Skip to main content

Advertisement

Log in

The mechanisms of pathological extramedullary hematopoiesis in diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Extramedullary hematopoiesis (EMH) is the expansion and differentiation of hematopoietic stem and progenitor cells outside of the bone marrow. In postnatal life, as a compensatory mechanism for ineffective hematopoiesis of the bone marrow, pathological EMH is triggered by hematopoietic disorders, insufficient hematopoietic compensation, and other pathological stress conditions, such as infection, advanced tumors, anemia, and metabolic stress. Pathological EMH has been reported in many organs, and the sites of pathological EMH may be related to reactivation of the embryonic hematopoietic structure in these organs. As a double-edged sword (blood and immune cell supplementation as well as clinical complications), pathological EMH has been widely studied in recent years. In particular, pathological EMH induced by late-stage tumors contributes to tumor immunosuppression. Thus, a deeper understanding of the mechanism of pathological EMH may be conducive to the development of therapies against the pathological processes that induce EMH. This article reviews the recent progress of research on the cellular and molecular mechanisms of pathological EMH in specific diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

27HC:

27-Hydroxycholesterol

AML:

Acute myeloid leukemia

ASXL:

ASXL transcriptional regulator 2

CLP:

Common lymphoid progenitor

CMP:

Common myeloid progenitor

CMRPs:

Common myeloid repopulating progenitors

EIs:

Erythroblastic islands

EPCs:

Erythroid progenitor cells

EPO:

Erythropoietin

ERα:

Estrogen receptor α

G-CSF:

Granulocyte-colony stimulating factor

GM-CSF:

Granulocyte–macrophage colony stimulating factor

GMP:

Granulocyte–macrophage progenitor

HCC:

Hepatocellular carcinoma

HCMV:

Human cytomegalovirus

HPCs:

Hematopoietic progenitor cells

HSCs:

Hematopoietic stem cells

HSPCs:

Hematopoietic stem and progenitor cells

IFN-γ:

Interferon-γ

JAK2:

Janus kinase-2

LDL:

Low density lipoprotein

LepR:

Leptin receptor

MCMV:

Murine cytomegalovirus

M-CSF:

Macrophage-colony stimulating factor

MDSCs:

Myeloid-derived suppressor cells

MEP:

Megakaryocyte–erythrocyte progenitor

MERPs:

Megakaryocyte–erythrocyte repopulating progenitors

MkRPs:

Megakaryocyte repopulating progenitors

MRI:

Magnetic resonance imaging

MyRP:

Myeloid-restricted repopulating progenitor

NK:

Natural killer

PAMPs:

Pathogen-associated molecular patterns

Rheb1:

Ras homolog enriched in brain 1

ROS:

Reactive oxygen species

Setd1b:

SET domain containing 1B, histone lysine methyltransferase

Srebp2:

Sterol regulatory element binding transcription factor 2

TLRs:

Toll-like receptors

Treg:

Regulatory T

VCAM-1:

Vascular cell adhesion molecule-1

VLA-4:

Very late antigen-4

Zeb2:

Zinc finger E-box binding homeobox 2

References

  1. Mazo IB, Massberg S, von Andrian UH (2011) Hematopoietic stem and progenitor cell trafficking. Trends Immunol 32(10):493–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Medvinsky A, Rybtsov S, Taoudi S (2011) Embryonic origin of the adult hematopoietic system: advances and questions. Development 138(6):1017–1031

    Article  CAS  PubMed  Google Scholar 

  3. Eaves CJ (2015) Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125(17):2605–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laurenti E, Gottgens B (2018) From haematopoietic stem cells to complex differentiation landscapes. Nature 553(7689):418–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, Ema H, Nakauchi H (2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154(5):1112–1126

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto R, Wilkinson AC, Nakauchi H (2018) Changing concepts in hematopoietic stem cells. Science 362(6417):895–896

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Gao S, Xia J, Liu F (2018) Hematopoietic hierarchy—an updated roadmap. Trends Cell Biol 28(12):976–986

    Article  PubMed  Google Scholar 

  8. Pinho S, Frenette PS (2019) Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 20(5):303–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    Article  CAS  PubMed  Google Scholar 

  10. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Jaiyeola C, Zhao Z, Luby-Phelps K, Morrison SJ (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526(7571):126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crane GM, Jeffery E, Morrison SJ (2017) Adult haematopoietic stem cell niches. Nat Rev Immunol 17(9):573–590

    Article  CAS  PubMed  Google Scholar 

  12. Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS, Seita J, Sahoo D, Nakauchi H, Weissman IL (2016) Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530(7589):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6(12):1182–1190

    Article  CAS  PubMed  Google Scholar 

  14. Kucia MJ, Wysoczynski M, Wu W, Zuba-Surma EK, Ratajczak J, Ratajczak MZ (2008) Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 26(8):2083–2092

    Article  CAS  PubMed  Google Scholar 

  15. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294(5548):1933–1936

    Article  CAS  PubMed  Google Scholar 

  16. Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J (2010) Innate immunity as orchestrator of stem cell mobilization. Leukemia 24(10):1667–1675

    Article  CAS  PubMed  Google Scholar 

  17. Massberg S, Schaerli P, Knezevic-Maramica I, Kollnberger M, Tubo N, Moseman EA, Huff IV, Junt T, Wagers AJ, Mazo IB, von Andrian UH (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131(5):994–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185(1):111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201(8):1307–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCabe A, MacNamara KC (2016) Macrophages: key regulators of steady-state and demand-adapted hematopoiesis. Exp Hematol 44(4):213–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chavakis T, Mitroulis I, Hajishengallis G (2019) Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat Immunol 20(7):802–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fan N, Lavu S, Hanson CA, Tefferi A (2018) Extramedullary hematopoiesis in the absence of myeloproliferative neoplasm: Mayo Clinic case series of 309 patients. Blood Cancer J 8(12):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oguro H, McDonald JG, Zhao Z, Umetani M, Shaul PW, Morrison SJ (2017) 27-Hydroxycholesterol induces hematopoietic stem cell mobilization and extramedullary hematopoiesis during pregnancy. J Clin Invest 127(9):3392–3401

    Article  PubMed  PubMed Central  Google Scholar 

  24. Westerterp M, Gourion-Arsiquaud S, Murphy AJ, Shih A, Cremers S, Levine RL, Tall AR, Yvan-Charvet L (2012) Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11(2):195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferraro F, Lymperi S, Mendez-Ferrer S, Saez B, Spencer JA, Yeap BY, Masselli E, Graiani G, Prezioso L, Rizzini EL, Mangoni M, Rizzoli V, Sykes SM, Lin CP, Frenette PS, Quaini F, Scadden DT (2011) Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med 3(104):101–104

    Article  CAS  Google Scholar 

  26. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest 104(9):1199–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98(5):1289–1297

    Article  CAS  PubMed  Google Scholar 

  28. Lee HM, Wu W, Wysoczynski M, Liu R, Zuba-Surma EK, Kucia M, Ratajczak J, Ratajczak MZ (2009) Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 23(11):2052–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447

    Article  CAS  PubMed  Google Scholar 

  30. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Gao Y, Gao J, Li M, Zhou M, Wang J, Pang Y, Cheng H, Yuan C, Chu Y, Jiang Y, Zhou J, Luo HR, Ju Z, Cheng T, Yuan W (2019) Rheb1 loss leads to increased hematopoietic stem cell proliferation and myeloid-biased differentiation in vivo. Haematologica 104(2):245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madan V, Han L, Hattori N, Teoh WW, Mayakonda A, Sun QY, Ding LW, Nordin HBM, Lim SL, Shyamsunder P, Dakle P, Sundaresan J, Doan NB, Sanada M, Sato-Otsubo A, Meggendorfer M, Yang H, Said JW, Ogawa S, Haferlach T, Liang DC, Shih LY, Nakamaki T, Wang QT, Koeffler HP (2018) ASXL2 regulates hematopoiesis in mice and its deficiency promotes myeloid expansion. Haematologica 103(12):1980–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li J, Riedt T, Goossens S, Carrillo Garcia C, Szczepanski S, Brandes M, Pieters T, Dobrosch L, Gutgemann I, Farla N, Radaelli E, Hulpiau P, Mallela N, Frohlich H, La Starza R, Matteucci C, Chen T, Brossart P, Mecucci C, Huylebroeck D, Haigh JJ, Janzen V (2017) The EMT transcription factor Zeb2 controls adult murine hematopoietic differentiation by regulating cytokine signaling. Blood 129(4):460–472

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt K, Zhang Q, Tasdogan A, Petzold A, Dahl A, Arneth BM, Slany R, Fehling HJ, Kranz A, Stewart AF, Anastassiadis K (2018) The H3K4 methyltransferase Setd1b is essential for hematopoietic stem and progenitor cell homeostasis in mice. Elife 7:e27157

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sohawon D, Lau KK, Lau T, Bowden DK (2012) Extra-medullary haematopoiesis: a pictorial review of its typical and atypical locations. J Med Imaging Radiat Oncol 56(5):538–544

    Article  PubMed  Google Scholar 

  36. Musolino A, Guazzi A, Lazzaretti M, Pezzuolo D, Calzetti C, Degli Antoni A, Ardizzoni A (2007) Intracranial hematopoiesis in a patient with AIDS-related central nervous system lymphoma and severe pancytopenia. Haematologica 92(5):e59–61

    Article  CAS  PubMed  Google Scholar 

  37. Short C, Lim HK, Tan J, O'Neill HC (2019) Targeting the spleen as an alternative site for hematopoiesis. BioEssays 41(5):1800234

    Article  Google Scholar 

  38. Johns JL, Christopher MM (2012) Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet Pathol 49(3):508–523

    Article  CAS  PubMed  Google Scholar 

  39. Zaninetti C, Melazzini F, Croci GA, Boveri E, Balduini CL (2017) Extramedullary hematopoiesis: a new feature of inherited thrombocytopenias? J Thromb Haemost 15(11):2226–2229

    Article  CAS  PubMed  Google Scholar 

  40. Nuamah NM, Goker H, Kilic YA, Dagmoura H, Cakmak A (2006) Spontaneous splenic rupture in a healthy allogeneic donor of peripheral-blood stem cell following the administration of granulocyte colony-stimulating factor (g-csf). A case report and review of the literature. Haematologica 91 (5 Suppl):ECR08

  41. Duarte PJ, Echavarria M, Paparatto A, Cacchione R (2003) Spontaneous spleen rupture associated to active cytomegalovirus infection. Medicina (B Aires) 63(1):46–48

    Google Scholar 

  42. Zhao L, He R, Long H, Guo B, Jia Q, Qin D, Liu SQ, Wang Z, Xiang T, Zhang J, Tan Y, Huang J, Chen J, Wang F, Xiao M, Gao J, Yang X, Zeng H, Wang X, Hu C, Alexander PB, Symonds ALJ, Yu J, Wan Y, Li QJ, Ye L, Zhu B (2018) Late-stage tumors induce anemia and immunosuppressive extramedullary erythroid progenitor cells. Nat Med 24(10):1536–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baron MH (2003) Embryonic origins of mammalian hematopoiesis. Exp Hematol 31(12):1160–1169

    Article  CAS  PubMed  Google Scholar 

  44. Godin I, Garcia-Porrero JA, Dieterlen-Lievre F, Cumano A (1999) Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. J Exp Med 190(1):43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL (1995) The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci USA 92(22):10302–10306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Djaldetti M, Bessler H, Rifkind RA (1972) Hematopoiesis in the embryonic mouse spleen: an electron microscopic study. Blood 39(6):826–841

    Article  CAS  PubMed  Google Scholar 

  47. Christensen JL, Wright DE, Wagers AJ, Weissman IL (2004) Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2(3):E75

    Article  PubMed  PubMed Central  Google Scholar 

  48. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425(6961):962–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodrigues NP, Janzen V, Forkert R, Dombkowski DM, Boyd AS, Orkin SH, Enver T, Vyas P, Scadden DT (2005) Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood 106(2):477–484

    Article  CAS  PubMed  Google Scholar 

  50. Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1(2):140–152

    Article  CAS  PubMed  Google Scholar 

  51. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Levesque JP (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116(23):4815–4828

    Article  CAS  PubMed  Google Scholar 

  52. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, Frenette PS (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCabe A, Zhang Y, Thai V, Jones M, Jordan MB, MacNamara KC (2015) Macrophage-lineage cells negatively regulate the hematopoietic stem cell pool in response to interferon gamma at steady state and during infection. Stem Cells 33(7):2294–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, Golan K, Kollet O, Kalinkovich A, Porat Z, D'Uva G, Schajnovitz A, Voronov E, Brenner DA, Apte RN, Jung S, Lapidot T (2012) Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol 13(11):1072–1082

    Article  CAS  PubMed  Google Scholar 

  55. Jiang L, Han X, Wang J, Wang C, Sun X, Xie J, Wu G, Phan H, Liu Z, Yeh ETH, Zhang C, Zhao M, Kang X (2018) SHP-1 regulates hematopoietic stem cell quiescence by coordinating TGF-beta signaling. J Exp Med 215(5):1337–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A, Frenette PS (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20(11):1315–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, Gao W, Saito TI, Lo Celso C, Tsuyuzaki H, Sato T, Cote D, Sykes M, Strom TB, Scadden DT, Lin CP (2011) In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474(7350):216–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hirata Y, Furuhashi K, Ishii H, Li HW, Pinho S, Ding L, Robson SC, Frenette PS, Fujisaki J (2018) CD150(high) bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22 (3):445–453 e445

  59. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106(4):1232–1239

    Article  CAS  PubMed  Google Scholar 

  62. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, Suda T (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1(6):685–697

    Article  CAS  PubMed  Google Scholar 

  63. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161

    Article  CAS  PubMed  Google Scholar 

  64. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    Article  CAS  PubMed  Google Scholar 

  65. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ferraro F, Celso CL, Scadden D (2010) Adult stem cels and their niches. Adv Exp Med Biol 695:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O'Leary P, Mantyh PW (2002) Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113(1):155–166

    Article  CAS  PubMed  Google Scholar 

  68. Calvo W (1968) The innervation of the bone marrow in laboratory animals. Am J Anat 123(2):315–328

    Article  CAS  PubMed  Google Scholar 

  69. Rehn M, Olsson A, Reckzeh K, Diffner E, Carmeliet P, Landberg G, Cammenga J (2011) Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche. Blood 118(6):1534–1543

    Article  CAS  PubMed  Google Scholar 

  70. Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, Pinho S, Leboeuf M, Noizat C, van Rooijen N, Tanaka M, Zhao ZJ, Bergman A, Merad M, Frenette PS (2013) CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19(4):429–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu M, Jin X, He X, Pan L, Zhang X, Zhao Y (2015) Macrophages support splenic erythropoiesis in 4T1 tumor-bearing mice. PLoS ONE 10(3):e0121921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dutta P, Hoyer FF, Grigoryeva LS, Sager HB, Leuschner F, Courties G, Borodovsky A, Novobrantseva T, Ruda VM, Fitzgerald K, Iwamoto Y, Wojtkiewicz G, Sun Y, Da Silva N, Libby P, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M (2015) Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. J Exp Med 212(4):497–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ulyanova T, Phelps SR, Papayannopoulou T (2016) The macrophage contribution to stress erythropoiesis: when less is enough. Blood 128(13):1756–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Inra CN, Zhou BO, Acar M, Murphy MM, Richardson J, Zhao Z, Morrison SJ (2015) A perisinusoidal niche for extramedullary haematopoiesis in the spleen. Nature 527(7579):466–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oda A, Tezuka T, Ueno Y, Hosoda S, Amemiya Y, Notsu C, Kasahara T, Nishiyama C, Goitsuka R (2018) Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep 8(1):8308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lio P, Macdonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129

    Article  CAS  PubMed  Google Scholar 

  77. Takizawa H, Manz MG (2017) Impact of inflammation on early hematopoiesis and the microenvironment. Int J Hematol 106(1):27–33

    Article  PubMed  Google Scholar 

  78. King KY, Goodell MA (2011) Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol 11(10):685–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shahbazian LM, Quinton LJ, Bagby GJ, Nelson S, Wang G, Zhang P (2004) Escherichia coli pneumonia enhances granulopoiesis and the mobilization of myeloid progenitor cells into the systemic circulation. Crit Care Med 32(8):1740–1746

    Article  PubMed  Google Scholar 

  80. Rodriguez S, Chora A, Goumnerov B, Mumaw C, Goebel WS, Fernandez L, Baydoun H, HogenEsch H, Dombkowski DM, Karlewicz CA, Rice S, Rahme LG, Carlesso N (2009) Dysfunctional expansion of hematopoietic stem cells and block of myeloid differentiation in lethal sepsis. Blood 114(19):4064–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Singh P, Yao Y, Weliver A, Broxmeyer HE, Hong SC, Chang CH (2008) Vaccinia virus infection modulates the hematopoietic cell compartments in the bone marrow. Stem Cells 26(4):1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yanez A, Murciano C, O'Connor JE, Gozalbo D, Gil ML (2009) Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling. Microbes Infect 11(4):531–535

    Article  CAS  PubMed  Google Scholar 

  83. Muller-Newen G, Stope MB, Kraus T, Ziegler P (2017) Development of platelets during steady state and inflammation. J Leukoc Biol 101(5):1109–1117

    Article  PubMed  Google Scholar 

  84. Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, Wurzer S, Prendergast AM, Schnell A, Hexel K, Santarella-Mellwig R, Blaszkiewicz S, Kuck A, Geiger H, Milsom MD, Steinmetz LM, Schroeder T, Trumpp A, Krijgsveld J, Essers MA (2015) Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17(4):422–434

    Article  CAS  PubMed  Google Scholar 

  85. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  CAS  PubMed  Google Scholar 

  86. Sioud M, Floisand Y, Forfang L, Lund-Johansen F (2006) Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J Mol Biol 364(5):945–954

    Article  CAS  PubMed  Google Scholar 

  87. Welner RS, Pelayo R, Nagai Y, Garrett KP, Wuest TR, Carr DJ, Borghesi LA, Farrar MA, Kincade PW (2008) Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 112(9):3753–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995

    Article  CAS  PubMed  Google Scholar 

  89. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24(6):801–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Franchi L, Warner N, Viani K, Nunez G (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227(1):106–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmid MA, Takizawa H, Baumjohann DR, Saito Y, Manz MG (2011) Bone marrow dendritic cell progenitors sense pathogens via Toll-like receptors and subsequently migrate to inflamed lymph nodes. Blood 118(18):4829–4840

    Article  CAS  PubMed  Google Scholar 

  92. Kovtonyuk LV, Manz MG, Takizawa H (2016) Enhanced thrombopoietin but not G-CSF receptor stimulation induces self-renewing hematopoietic stem cell divisions in vivo. Blood 127(25):3175–3179

    Article  CAS  PubMed  Google Scholar 

  93. Ivashkiv LB (2018) IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol 18(9):545–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA (2010) Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 465(7299):793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. MacNamara KC, Oduro K, Martin O, Jones DD, McLaughlin M, Choi K, Borjesson DL, Winslow GM (2011) Infection-induced myelopoiesis during intracellular bacterial infection is critically dependent upon IFN-gamma signaling. J Immunol 186(2):1032–1043

    Article  CAS  PubMed  Google Scholar 

  96. de Bruin AM, Voermans C, Nolte MA (2014) Impact of interferon-gamma on hematopoiesis. Blood 124(16):2479–2486

    Article  PubMed  CAS  Google Scholar 

  97. McCabe A, Smith JNP, Costello A, Maloney J, Katikaneni D, MacNamara KC (2018) Hematopoietic stem cell loss and hematopoietic failure in severe aplastic anemia is driven by macrophages and aberrant podoplanin expression. Haematologica 103(9):1451–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. de Bruin AM, Demirel O, Hooibrink B, Brandts CH, Nolte MA (2013) Interferon-gamma impairs proliferation of hematopoietic stem cells in mice. Blood 121(18):3578–3585

    Article  PubMed  CAS  Google Scholar 

  99. Murray PJ, Young RA, Daley GQ (1998) Hematopoietic remodeling in interferon-gamma-deficient mice infected with mycobacteria. Blood 91(8):2914–2924

    Article  CAS  PubMed  Google Scholar 

  100. Selleri C, Maciejewski JP, Sato T, Young NS (1996) Interferon-gamma constitutively expressed in the stromal microenvironment of human marrow cultures mediates potent hematopoietic inhibition. Blood 87(10):4149–4157

    Article  CAS  PubMed  Google Scholar 

  101. Schurch CM, Riether C, Ochsenbein AF (2013) Interferons in hematopoiesis and leukemia. Oncoimmunology 2(6):e24572

    Article  PubMed  PubMed Central  Google Scholar 

  102. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, Trumpp A (2009) IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458(7240):904–908

    Article  CAS  PubMed  Google Scholar 

  103. Sato T, Onai N, Yoshihara H, Arai F, Suda T, Ohteki T (2009) Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat Med 15(6):696–700

    Article  CAS  PubMed  Google Scholar 

  104. Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M, Passegue E (2014) Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med 211(2):245–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hirche C, Frenz T, Haas SF, Doring M, Borst K, Tegtmeyer PK, Brizic I, Jordan S, Keyser K, Chhatbar C, Pronk E, Lin S, Messerle M, Jonjic S, Falk CS, Trumpp A, Essers MAG, Kalinke U (2017) Systemic virus infections differentially modulate cell cycle state and functionality of long-term hematopoietic stem cells in vivo. Cell Rep 19(11):2345–2356

    Article  CAS  PubMed  Google Scholar 

  106. Zhao JL, Ma C, O'Connell RM, Mehta A, DiLoreto R, Heath JR, Baltimore D (2014) Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 14(4):445–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Khaldoyanidi S, Sikora L, Broide DH, Rothenberg ME, Sriramarao P (2003) Constitutive overexpression of IL-5 induces extramedullary hematopoiesis in the spleen. Blood 101(3):863–868

    Article  CAS  PubMed  Google Scholar 

  108. Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV, Zhang S, Lakshminarasimhan R, Chin CP, Techner JM, Will B, Nerlov C, Steidl U, Manz MG, Schroeder T, Passegue E (2016) Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol 18(6):607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T (2009) Hematopoietic cytokines can instruct lineage choice. Science 325(5937):217–218

    Article  CAS  PubMed  Google Scholar 

  110. Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER, Nutt SL, Moore J, Sieweke MH (2013) M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497(7448):239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ueda Y, Kondo M, Kelsoe G (2005) Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J Exp Med 201(11):1771–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. MacNamara KC, Racine R, Chatterjee M, Borjesson D, Winslow GM (2009) Diminished hematopoietic activity associated with alterations in innate and adaptive immunity in a mouse model of human monocytic ehrlichiosis. Infect Immun 77(9):4061–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Basu S, Hodgson G, Zhang HH, Katz M, Quilici C, Dunn AR (2000) "Emergency" granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood 95(12):3725–3733

    Article  CAS  PubMed  Google Scholar 

  114. Burg ND, Pillinger MH (2001) The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol 99(1):7–17

    Article  CAS  PubMed  Google Scholar 

  115. Cheers C, Haigh AM, Kelso A, Metcalf D, Stanley ER, Young AM (1988) Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect Immun 56(1):247–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang P, Iwama A, Datta MW, Darlington GJ, Link DC, Tenen DG (1998) Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis. J Exp Med 188(6):1173–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Metcalf D, Begley CG, Johnson GR, Nicola NA, Lopez AF, Williamson DJ (1986) Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 68(1):46–57

    Article  CAS  PubMed  Google Scholar 

  118. Hirai H, Zhang P, Dayaram T, Hetherington CJ, Mizuno S, Imanishi J, Akashi K, Tenen DG (2006) C/EBPbeta is required for 'emergency' granulopoiesis. Nat Immunol 7(7):732–739

    Article  CAS  PubMed  Google Scholar 

  119. Fishman JA (2007) Infection in solid-organ transplant recipients. N Engl J Med 357(25):2601–2614

    Article  CAS  PubMed  Google Scholar 

  120. Randolph-Habecker J, Iwata M, Torok-Storb B (2002) Cytomegalovirus mediated myelosuppression. J Clin Virol 25(Suppl 2):S51–56

    Article  CAS  PubMed  Google Scholar 

  121. Jordan S, Ruzsics Z, Mitrovic M, Baranek T, Arapovic J, Krmpotic A, Vivier E, Dalod M, Jonjic S, Dolken L, Koszinowski UH (2013) Natural killer cells are required for extramedullary hematopoiesis following murine cytomegalovirus infection. Cell Host Microb 13(5):535–545

    Article  CAS  Google Scholar 

  122. Gawish R, Bulat T, Biaggio M, Lassnig C, Bago-Horvath Z, Macho-Maschler S, Poelzl A, Simonovic N, Prchal-Murphy M, Rom R, Amenitsch L, Ferrarese L, Kornhoff J, Lederer T, Svinka J, Eferl R, Bosmann M, Kalinke U, Stoiber D, Sexl V, Krmpotic A, Jonjic S, Muller M, Strobl B (2019) Myeloid cells restrict MCMV and drive stress-induced extramedullary hematopoiesis through STAT1. Cell Rep 26(9):2394–2406 e2395

  123. Alliot C, Beets C, Besson M, Derolland P (2001) Spontaneous splenic rupture associated with CMV infection: report of a case and review. Scand J Infect Dis 33(11):875–877

    Article  CAS  PubMed  Google Scholar 

  124. Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, Moehrle B, Brocks D, Bayindir I, Kaschutnig P, Muedder K, Klein C, Jauch A, Schroeder T, Geiger H, Dick TP, Holland-Letz T, Schmezer P, Lane SW, Rieger MA, Essers MA, Williams DA, Trumpp A, Milsom MD (2015) Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520(7548):549–552

    Article  PubMed  CAS  Google Scholar 

  125. Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114(6):1150–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gilles L, Arslan AD, Marinaccio C, Wen QJ, Arya P, McNulty M, Yang Q, Zhao JC, Konstantinoff K, Lasho T, Pardanani A, Stein B, Plo I, Sundaravel S, Wickrema A, Migliaccio A, Gurbuxani S, Vainchenker W, Platanias LC, Tefferi A, Crispino JD (2017) Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis. J Clin Invest 127(4):1316–1320

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mosley C, Jacene HA, Holz A, Grand DJ, Wahl RL (2007) Extramedullary hematopoiesis on F-18 FDG PET/CT in a patient with metastatic colon carcinoma. Clin Nucl Med 32(11):878–880

    Article  PubMed  Google Scholar 

  128. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, Fan J, Zhou W, Qiu S, Zhang Y, Dong T, Li N, Jiang Z, Zhu H, Zhang Q, Ma Y, Zhang L, Wang Q, Yu Y, Li N, Cao X (2018) Tumor-induced generation of splenic erythroblast-like ter-cells promotes tumor progression. Cell 173 (3):634–648 e612

  129. Rasche L, Kumar M, Gershner G, Samant R, Van Hemert R, Heidemeier A, Lapa C, Bley T, Buck A, McDonald J, Hillengass J, Epstein J, Thanendrarajan S, Schinke C, van Rhee F, Zangari M, Barlogie B, Davies FE, Morgan GJ, Weinhold N (2019) Lack of spleen signal on diffusion weighted MRI is associated with high tumor burden and poor prognosis in multiple myeloma: a link to extramedullary hematopoiesis? Theranostics 9(16):4756–4763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Makoni SN, Laber DA (2004) Clinical spectrum of myelophthisis in cancer patients. Am J Hematol 76(1):92–93

    Article  PubMed  Google Scholar 

  131. Burkett LL, Cox ML, Fields ML (1965) Leukoerythroblastosis in the adult. Am J Clin Pathol 44(5):494–498

    Article  CAS  PubMed  Google Scholar 

  132. Shah SM, Rosenthal MH, Griffin GK, Jacobsen ED, McCleary NJ (2014) An aggressive presentation of colorectal cancer with an atypical lymphoproliferative pattern of metastatic disease: a case report and review of the literature. Clin Colorectal Cancer 13(3):e5–e11

    Article  PubMed  Google Scholar 

  133. Wu C, Ning H, Liu M, Lin J, Luo S, Zhu W, Xu J, Wu WC, Liang J, Shao CK, Ren J, Wei B, Cui J, Chen MS, Zheng L (2018) Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis. J Clin Invest 128(8):3425–3438

    Article  PubMed  PubMed Central  Google Scholar 

  134. Xue Y, Lim S, Yang Y, Wang Z, Jensen LDE, Hedlund E-M, Andersson P, Sasahara M, Larsson O, Galter D, Cao R, Hosaka K, Cao Y (2011) PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat Med 18(1):100–110

    Article  PubMed  CAS  Google Scholar 

  135. Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112(3):470–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gardenghi S, Grady RW, Rivella S (2010) Anemia, ineffective erythropoiesis, and hepcidin: interacting factors in abnormal iron metabolism leading to iron overload in beta-thalassemia. Hematol Oncol Clin N Am 24(6):1089–1107

    Article  Google Scholar 

  137. Olivieri NF (1999) The beta-thalassemias. N Engl J Med 341(2):99–109

    Article  CAS  PubMed  Google Scholar 

  138. Rivella S (2012) The role of ineffective erythropoiesis in non-transfusion-dependent thalassemia. Blood Rev 26:S12–S15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Daneshbod Y, Kazemi T (2015) Nodal extramedullary hematopoiesis and facial bone change in thalassemia. Blood 126(17):2070

    Article  CAS  PubMed  Google Scholar 

  140. Ramos P, Casu C, Gardenghi S, Breda L, Crielaard BJ, Guy E, Marongiu MF, Gupta R, Levine RL, Abdel-Wahab O, Ebert BL, Van Rooijen N, Ghaffari S, Grady RW, Giardina PJ, Rivella S (2013) Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia. Nat Med 19(4):437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Libani IV, Guy EC, Melchiori L, Schiro R, Ramos P, Breda L, Scholzen T, Chadburn A, Liu Y, Kernbach M, Baron-Luhr B, Porotto M, de Sousa M, Rachmilewitz EA, Hood JD, Cappellini MD, Giardina PJ, Grady RW, Gerdes J, Rivella S (2008) Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood 112(3):875–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ricchi P, Meloni A, Spasiano A, Neri MG, Gamberini MR, Cuccia L, Caruso V, Gerardi C, D'Ascola DG, Rosso R, Campisi S, Rizzo M, Terrazzino F, Vangosa AB, Chiodi E, Missere M, Mangione M, Positano V, Pepe A (2015) Extramedullary hematopoiesis is associated with lower cardiac iron loading in chronically transfused thalassemia patients. Am J Hematol 90(11):1008–1012

    Article  CAS  PubMed  Google Scholar 

  143. Sousos N, Adamidou D, Klonizakis P, Agapidou A, Theodoridou S, Spanos G, Psarras K, Vetsiou E, Vyzantiadis TA, Vlachaki E (2017) Presence of the IVS-I-6-mutated allele in beta-thalassemia major patients correlates with extramedullary hematopoiesis incidence. Acta Haematol 137(3):175–182

    Article  CAS  PubMed  Google Scholar 

  144. Tefferi A, Thiele J, Orazi A, Kvasnicka HM, Barbui T, Hanson CA, Barosi G, Verstovsek S, Birgegard G, Mesa R, Reilly JT, Gisslinger H, Vannucchi AM, Cervantes F, Finazzi G, Hoffman R, Gilliland DG, Bloomfield CD, Vardiman JW (2007) Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 110(4):1092–1097

    Article  CAS  PubMed  Google Scholar 

  145. Barraco D, Lasho TL, Gangat N, Finke C, Elala YC, Pardanani A, Tefferi A (2016) Leukocytosis and presence of CALR mutation is associated with non-hepatosplenic extramedullary hematopoiesis in primary myelofibrosis. Blood Cancer J 6:e436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bogani C, Ponziani V, Guglielmelli P, Desterke C, Rosti V, Bosi A, Le Bousse-Kerdiles MC, Barosi G, Vannucchi AM, Myeloproliferative Disorders Research C (2008) Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis. Stem Cells 26(8):1920–1930

    Article  CAS  Google Scholar 

  147. Abdelouahab H, Zhang Y, Wittner M, Oishi S, Fujii N, Besancenot R, Plo I, Ribrag V, Solary E, Vainchenker W, Barosi G, Louache F (2017) CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner. Oncotarget 8(33):54082–54095

    Article  PubMed  Google Scholar 

  148. Song MK, Park BB, Uhm JE (2018) Understanding splenomegaly in myelofibrosis: association with molecular pathogenesis. Int J Mol Sci 19(3):898

    Article  PubMed Central  CAS  Google Scholar 

  149. Mesa RA, Kiladjian JJ, Catalano JV, Devos T, Egyed M, Hellmann A, McLornan D, Shimoda K, Winton EF, Deng W, Dubowy RL, Maltzman JD, Cervantes F, Gotlib J (2017) SIMPLIFY-1: a phase III randomized trial of momelotinib versus ruxolitinib in janus kinase inhibitor-naive patients with myelofibrosis. J Clin Oncol 35(34):3844–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mesa RA, Vannucchi AM, Mead A, Egyed M, Szoke A, Suvorov A, Jakucs J, Perkins A, Prasad R, Mayer J, Demeter J, Ganly P, Singer JW, Zhou H, Dean JP, Te Boekhorst PA, Nangalia J, Kiladjian JJ, Harrison CN (2017) Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol 4(5):e225–e236

    Article  PubMed  PubMed Central  Google Scholar 

  151. Komrokji RS, Seymour JF, Roberts AW, Wadleigh M, To LB, Scherber R, Turba E, Dorr A, Zhu J, Wang L, Granston T, Campbell MS, Mesa RA (2015) Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood 125(17):2649–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, Catalano JV, Deininger M, Miller C, Silver RT, Talpaz M, Winton EF, Harvey JH Jr, Arcasoy MO, Hexner E, Lyons RM, Paquette R, Raza A, Vaddi K, Erickson-Viitanen S, Koumenis IL, Sun W, Sandor V, Kantarjian HM (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366(9):799–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Groopman JE, Itri LM (1999) Chemotherapy-induced anemia in adults: incidence and treatment. J Natl Cancer Inst 91(19):1616–1634

    Article  CAS  PubMed  Google Scholar 

  154. Lee HY, Gao X, Barrasa MI, Li H, Elmes RR, Peters LL, Lodish HF (2015) PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature 522(7557):474–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ben Salem C, Sakhri J, Hmouda H (2016) Drug-induced megaloblastic anemia. N Engl J Med 374(7):696

    PubMed  Google Scholar 

  156. Guo B, Huang X, Cooper S, Broxmeyer HE (2017) Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment. Nat Med 23(4):424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS (1996) A severe and consistent deficit in marrow and circulating primitive hematopoietic cells (long-term culture-initiating cells) in acquired aplastic anemia. Blood 88(6):1983–1991

    Article  CAS  PubMed  Google Scholar 

  158. Young NS (2018) Aplastic anemia. N Engl J Med 379(17):1643–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Babushok DV, Perdigones N, Perin JC, Olson TS, Ye W, Roth JJ, Lind C, Cattier C, Li Y, Hartung H, Paessler ME, Frank DM, Xie HM, Cross S, Cockroft JD, Podsakoff GM, Monos D, Biegel JA, Mason PJ, Bessler M (2015) Emergence of clonal hematopoiesis in the majority of patients with acquired aplastic anemia. Cancer Genet 208(4):115–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ogawa S (2016) Clonal hematopoiesis in acquired aplastic anemia. Blood 128(3):337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mufti GJ, Kulasekararaj AG, Marsh JC (2015) Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med 373(17):1674–1675

    PubMed  Google Scholar 

  162. Olnes MJ, Scheinberg P, Calvo KR, Desmond R, Tang Y, Dumitriu B, Parikh AR, Soto S, Biancotto A, Feng X, Lozier J, Wu CO, Young NS, Dunbar CE (2012) Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N Engl J Med 367(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nakada D, Oguro H, Levi BP, Ryan N, Kitano A, Saitoh Y, Takeichi M, Wendt GR, Morrison SJ (2014) Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505(7484):555–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Oguro H (2019) The roles of cholesterol and its metabolites in normal and malignant hematopoiesis. Front Endocrinol (Lausanne) 10:204

    Article  Google Scholar 

  165. Maymon R, Strauss S, Vaknin Z, Weinraub Z, Herman A, Gayer G (2006) Normal sonographic values of maternal spleen size throughout pregnancy. Ultrasound Med Biol 32(12):1827–1831

    Article  PubMed  Google Scholar 

  166. Gu Q, Yang X, Lv J, Zhang J, Xia B, Kim JD, Wang R, Xiong F, Meng S, Clements TP, Tandon B, Wagner DS, Diaz MF, Wenzel PL, Miller YI, Traver D, Cooke JP, Li W, Zon LI, Chen K, Bai Y, Fang L (2019) AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science 363(6431):1085–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Robbins CS, Chudnovskiy A, Rauch PJ, Figueiredo JL, Iwamoto Y, Gorbatov R, Etzrodt M, Weber GF, Ueno T, van Rooijen N, Mulligan-Kehoe MJ, Libby P, Nahrendorf M, Pittet MJ, Weissleder R, Swirski FK (2012) Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125(2):364–374

    Article  PubMed  Google Scholar 

  168. Dutta P, Sager HB, Stengel KR, Naxerova K, Courties G, Saez B, Silberstein L, Heidt T, Sebas M, Sun Y, Wojtkiewicz G, Feruglio PF, King K, Baker JN, van der Laan AM, Borodovsky A, Fitzgerald K, Hulsmans M, Hoyer F, Iwamoto Y, Vinegoni C, Brown D, Di Carli M, Libby P, Hiebert SW, Scadden DT, Swirski FK, Weissleder R, Nahrendorf M (2015) Myocardial infarction activates CCR2(+) hematopoietic stem and progenitor cells. Cell Stem Cell 16(5):477–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, Iwamoto Y, Thompson B, Carlson AL, Heidt T, Majmudar MD, Lasitschka F, Etzrodt M, Waterman P, Waring MT, Chicoine AT, van der Laan AM, Niessen HW, Piek JJ, Rubin BB, Butany J, Stone JR, Katus HA, Murphy SA, Morrow DA, Sabatine MS, Vinegoni C, Moskowitz MA, Pittet MJ, Libby P, Lin CP, Swirski FK, Weissleder R, Nahrendorf M (2012) Myocardial infarction accelerates atherosclerosis. Nature 487(7407):325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hill DA, Swanson PE (2000) Myocardial extramedullary hematopoiesis: a clinicopathologic study. Mod Pathol 13(7):779–787

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 81925030, 81972699, 81620108023 and 81472648).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haixia Long or Bo Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Chen, D., Long, H. et al. The mechanisms of pathological extramedullary hematopoiesis in diseases. Cell. Mol. Life Sci. 77, 2723–2738 (2020). https://doi.org/10.1007/s00018-020-03450-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03450-w

Keywords

Navigation