishna W, Bernstein PS, Bartoli M, Jahng WJ (2016) Prohibitin as the molecular binding switch in the retinal pigment epithelium. Protein J 35(1):1–16. https://doi.org/10.1007/s10930-015-9641-y
Yoshinaka T, Kosako H, Yoshizumi T, Furukawa R, Hirano Y, Kuge O, Tamada T, Koshiba T (2019) Structural basis of mitochondrial scaffolds by prohibitin complexes: insight into a role of the coiled-coil region. iScience 19:1065–1078. https://doi.org/10.1016/j.isci.2019.08.056
Ande SR, Mishra S (2009) Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling. Biochem Biophys Res Commun 390(3):1023–1028. https://doi.org/10.1016/j.bbrc.2009.10.101
Gomez L, Paillard M, Price M, Chen Q, Teixeira G, Spiegel S, Lesnefsky EJ (2011) A novel role for mitochondrial sphingosine-1-phosphate produced by sphingosine kinase-2 in PTP-mediated cell survival during cardioprotection. Basic Res Cardiol 106(6):1341–1353. https://doi.org/10.1007/s00395-011-0223-7
Jiang L, Dong P, Zhang Z, Li C, Li Y, Liao Y, Li X, Wu Z, Guo S, Mai S, Xie D, Liu Z, Zhou F (2015) Akt phosphorylates Prohibitin 1 to mediate its mitochondrial localization and promote proliferation of bladder cancer cells. Cell Death Dis 6:e1660. https://doi.org/10.1038/cddis.2015.40
Ho MY, Liang CM, Liang SM (2015) MIG-7 and phosphorylated prohibitin coordinately regulate lung cancer invasion/metastasis. Oncotarget 6(1):381–393. https://doi.org/10.18632/oncotarget.2804
Ande SR, Gu YY, Nyomba BLG, Mishra S (2009) Insulin induced phosphorylation of prohibitin at tyrosine114 recruits Shp1. Biochim Biophys Acta-Mol Cell Res 1793(8):1372–1378. https://doi.org/10.1016/j.bbamcr.2009.05.008
Chowdhury I, Thomas K, Zeleznik A, Thompson WE (2016) Prohibitin regulates the FSH signaling pathway in rat granulosa cell differentiation. J Mol Endocrinol 56(4):325–336. https://doi.org/10.1530/jme-15-0278
Kim DK, Kim HS, Kim AR, Jang GH, Kim HW, Park YH, Kim B, Park YM, Beaven MA, Kim YM, Choi WS (2013) The Scaffold protein prohibitin is required for antigen-stimulated signaling in mast cells. Sci Signaling. https://doi.org/10.1126/scisignal.2004098
Ande SR, Mishra S (2010) Palmitoylation of prohibitin at cysteine 69 facilitates its membrane translocation and interaction with Eps 15 homology domain protein 2 (EHD2). Biochem Cell Biol 88(3):553–558. https://doi.org/10.1139/o09-177
Zhu B, Zhai JJ, Zhu HN, Kyprianou N (2010) Prohibitin regulates TGF-beta induced apoptosis as a downstream effector of Smad-dependent and -independent signaling. Prostate 70(1):17–26. https://doi.org/10.1002/pros.21033
Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4(179):15. https://doi.org/10.1126/scisignal.2001497
Ande SR, Moulik S, Mishra S (2009) Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch. PLoS ONE 4(2):10. https://doi.org/10.1371/journal.pone.0004586
Kartha GK, Moshal KS, Sen U, Joshua IG, Tyagi N, Steed MM, Tyagi SC (2008) Renal mitochondrial damage and protein modification in type-2 diabetes. Acta Diabetol 45(2):75–81. https://doi.org/10.1007/s00592-008-0025-z
Wang H, Zhou Y, Oyang L, Han Y, Xia L, Lin J, Tang Y, Su M, Tan S, Tian Y, Chen X, Luo X, Liang J, Rao S, Wang Y, Xiong W, Zeng Z, Wang H, Li G, Liao Q (2019) LPLUNC1 stabilises PHB1 by counteracting TRIM21-mediated ubiquitination to inhibit NF-kappaB activity in nasopharyngeal carcinoma. Oncogene. https://doi.org/10.1038/s41388-019-0778-6
Sileno S, D'Oria V, Stucchi R, Alessio M, Petrini S, Bonetto V, Maechler P, Bertuzzi F, Grasso V, Paolella K, Barbetti F, Massa O (2014) A possible role of transglutaminase 2 in the nucleus of INS-1E and of cells of human pancreatic islets. J Proteomics 96:314–327. https://doi.org/10.1016/j.jprot.2013.11.011
Battaglia G, Farrace MG, Mastroberardino PG, Viti I, Fimia GM, Van Beeumen J, Devreese B, Melino G, Molinaro G, Busceti CL, Biagioni F, Nicoletti F, Piacentini M (2007) Transglutaminase 2 ablation leads to defective function of mitochondrial respiratory complex I affecting neuronal vulnerability in experimental models of extrapyramidal disorders. J Neurochem 100(1):36–49. https://doi.org/10.1111/j.1471-4159.2006.04140.x
Orru S, Caputo I, D'Amato A, Ruoppolo M, Esposito C (2003) Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. J Biol Chem 278(34):31766–31773. https://doi.org/10.1074/jbc.M305080200
Suh SK, Hood BL, Kim BJ, Conrads TP, Veenstra TD, Song BJ (2004) Identification of oxidized mitochondria proteins in alcohol-exposed human hepatoma cells and mouse liver. Proteomics 4(11):3401–3412. https://doi.org/10.1002/pmic.200400971
Kosgodage US, Uysal-Onganer P, MacLatchy A, Kraev I, Chatterton NP, Nicholas AP, Inal JM, Lange S (2019) Peptidylarginine deiminases post-translationally deiminate prohibitin and modulate extracellular vesicle release and MicroRNAs in glioblastoma multiforme. Int J Mol Sci 20(1):23. https://doi.org/10.3390/ijms20010103
Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ, Germain D (2010) Skp2B attenuates p53 function by inhibiting prohibitin. EMBO Rep 11(3):220–225. https://doi.org/10.1038/embor.2010.2
Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ, Germain D (2011) Skp2B Overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4. Plos One 6(8):1. https://doi.org/10.1371/journal.pone.0022456
Germain D (2011) Skp2 and Skp2B team up against Rb and p53. Cell Div. https://doi.org/10.1186/1747-1028-6-1
Bavelloni A, Piazzi M, Faenza I, Raffini M, D'Angelo A, Cattini L, Cocco L, Blalock WL (2014) Prohibitin 2 represents a novel nuclear AKT substrate during all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia. Faseb J 28(5):2009–2019. https://doi.org/10.1096/fj.13-244368
Sun LG, Cao X, Liu B, Huang HL, Wang X, Sui LY, Yin WM, Ma KW (2011) CaMK IV phosphorylates prohibitin 2 and regulates prohibitin 2-mediated repression of MEF2 transcription. Cell Signal 23(10):1686–1690. https://doi.org/10.1016/j.cellsig.2011.06.005
Moritz A, Li Y, Guo AL, Villen J, Wang Y, MacNeill J, Kornhauser J, Sprott K, Zhou J, Possemato A, Ren JM, Hornbeck P, Cantley LC, Gygi SP, Rush J, Comb MJ (2010) Akt-RSK-S6 Kinase Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases. Science Signaling 3(136):11. https://doi.org/10.1126/scisignal.2000998
Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101. https://doi.org/10.1038/nbt1046
Yoshimaru T, Ono M, Bando Y, Chen YA, Mizuguchi K, Shima H, Komatsu M, Imoto I, Izumi K, Honda J, Miyoshi Y, Sasa M, Katagiri T (2017) A-kinase anchoring protein BIG3 coordinates oestrogen signalling in breast cancer cells. Nat Commun 8:12. https://doi.org/10.1038/ncomms15427
Yurugi H, Tanida S, Akita K, Ishida A, Toda M, Nakada H (2013) Prohibitins function as endogenous ligands for Siglec-9 and negatively regulate TCR signaling upon ligation. Biochem Biophys Res Commun 434(2):376–381. https://doi.org/10.1016/j.bbrc.2013.03.085
Buehler U, Schulenburg K, Yurugi H, Šolman M, Abankwa D, Ulges A, Tenzer S, Bopp T, Thiede B, Zipp F, Rajalingam K (2018) Targeting prohibitins at the cell surface prevents Th17-mediated autoimmunity. The EMBO Journal. https://doi.org/10.15252/embj.201899429
Patel N, Chatterjee SK, Vrbanac V, Chung I, Mu CJ, Olsen RR, Waghorne C, Zetter BR (2010) Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci USA 107(6):2503–2508. https://doi.org/10.1073/pnas.0910649107
Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 278(48):47853–47861. https://doi.org/10.1074/jbc.M305171200
Gamble SC, Chotai D, Odontiadis M, Dart DA, Brooke GN, Powell SM, Reebye V, Varela-Carver A, Kawano Y, Waxman J, Bevan CL (2007) Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene 26(12):1757–1768. https://doi.org/10.1038/sj.onc.1209967
Joshi B, Rastogi S, Morris M, Carastro LM, Decook C, Seto E, Chellappan SP (2006) Differential regulation of human YY1 and caspase 7 promoters by prohibitin through E2F1 and p53 binding sites. Biochem J 401(1):155–166. https://doi.org/10.1042/bj20060364
Lee SJ, Choi D, Rhim H, Choo HJ, Ko YG, Kim CG, Kang S (2008) PHB2 interacts with RNF2 and represses CP2c-stimulated transcription. Mol Cell Biochem 319(1–2):69–77. https://doi.org/10.1007/s11010-008-9878-2
Montano MM, Ekena K, Delage-Mourroux R, Chang W, Martini P, Katzenellenbogen BS (1999) An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc Natl Acad Sci USA 96(12):6947–6952. https://doi.org/10.1073/pnas.96.12.6947
Sun L, Liu L, Yang XJ, Wu Z (2004) Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation. J Cell Sci 117(Pt 14):3021–3029. https://doi.org/10.1242/jcs.01142
Wang S, Fusaro G, Padmanabhan J, Chellappan SP (2002) Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene 21(55):8388–8396. https://doi.org/10.1038/sj.onc.1205944
Wang S, Nath N, Adlam M, Chellappan S (1999) Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. Oncogene 18(23):3501–3510. https://doi.org/10.1038/sj.onc.1202684
Wang S, Nath N, Fusaro G, Chellappan S (1999) Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Mol Cell Biol 19(11):7447–7460. https://doi.org/10.1128/mcb.19.11.7447
Ramani K, Mavila N, Ko KS, Mato JM, Lu SC (2016) Prohibitin 1 regulates the H19-Igf2 axis and proliferation in hepatocytes. J Biol Chem 291(46):24148–24159. https://doi.org/10.1074/jbc.M116.744045
Fan W, Yang H, Liu T, Wang J, Li TW, Mavila N, Tang Y, Yang J, Peng H, Tu J, Annamalai A, Noureddin M, Krishnan A, Gores GJ, Martinez-Chantar ML, Mato JM, Lu SC (2017) Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells. Hepatology 65(4):1249–1266. https://doi.org/10.1002/hep.28964
Yang H, Li TW, Zhou Y, Peng H, Liu T, Zandi E, Martinez-Chantar ML, Mato JM, Lu SC (2015) Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice. Antioxid Redox Signal 22(3):259–274. https://doi.org/10.1089/ars.2014.6027
Rizwani W, Alexandrow M, Chellappan S (2009) Prohibitin physically interacts with MCM proteins and inhibits mammalian DNA replication. Cell Cycle 8(10):1621–1629. https://doi.org/10.4161/cc.8.10.8578
Han J, Yu C, Souza RF, Theiss AL (2014) Prohibitin 1 modulates mitochondrial function of Stat3. Cell Signal 26(10):2086–2095. https://doi.org/10.1016/j.cellsig.2014.06.006
Perron A, Nishikawa Y, Iwata J, Shimojo H, Takaya J, Kobayashi K, Imayoshi I, Mbenza NM, Takenoya M, Kageyama R, Kodama Y, Uesugi M (2018) Small-molecule screening yields a compound that inhibits the cancer-associated transcription factor Hes1 via the PHB2 chaperone. J Biol Chem 293(21):8285–8294. https://doi.org/10.1074/jbc.RA118.002316
Qureshi R, Yildirim O, Gasser A, Basmadjian C, Zhao Q, Wilmet JP, Desaubry L, Nebigil CG (2015) FL3, a synthetic flavagline and ligand of prohibitins, protects cardiomyocytes via STAT3 from doxorubicin toxicity. PLoS ONE 10(11):e0141826. https://doi.org/10.1371/journal.pone.0141826
Guan X, Liu Z, Wang L, Johnson DG, Wei Q (2014) Identification of prohibitin and prohibiton as novel factors binding to the p53 induced gene 3 (PIG3) promoter (TGYCC)(15) motif. Biochem Biophys Res Commun 443(4):1239–1244. https://doi.org/10.1016/j.bbrc.2013.12.124
Zhang Y, Wang L-N, Lin Y-N, Xing Y-X, Shi Y, Zhao J, Chen W-W, Han B (2018) The novel long noncoding RNA LOC283070 is involved in the transition of LNCaP cells into androgen-independent cells via its interaction with PHB2. Asian J Androl 20(5):511–517. https://doi.org/10.4103/aja.aja_36_18
Signorile A, Sgaramella G, Bellomo F, De Rasmo D (2019) Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells 8(1):1. https://doi.org/10.3390/cells8010071
King ML, Chiang CC, Ling HC, Fujita E, Ochiai M, McPhail AT (1992) X-Ray crystal structure of rocaglamide, a novel antileukemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. Chem Commun 1150–1151
Zhao Q, Abou-Hamdan H (2016) Désaubry L (2016) Recent advances in the synthesis of Flavaglines, a family of potent bioactive natural compounds originating from traditional Chinese medicine. Eur J Org Chem 36:5908–5916. https://doi.org/10.1002/ejoc.201600437
Truitt ML, Conn CS, Shi Z, Pang X, Tokuyasu T, Coady AM, Seo Y, Barna M, Ruggero D (2015) Differential requirements for eIF4E dose in normal development and cancer. Cell 162(1):59–71
Yang J, Li B, He QY (2018) Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment. Cell Death Dis 9(6):580. https://doi.org/10.1038/s41419-018-0661-3
Polier G, Neumann J, Thuaud F, Ribeiro N, Gelhaus C, Schmidt H, Giaisi M, Kohler R, Muller WW, Proksch P, Leippe M, Janssen O, Desaubry L, Krammer PH, Li-Weber M (2012) The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2. Chem Biol 19(9):1093–1104. https://doi.org/10.1016/j.chembiol.2012.07.012
Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C, Rapp UR, Rudel T (2005) Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nat Cell Biol 7(8):837–843. https://doi.org/10.1038/ncb1283
Luan Z, He Y, Alattar M, Chen ZS, He F (2014) Targeting the prohibitin scaffold-CRAF kinase interaction in RAS–ERK-driven pancreatic ductal adenocarcinoma. Mol Cancer 13:11. https://doi.org/10.1186/1476-4598-13-38
Doudican NA, Orlow SJ (2017) Inhibition of the CRAF/prohibitin interaction reverses CRAF-dependent resistance to vemurafenib. Oncogene 36(3):423–428. https://doi.org/10.1038/onc.2016.214
Yurugi H, Marini F, Weber C, David K, Zhao Q, Binder H, Desaubry L, Rajalingam K (2017) Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene 36(33):4778–4789. https://doi.org/10.1038/onc.2017.93
MacArthur IC, Bei Y, Garcia HD, Ortiz MV, Toedling J, Klironomos F, Ralff J, Eggert A, Schulte JH, Kentsis A, Henssen AG (2019) Prohibitin promotes dedifferentiation and is a potential therapeutic target in neuroblastoma. Jci Insight 4(10):16. https://doi.org/10.1172/jci.insight.127130
Doudican NA, Orlow SJ (2016) Inhibition of the CRAF/prohibitin interaction reverses CRAF-dependent resistance to vemurafenib. Oncogene. https://doi.org/10.1038/onc.2016.214
Yuan G, Chen X, Liu Z, Wei W, Shu Q, Abou-Hamdan H, Jiang L, Li X, Chen R, Desaubry L, Zhou F, Xie D (2018) Flavagline analog FL3 induces cell cycle arrest in urothelial carcinoma cell of the bladder by inhibiting the Akt/PHB interaction to activate the GADD45alpha pathway. J Exp Clin Cancer Res 37(1):21. https://doi.org/10.1186/s13046-018-0695-5
Yang JW, Murray B, Barbier-Torres L, Liu T, Liu Z, Yang H, Fan W, Wang J, Li Y, Seki E, Mato JM, Lu SC (2019) The mitochondrial chaperone Prohibitin 1 negatively regulates interleukin-8 in human liver cancers. J Biol Chem 294(6):1984–1996. https://doi.org/10.1074/jbc.RA118.004863
Baumann B, Bohnenstengel F, Siegmund D, Wajant H, Weber C, Herr I, Debatin KM, Proksch P, Wirth T (2002) Rocaglamide derivatives are potent inhibitors of NF-kappa B activation in T-cells. J Biol Chem 277(47):44791–44800. https://doi.org/10.1074/jbc.M208003200
Li A, Yang L, Geng X, Peng X, Lu T, Deng Y, Dong Y (2015) Rocaglamide-A potentiates osteoblast differentiation by inhibiting NF-kappaB signaling. Mol Cells 38(11):941–949. https://doi.org/10.14348/molcells.2015.2353
Choi S, Bhagwat AM, Al Mismar R, Goswami N, Ben Hamidane H, Sun L, Graumann J (2018) Proteomic profiling of human cancer pseudopodia for the identification of anti-metastatic drug candidates. Sci Rep 8(1):5858. https://doi.org/10.1038/s41598-018-24256-8
Arai MA, Kofuji Y, Tanaka Y, Yanase N, Yamaku K, Fuentes RG, Karmakar UK, Ishibashi M (2016) Synthesis of rocaglamide derivatives and evaluation of their Wnt signal inhibitory activities. Org Biomol Chem 14(11):3061–3068. https://doi.org/10.1039/c5ob02537k
Mavila N, Tang Y, Berlind J, Ramani K, Wang J, Mato JM, Lu SC (2018) Prohibitin 1 acts as a negative regulator of wingless/integrated-beta-catenin signaling in murine liver and human liver cancer cells. Hepatology Communications 2(12):1583–1600. https://doi.org/10.1002/hep4.1257
He L, Chen LX, Li LF (2017) The TBK1-OPTN axis mediates crosstalk between mitophagy and the innate immune response: a potential therapeutic target for neurodegenerative diseases. Neurosci Bull 33(3):354–356. https://doi.org/10.1007/s12264-017-0116-3
Liu S, Wang W, Brown LE, Qiu C, Lajkiewicz N, Zhao T, Zhou J, Porco JA Jr, Wang TT (2015) A novel class of small molecule compounds that inhibit hepatitis C virus infection by targeting the prohibitin-CRaf pathway. EBioMedicine 2(11):1600–1606
Zhang W, Liu S, Maiga RI, Pelletier J, Brown LE, Wang TT, Porco JA (2018) Chemical synthesis enables structural reengineering of aglaroxin C leading to inhibition bias for HCV infection. J Am Chem Soc. https://doi.org/10.1021/jacs.8b11477
Wintachai P, Thuaud F, Basmadjian C, Roytrakul S, Ubol S, Desaubry L, Smith DR (2015) Assessment of flavaglines as potential chikungunya virus entry inhibitors. Microbiol Immunol 59(3):129–141
Too IHK, Bonne I, Tan EL, Chu JJH, Alonso S (2018) Prohibitin plays a critical role in enterovirus 71 neuropathogenesis. PLoS Pathog 14(1):e1006778. https://doi.org/10.1371/journal.ppat.1006778
Nebigil CG, Desaubry L (2018) Updates in anthracycline-mediated cardiotoxicity. Front Pharmacol 9:1262. https://doi.org/10.3389/fphar.2018.01262
Bernard Y, Ribeiro N, Thuaud F, Turkeri G, Dirr R, Boulberdaa M, Nebigil CG, Desaubry L (2011) Flavaglines alleviate doxorubicin cardiotoxicity: implication of Hsp27. PLoS ONE 6(10):e25302. https://doi.org/10.1371/journal.pone.0025302
Emhemmed F, Azouaou SA, Hassan S, Lefevbre R, Desaubry L, Muller CD, Fuhrmann G (2019) The synthetic flavagline FL3 spares normal human skin cells from its cytotoxic effect via an activation of Bad. Toxicol In Vitro. https://doi.org/10.1016/j.tiv.2019.04.025
Ribeiro N, Thuaud F, Bernard Y, Gaiddon C, Cresteil T, Hild A, Hirsch EC, Michel PP, Nebigil CG, Desaubry L (2012) Flavaglines as potent anticancer and cytoprotective agents. J Med Chem 55(22):10064–10073. https://doi.org/10.1021/jm301201z
Fahrig T, Gerlach I, Horvath E (2005) A synthetic derivative of the natural product rocaglaol is a potent inhibitor of cytokine-mediated signaling and shows neuroprotective activity in vitro and in animal models of Parkinson's disease and traumatic brain injury. Mol Pharmacol 67(5):1544–1555. https://doi.org/10.1124/mol.104.008177
Becker MS, Breuer R, Krammer PH, Li-Weber M, Schmezer P, Haas SF, Essers MA (2014) The traditional Chinese medical compound Rocaglamide protects nonmalignant primary cells from DNA damage-induced toxicity by inhibition of p53 expression. Cell Death Dis 5:e1000
Han J, Zhao Q, Basmadjian C, Desaubry L, Theiss AL (2016) Flavaglines ameliorate experimental colitis and protect against intestinal epithelial cell apoptosis and mitochondrial dysfunction. Inflamm Bowel Dis 22(1):55–67. https://doi.org/10.1097/MIB.0000000000000592
Kathiria AS, Neumann WL, Rhees J, Hotchkiss E, Cheng Y, Genta RM, Meltzer SJ, Souza RF, Theiss AL (2012) Prohibitin attenuates colitis-associated tumorigenesis in mice by modulating p53 and STAT3 apoptotic responses. Cancer Res 72(22):5778–5789. https://doi.org/10.1158/0008-5472.CAN-12-0603
Perez-Perarnau A, Preciado S, Palmeri CM, Moncunill-Massaguer C, Iglesias-Serret D, Gonzalez-Girones DM, Miguel M, Karasawa S, Sakamoto S, Cosialls AM, Rubio-Patino C, Saura-Esteller J, Ramon R, Caja L, Fabregat I, Pons G, Handa H, Albericio F, Gil J, Lavilla R (2014) A trifluorinated thiazoline scaffold leading to pro-apoptotic agents targeting prohibitins. Angew Chem Int Ed Engl 53(38):10150–10154. https://doi.org/10.1002/anie.201405758
Cosialls AM, Pomares H, Iglesias-Serret D, Saura-Esteller J, Nunez-Vazquez S, Gonzalez-Girones DM, de la Banda E, Preciado S, Albericio F, Lavilla R, Pons G, Gonzalez-Barca EM, Gil J (2017) The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells through the upregulation of NOXA and synergizes with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax. Haematologica 102(9):1587–1593. https://doi.org/10.3324/haematol.2016.162958
Moncunill-Massaguer C, Saura-Esteller J, Perez-Perarnau A, Palmeri CM, Nunez-Vazquez S, Cosialls AM, Gonzalez-Girones DM, Pomares H, Korwitz A, Preciado S, Albericio F, Lavilla R, Pons G, Langer T, Iglesias-Serret D, Gil J (2015) A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation. Oncotarget 6(39):41750–41765. https://doi.org/10.18632/oncotarget.6154
Pomares H, Palmeri CM, Iglesias-Serret D, Moncunill-Massaguer C, Saura-Esteller J, Nunez-Vazquez S, Gamundi E, Arnan M, Preciado S, Albericio F, Lavilla R, Pons G, Gonzalez-Barca EM, Cosialls AM, Gil J (2016) Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget 7(40):64987–65000. https://doi.org/10.18632/oncotarget.11333
Wierz M, Pierson S, Chouha N, Desaubry L, Francois JH, Berchem G, Paggetti J, Moussay E (2018) The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells ex vivo but fails to prevent leukemia development in a murine model. Haematologica. https://doi.org/10.3324/haematol.2017.175349
Snyder JR, Hall A, Ni-Komatsu L, Khersonsky SM, Chang YT, Orlow SJ (2005) Dissection of melanogenesis with small molecules identifies prohibitin as a regulator. Chem Biol 12(4):477–484. https://doi.org/10.1016/j.chembiol.2005.02.014
Djehal A, Krayem M, Najem A, Hammoud H, Cresteil T, Nebigil CG, Wang D, Yu P, Bentouhami E, Ghanem GE, Desaubry L (2018) Targeting prohibitin with small molecules to promote melanogenesis and apoptosis in melanoma cells. Eur J Med Chem 155:880–888. https://doi.org/10.1016/j.ejmech.2018.06.052
Yun WJ, Kim EY, Park JE, Jo SY, Bang SH, Chang EJ, Chang SE (2016) Microtubule-associated protein light chain 3 is involved in melanogenesis via regulation of MITF expression in melanocytes. Sci Rep 6:19914. https://doi.org/10.1038/srep19914
Wei Y, Chiang W-C, Sumpter R Jr, Mishra P, Levine B (2017) Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168(1–2):224–238.e210
Sato S, Murata A, Orihara T, Shirakawa T, Suenaga K, Kigoshi H, Uesugi M (2011) Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem Biol 18(1):131–139. https://doi.org/10.1016/j.chembiol.2010.10.017
Langdahl BL, Andersen JD (2018) Treatment of osteoporosis: unmet needs and emerging solutions. J Bone Metab 25(3):133–140. https://doi.org/10.11005/jbm.2018.25.3.133
Lee MY, Kim MH, Kim J, Kim SH, Kim BT, Jeong IH, Chang S, Kim SH, Chang SY (2010) Synthesis and SAR of sulfonyl- and phosphoryl amidine compounds as anti-resorptive agents. Bioorg Med Chem Lett 20(2):541–545. https://doi.org/10.1016/j.bmcl.2009.11.104
Chang S-Y, Bae SJ, Lee MY, Baek S-H, Chang S, Kim SH (2010) Chemical affinity matrix-based identification of prohibitin as a binding protein to anti-resorptive sulfonyl amidine compounds. Bioorg Med Chem Lett 21(2):727–729. https://doi.org/10.1016/j.bmcl.2010.11.123
Lee CH, Choi SW, Kim JY, Kim SH, Yoon KH, Oh J, Lee MS (2015) Overexpression of prohibitin-1 inhibits RANKL-induced activation of p38-Elk-1-SRE signaling axis blocking MKK6 activity. Biochem Biophys Res Commun 463(4):1028–1033. https://doi.org/10.1016/j.bbrc.2015.06.053
Kim MH, Park M, Song JS, Park SJ, Kim SH (2011) Anti-resorptive activity and pharmacokinetic study of N(1), N(1)-diisopropyl-N(2)-(diphenylphosphoryl)-2-(4-nitrophenyl)acetamidine. Bioorg Med Chem Lett 21(14):4263–4266. https://doi.org/10.1016/j.bmcl.2011.05.058
Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10(6):625–632. https://doi.org/10.1038/nm1048
Barnhart KF, Christianson DR, Hanley PW, Driessen WH, Bernacky BJ, Baze WB, Wen S, Tian M, Ma J, Kolonin MG, Saha PK, Do KA, Hulvat JF, Gelovani JG, Chan L, Arap W, Pasqualini R (2011) A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys. Sci Transl Med 3(108):108ra112. https://doi.org/10.1126/scitranslmed.3002621
Sharma A, Qadri A (2004) Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci USA 101(50):17492–17497. https://doi.org/10.1073/pnas.0407536101
Parween F, Yadav J, Qadri A (2019) The virulence polysaccharide of salmonella typhi suppresses activation of rho family GTPases to limit inflammatory responses from epithelial cells. Front Cell Infect Microbiol 9:10. https://doi.org/10.3389/fcimb.2019.00141
Santhanam SK, Dutta D, Parween F, Qadri A (2014) The virulence polysaccharide Vi released by salmonella typhi targets membrane prohibitin to inhibit T-cell activation. J Infect Dis 210(1):79–88. https://doi.org/10.1093/infdis/jiu064
Garg R, Qadri A (2010) Hemoglobin transforms anti-inflammatory salmonella typhi virulence polysaccharide into a TLR-2 agonist. J Immunol 184(11):5980–5987. https://doi.org/10.4049/jimmunol.0903512
Parween F, Yadav J, Qadri A (2019) The virulence polysaccharide of salmonella typhi suppresses activation of rho family GTPases to limit inflammatory responses from epithelial cells. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2019.00141
Jang KS, Baik JE, Kang SS, Jeon JH, Choi S, Yang YH, Kim BG, Yun CH, Han SH (2012) Identification of staphylococcal lipoteichoic acid-binding proteins in human serum by high-resolution LTQ-Orbitrap mass spectrometry. Mol Immunol 50(3):177–183. https://doi.org/10.1016/j.molimm.2011.11.012
You L, Kruse FE, Bacher S, Schmitz ML (2002) Lipoteichoic acid selectively induces the ERK signaling pathway in the cornea. Invest Ophthalmol Vis Sci 43(7):2272–2277
Kuramori C, Azuma M, Kume K, Kaneko Y, Inoue A, Yamaguchi Y, Kabe Y, Hosoya T, Kizaki M, Suematsu M, Handa H (2009) Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus. Biochem Biophys Res Commun 379(2):519–525. https://doi.org/10.1016/j.bbrc.2008.12.103
Yoshimaru T, Komatsu M, Tashiro E, Imoto M, Osada H, Miyoshi Y, Honda J, Sasa M, Katagiri T (2014) Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3-PHB2 interactions. Sci Rep 4:7355. https://doi.org/10.1038/srep07355
Hati S, Tripathy S, Dutta PK, Agarwal R, Srinivasan R, Singh A, Singh S, Sen S (2016) Spiro[pyrrolidine-3, 3 -oxindole] as potent anti-breast cancer compounds: their design, synthesis, biological evaluation and cellular target identification. Sci Rep 6:32213. https://doi.org/10.1038/srep32213
Elderwish S, Audebrand A, Nebigil CG, Désaubry L (2020) Discovery of 3,3’-pyrrolidinyl-spirooxindoles as cardioprotectant prohibitin ligands. Eur J Med Chem 186:111859. https://doi.org/10.1016/j.ejmech.2019.111859
Bettayeb K, Oumata N, Zhang Y, Luo W, Bustos V, Galons H, Greengard P, Meijer L, Flajolet M (2012) Small-molecule inducers of Abeta-42 peptide production share a common mechanism of action. FASEB J 26(12):5115–5123. https://doi.org/10.1096/fj.12-212985
Hochard A, Oumata N, Bettayeb K, Gloulou O, Fant X, Durieu E, Buron N, Porceddu M, Borgne-Sanchez A, Galons H, Flajolet M, Meijer L (2013) Aftins Increase amyloid-beta(42), lower amyloid-beta(38), and do not alter amyloid-beta(40) extracellular production in vitro: toward a chemical model of Alzheimer's disease? J Alzheimers Dis 35(1):107–120. https://doi.org/10.3233/jad-121777
Guyot A-C, Leuxe C, Disdier C, Oumata N, Costa N, Roux GL, Fernandez-Varela P, Duchon A, Charbonnier JB, Herault Y, Pavoni S, Galons H, Andriambeloson E, Wagner S, Meijer L, Lund AK, Mabondzo A (2020) A small compound targeting prohibitin with potential interest for cognitive deficit rescue in aging mice and tau pathology treatment. Sci Rep 10(1):1143. https://doi.org/10.1038/s41598-020-57560-3
Xun Y, Chen P, Yan H, Yang W, Shi L, Chen G, Du H (2014) Identification of prohibitin as an antigen in Behcet's disease. Biochem Biophys Res Commun 451(3):389–393. https://doi.org/10.1016/j.bbrc.2014.07.126
Acknowledgements
Financial support from the National Natural Science Foundation of China (No. 81673296) and the start-up Foundation from Tianjin University of Science and Technology is gratefully acknowledged. KR acknowledges support from DFG and CRC1292.
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing of this review.
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, D., Tabti, R., Elderwish, S. et al. Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases. Cell. Mol. Life Sci. 77, 3525–3546 (2020). https://doi.org/10.1007/s00018-020-03475-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-020-03475-1
Keywords
- Cell signaling
- Scaffold proteins
- MAP kinase
- C-RAF
- RAF1
- KRAS
- NF-kB
- Wnt
- LC3
- Mitophagy
- Cancer
- Drug discovery
- Inflammation
- Cardiac diseases
- Alzheimer disease
- Parkinson disease
- Autoimmune disease
- Osteoporosis
- Osteoclastogenesis
- Cardio-oncology
- Melanogenesis