Skip to main content

Advertisement

Log in

Functional and transcriptomic analyses of the NF-Y family provide insights into the defense mechanisms of honeybees under adverse circumstances

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

As predominant pollinators, honeybees are important for crop production and terrestrial ecosystems. Recently, various environmental stresses have led to large declines in honeybee populations in many regions. The ability of honeybees to respond to these stresses is critical for their survival. However, the details of the stress defense mechanisms of honeybees have remained elusive. Here, we found that the Nuclear Factor Y (NF-Y) family (containing NF-YA, NF-YB, and NF-YC) is a novel stress mediator family that regulates honeybee environmental stress resistance. NF-YA localized in the nucleus, NF-YB accumulated in the cytoplasm, and NF-YC presented in both the nucleus and cytoplasm. NF-YC interacted with NF-YA and NF-YB in vitro and in vivo, and the nuclear import of NF-YB relied on its interaction with NF-YC. We further found that the expression of NF-Y was induced under multiple stress conditions. In addition, NF-Y regulated many stress responses and antioxidant genes at the transcriptome-wide level, and knockdown of NF-Y repressed the expression of stress-inducible genes, particularly LOC108003540 and LOC107994062, under adverse circumstances. Silencing NF-Y lowered honeybee stress resistance by reducing total antioxidant capacity and enhancing oxidative impairment. Collectively, these results indicate that NF-Y plays important roles in stress responses. Our study sheds light on the underlying defense mechanisms of honeybees under environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gomez JM, Perfectti F, Lorite J (2015) The role of pollinators in floral diversification in a clade of generalist flowers. Evol Int J Org Evol 69(4):863–878

    Google Scholar 

  2. Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Potts SG, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11(5):499–515

    PubMed  Google Scholar 

  3. Ashman TL, Knight TM, Steets JA, Amarasekare P, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85(9):2408–2421

    Google Scholar 

  4. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. In: Proceedings biological sciences

  5. Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68(3):810–821

    Google Scholar 

  6. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

    PubMed  Google Scholar 

  7. Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229):1255957

    PubMed  Google Scholar 

  8. Theisen-Jones H, Bienefeld K (2016) The Asian honey bee (Apis cerana cerana) is significantly in decline. Bee World 93:90–97

    Google Scholar 

  9. Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491(7422):105–108

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19(12):614–620

    CAS  PubMed  Google Scholar 

  11. Sanchez-Bayo F, Goulson D, Pennacchio F, Nazzi F, Goka K, Desneux N (2016) Are bee diseases linked to pesticides?—A brief review. Environ Int 89–90:7–11

    PubMed  Google Scholar 

  12. Li G, Zhao H, Liu Z, Wang H, Xu B, Guo X (2018) The wisdom of honeybee defenses against environmental stresses. Front Microbiol 9:722

    PubMed  PubMed Central  Google Scholar 

  13. Zhao H, Wu D, Kong F, Lin K, Zhang H, Li G (2016) The Arabidopsis thaliana nuclear factor Y transcription factors. Front Plant Sci 7:2045

    PubMed  Google Scholar 

  14. Li G, Zhao H, Wang L, Wang Y, Guo X, Xu B (2018) The animal nuclear factor Y: an enigmatic and important heterotrimeric transcription factor. Am J Cancer Res 8(7):1106–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Laloum T, De Mita S, Gamas P, Baudin M, Niebel A (2013) CCAAT-box binding transcription factors in plants: Y so many? Trends Plant Sci 18(3):157–166

    CAS  PubMed  Google Scholar 

  16. Myers ZA, Holt BF 3rd (2018) Nuclear factor-Y: still complex after all these years? Curr Opin Plant Biol 45(Pt A):96–102

    CAS  PubMed  Google Scholar 

  17. Dorn A, Durand B, Marfing C, Le Meur M, Benoist C, Mathis D (1987) Conserved major histocompatibility complex class II boxes—X and Y—are transcriptional control elements and specifically bind nuclear proteins. Proc Natl Acad Sci USA 84(17):6249–6253

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mantovani R (1999) ThemolecularbiologyoftheCCAAT-bindingfactorNF-Y. Gene 239(1):15–27

    CAS  PubMed  Google Scholar 

  19. Li XY, Hooft VHR, Mantovani R, Benoist C, Mathis D (1992) Intron-exon organization of the NF-Y genes. Tissue-specific splicing modifies an activation domain. J Biol Chem 267(13):8984

    CAS  PubMed  Google Scholar 

  20. Iyer H, Collins JJ 3rd, Newmark PA (2016) NF-YB regulates spermatogonial stem cell self-renewal and proliferation in the planarian schmidtea mediterranea. PLoS Genet 12(6):e1006109

    PubMed  PubMed Central  Google Scholar 

  21. Gurtner A, Manni I, Piaggio G (2017) NF-Y in cancer: impact on cell transformation of a gene essential for proliferation. Biochem Biophys Acta 1860(5):604–616

    CAS  Google Scholar 

  22. Yamaguchi M, Ali MS, Yoshioka Y, Ly LL (1860) Yoshida H (2017) NF-Y in invertebrates. Biochem Biophys Acta 5:630–635

    Google Scholar 

  23. Ly LL, Yoshida H, Yamaguchi M (2013) Nuclear transcription factor Y and its roles in cellular processes related to human disease. Am J Cancer Res 3(4):339–346

    PubMed  PubMed Central  Google Scholar 

  24. Wang Y, Weng H, Zhang Y, Long Y, Li Y, Niu Y, Song F, Bu Y (2017) The PRR11-SKA2 bidirectional transcription unit is negatively regulated by p53 through NF-Y in lung cancer cells. Int J Mol Sci 18(3):534

    PubMed Central  Google Scholar 

  25. Shi Z, Chiang CI, Labhart P, Zhao Y, Yang J, Mistretta TA, Henning SJ, Maity SN, Mori-Akiyama Y (2015) Context-specific role of SOX9 in NF-Y mediated gene regulation in colorectal cancer cells. Nucleic Acids Res 43(13):6257–6269

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Weissmueller S, Manchado E, Saborowski M, Morris JPT, Wagenblast E, Davis CA, Moon SH, Pfister NT, Tschaharganeh DF, Kitzing T, Aust D, Markert EK, Wu J, Grimmond SM, Pilarsky C, Prives C, Biankin AV, Lowe SW (2014) Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell 157(2):382–394

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Su B, Luo T, Zhu J, Fu J, Zhao X, Chen L, Zhang H, Ren Y, Yu L, Yang X, Wu M, Feng G, Li S, Chen Y, Wang H (2015) Interleukin-1beta/Iinterleukin-1 receptor-associated kinase 1 inflammatory signaling contributes to persistent Gankyrin activation during hepatocarcinogenesis. Hepatology 61(2):585–597

    CAS  PubMed  Google Scholar 

  28. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G, Piaggio G (2006) Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10(3):191–202

    PubMed  Google Scholar 

  29. Benatti P, Basile V, Merico D, Fantoni LI, Tagliafico E, Imbriano C (2008) A balance between NF-Y and p53 governs the pro- and anti-apoptotic transcriptional response. Nucleic Acids Res 36(5):1415–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhattacharya A, Deng JM, Zhang Z, Behringer R, de Crombrugghe B, Maity SN (2003) The B subunit of the CCAAT box binding transcription factor complex (CBF/NF-Y) is essential for early mouse development and cell proliferation. Can Res 63(23):8167–8172

    CAS  Google Scholar 

  31. Hu H, Bezabih G, Feng M, Wei Q, Zhang X, Wu F, Meng L, Fang Y, Han B, Ma C, Li J (2019) In-depth proteome of the hypopharyngeal glands of honeybee workers reveals highly activated protein and energy metabolism in priming the secretion of royal jelly. Mol Cell Proteom MCP 18:606–621

    CAS  Google Scholar 

  32. Amdam GV, Nilsen KA, Norberg K, Fondrk MK, Hartfelder K (2007) Variation in endocrine signaling underlies variation in social life history. Am Nat 170(1):37–46

    PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Brent CS, Fennern E, Amdam GV (2012) Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS Genet 8(6):e1002779

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Liu Y, Guo X, Li Y, Gao H, Guo X, Xu B (2014) sHsp22.6, an intronless small heat shock protein gene, is involved in stress defence and development in Apis cerana cerana. Insect Biochem Mol Biol 53:1–12

    PubMed  Google Scholar 

  35. Li G, Zhao H, Zhang X, Zhang Y, Zhao H, Yang X, Guo X, Xu B (2018) Environmental stress responses of DnaJA1, DnaJB12 and DnaJC8 in Apis cerana cerana. Front Genet 9:445

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li G, Wang L, Wang Y, Li H, Liu Z, Wang H, Xu B, Guo X (2018) Developmental characterization and environmental stress responses of Y-box binding protein 1 gene (AccYB-1) from Apis cerana cerana. Gene 674:37–48

    CAS  PubMed  Google Scholar 

  37. Liu C, Zhou Z, Yao X, Chen P, Sun M, Su M, Chang C, Yan J, Jiang J, Zhang Q (2014) Hedgehog signaling downregulates suppressor of fused through the HIB/SPOP-Crn axis in Drosophila. Cell Res 24(5):595–609

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yao P, Chen X, Yan Y, Liu F, Zhang Y, Guo X, Xu B (2014) Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free Radical Biol Med 68:335–346

    CAS  Google Scholar 

  39. Rabinowitz JS, Robitaille AM, Wang Y, Ray CA, Thummel R, Gu H, Djukovic D, Raftery D, Berndt JD, Moon RT (2017) Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. Proc Natl Acad Sci USA 114(5):E717–E726

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huai J, Zhang X, Li J, Ma T, Zha P, Jing Y, Lin R (2018) SEUSS and PIF4 coordinately regulate light and temperature signaling pathways to control plant growth. Mol Plant 11(7):928–942

    CAS  PubMed  Google Scholar 

  43. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  44. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212

    Google Scholar 

  45. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Alexa ARJ (2010) topGO: enrichment analysis for gene ontology. R package version 2.8

  47. Zhang Z, Feng J, Pan C, Lv X, Wu W, Zhou Z, Liu F, Zhang L, Zhao Y (2013) Atrophin-Rpd3 complex represses Hedgehog signaling by acting as a corepressor of CiR. J Cell Biol 203(4):575–583

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Z, Lv X, Yin WC, Zhang X, Feng J, Wu W, Hui CC, Zhang L, Zhao Y (2013) Ter94 ATPase complex targets k11-linked ubiquitinated ci to proteasomes for partial degradation. Dev Cell 25(6):636–644

    CAS  PubMed  Google Scholar 

  49. Li G, Zhang Y, Ni Y, Wang Y, Xu B, Guo X (2018) Identification of a melatonin receptor type 1A gene (AccMTNR1A) in Apis cerana cerana and its possible involvement in the response to low temperature stress. Die Naturwissenschaften 105(3–4):24

    PubMed  Google Scholar 

  50. Nardone V, Chaves-Sanjuan A, Nardini M (2017) Structural determinants for NF-Y/DNA interaction at the CCAAT box. Biochem Biophys Acta 1860(5):571–580

    CAS  Google Scholar 

  51. Yoshioka Y, Suyari O, Yamada M, Ohno K, Hayashi Y, Yamaguchi M (2007) Complex interference in the eye developmental pathway by Drosophila NF-YA. Genesis 45(1):21–31

    CAS  PubMed  Google Scholar 

  52. Franchini A, Imbriano C, Peruzzi E, Mantovani R, Ottaviani E (2005) Expression of the CCAAT-binding factor NF-Y in Caenorhabditis elegans. J Mol Histol 36(1–2):139–145

    CAS  PubMed  Google Scholar 

  53. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    CAS  PubMed  Google Scholar 

  54. Zachut M, Kra G, Livshitz L, Portnick Y, Yakoby S, Friedlander G, Levin Y (2017) Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows. J Proteom 158:52–61

    CAS  Google Scholar 

  55. Caretti G, Salsi V, Vecchi C, Imbriano C, Mantovani R (2003) Dynamic recruitment of NF-Y and histone acetyltransferases on cell-cycle promoters. J Biol Chem 278(33):30435–30440

    CAS  PubMed  Google Scholar 

  56. Kulhanek K, Steinhauer N, Rennich K, Caron DM, Sagili RR, Pettis JS, Ellis JD, Wilson ME, Wilkes JT, Tarpy DR, Rose R, Lee K, Rangel J, vanEngelsdorp D (2017) A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J Apic Res 56(4):328–340

    Google Scholar 

  57. Frontini M, Imbriano C, Manni I, Mantovani R (2004) Cell cycle regulation of NF-YC nuclear localization. Cell Cycle 3(2):217–222

    CAS  PubMed  Google Scholar 

  58. Kahle J, Baake M, Doenecke D, Albig W (2005) Subunits of the heterotrimeric transcription factor NF-Y are imported into the nucleus by distinct pathways involving importin beta and importin 13. Mol Cell Biol 25(13):5339–5354

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chia MC, Leung A, Krushel T, Alajez NM, Lo KW, Busson P, Klamut HJ, Bastianutto C, Liu FF (2008) Nuclear factor-Y and Epstein Barr virus in nasopharyngeal cancer. Clin Cancer Res 14(4):984–994

    CAS  PubMed  Google Scholar 

  60. Sasi BK, Sonawane PJ, Gupta V, Sahu BS, Mahapatra NR (2014) Coordinated transcriptional regulation of Hspa1a gene by multiple transcription factors: crucial roles for HSF-1, NF-Y, NF-kappaB, and CREB. J Mol Biol 426(1):116–135

    CAS  PubMed  Google Scholar 

  61. Imbriano C, Bolognese F, Gurtner A, Piaggio G, Mantovani R (2001) HSP-CBF is an NF-Y-dependent coactivator of the heat shock promoters CCAAT boxes. J Biol Chem 276(28):26332–26339

    CAS  PubMed  Google Scholar 

  62. Li Q, Herrler M, Landsberger N, Kaludov N, Ogryzko VV, Nakatani Y, Wolffe AP (1998) Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J 17(21):6300–6315

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Abou-Shaara HF (2015) Thermal tolerance characteristics of two honey bee races1. J Agric Urban Entomol 31(1):1–8

    Google Scholar 

  64. Abou-Shaara HF, Owayss AA, Ibrahim YY, Basuny NK (2017) A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Soc 64:455–463

    Google Scholar 

  65. Tautz J, Maier S, Groh C, Rossler W, Brockmann A (2003) Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc Natl Acad Sci USA 100(12):7343–7347

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zepeda-Arce R, Rojas-Garcia AE, Benitez-Trinidad A, Herrera-Moreno JF, Medina-Diaz IM, Barron-Vivanco BS, Villegas GP, Hernandez-Ochoa I, Solis Heredia MJ, Bernal-Hernandez YY (2017) Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environ Toxicol 32(6):1754–1764

    CAS  PubMed  Google Scholar 

  67. Sahin E, Gumuslu S (2004) Cold-stress-induced modulation of antioxidant defence: role of stressed conditions in tissue injury followed by protein oxidation and lipid peroxidation. Int J Biometeorol 48(4):165–171

    CAS  PubMed  Google Scholar 

  68. Rodriguez-Sanchez R, Ortiz-Butron R, Blas-Valdivia V, Hernandez-Garcia A, Cano-Europa E (2012) Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl(2)-caused oxidative stress and renal damage. Food Chem 135(4):2359–2365

    CAS  PubMed  Google Scholar 

  69. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    CAS  PubMed  Google Scholar 

  70. Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438

    PubMed  PubMed Central  Google Scholar 

  71. Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev 33(2):79–97

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Martin Giurfa, from Research Centre on Animal Cognition, University of Toulouse, and Dr. Panuwan Chantawannakul, from Bee Protection Laboratory, Chiang Mai University, for critical reading.

Funding

This work was financially supported by the Funds of Shandong Province “Double Tops” Program, the Shandong Province Modern Agricultural Technology System Innovation Team Special Fund (No. SDAIT-24-04), the National Natural Science Foundation of China (No. 31572470), and the Earmarked Fund for the China Agriculture Research System (No. CARS-44).

Author information

Authors and Affiliations

Authors

Contributions

XG and BX contributed to study conception and design. GL, HZ, and HG prepared the materials and carried out the experimental work. HG, YW, and XC collected and analyzed the data. The first draft of the manuscript was written by GL and HZ, and all authors commented on the various versions of the manuscript before publishing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Baohua Xu or Xingqi Guo.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2019_3447_MOESM1_ESM.jpg

Fig. S1. Genomic structure comparison among NF-Y gene family members. Lengths of the genomic DNA sequences of honeybee (Apis cerana and Apis mellifera) NF-YA (A), NF-YB (B) and NF-YC (C) and their homologs in Tyto alba, Pieris rapae, Bos taurus and Cimex lectularius. The 5′UTRs, 3′UTRs, introns and exons of the NF-Ys are presented in various colored boxes. BtNF-YA, Bos Taurus NF-YA (NP_001014956.1). PrNF-YA, Pieris rapae NF-YA (XP_022116701.1). ClNF-YA, Cimex lectularius NF-YA (XP_014249448.1). TaNF-YA, Tyto alba NF-YA (KFV55528.1). AccNF-YA, Apis cerana cerana NF-YA (XP_016910727.1). AmNF-YA, Apis mellifera NF-YA (XP_001121566.1). BtNF-YB, Bos Taurus NF-YB (NP_001073254.1). PrNF-YB, Pieris rapae NF-YB (XP_022121715.1). ClNF-YB, Cimex lectularius NF-YB (XP_024083212.1). TaNF-YB, Tyto alba NF-YB (XP_009972647.1). AccNF-YB, Apis cerana cerana NF-YB (XP_016914525.1). AmNF-YB, Apis mellifera NF-YB (XP_394667.3). BtNF-YC, Bos Taurus NF-YC (NP_001029770.1). PrNF-YC, Pieris rapae NF-YC (XP_022119667.1). ClNF-YC, Cimex lectularius NF-YC (XP_014260208.1). TaNF-YC, Tyto alba NF-YC (KFV48877.1). AccNF-YC, Apis cerana cerana NF-YC (XP_016907622.1). AmNF-YC, Apis mellifera NF-YC (XP_392156.2). (JPG 995 kb)

18_2019_3447_MOESM2_ESM.jpg

Fig. S2. Multiple alignment of the amino acid sequences of NF-YA (A), NF-YB (B) and NF-YC (C) among different species. The conserved domain of NF-Y is marked with a red box. Acc, Apis cerana cerana. Am, Apis mellifera. Bt, Bos taurus. Cl, Cimex lectularius. Pr, Pieris rapae. Ta, Tyto alba. The GenBank accession number of each protein used here can be found in Fig. 1. (JPG 4041 kb)

18_2019_3447_MOESM3_ESM.jpg

Fig. S3. Expression levels of NF-Y in Apis mellifera under 47°C treatment from 0 h to 5 h (A) or under 40°C treatment from 0 h to 48 h (B) compared to normal conditions (33°C). β-actin was used as an internal control. The data are presented as the mean ± SD of three replicates of four individuals each. *P < 0.05 and **P < 0.01 by Student’s t test. (JPG 480 kb)

18_2019_3447_MOESM4_ESM.jpg

Fig. S4. RNAi efficiency of NF-YB (A) and NF-YC (B) as detected by RNA-seq. The NF-YB knockdown, NF-YC knockdown and GFP control honeybees are abbreviated with nf-yb-1-, nf-yc-1- and gfp, respectively. The data are shown as the mean ± SD of three biological replicates. **P < 0.01 by Student’s t test. (JPG 116 kb)

18_2019_3447_MOESM5_ESM.jpg

Fig. S5. Scatter plot showing the differentially expressed genes in NF-YB knockdown compared to control honeybees. The NF-YB knockdown and GFP control honeybees are abbreviated with nf-yb-1- and gfp, respectively. (JPG 610 kb)

18_2019_3447_MOESM6_ESM.jpg

Fig. S6. Scatter plot showing the differentially expressed genes in NF-YC knockdown compared to control honeybees. The NF-YC knockdown and GFP control honeybees are abbreviated with nf-yc-1- and gfp, respectively. (JPG 548 kb)

18_2019_3447_MOESM7_ESM.jpg

Fig. S7. Representative list of the genes regulated by NF-YB (left panel) and NF-YC (right panel) associated with environmental stress responses, immune processes, development and antioxidative defense. The genes upregulated and downregulated by NF-YB or NF-YC as revealed by RNA-seq analysis are indicated with upward red arrows and downward blue arrows, respectively. The NF-YB knockdown and NF-YC knockdown honeybees are abbreviated with nf-yb-1- and nf-yc-1 (JPG 1439 kb)

18_2019_3447_MOESM8_ESM.jpg

Fig. S8. Confirmation of stress response gene coregulation by NF-YB and NF-YC using RT-qPCR. The data are presented as the mean ± SD, n = 3. *P < 0.05 and **P < 0.01 by Student’s t test. β-actin was used as an internal control. The NF-YB knockdown, NF-YC knockdown and GFP control honeybees are abbreviated with nf-yb-1-, nf-yc-1- and gfp, respectively (JPG 691 kb)

18_2019_3447_MOESM9_ESM.jpg

Fig. S9. Expression levels of some antioxidative defense genes coregulated by NF-YB and NF-YC as detected by RT-qPCR. β-actin was used as an internal control. The data are presented as the mean ± SD, n = 3. **P < 0.01 by Student’s t test. The NF-YB knockdown, NF-YC knockdown and GFP control honeybees are abbreviated with nf-yb-1-, nf-yc-1- and gfp, respectively. (JPG 686 kb)

18_2019_3447_MOESM10_ESM.jpg

Fig. S10. Expression levels of stress response genes and antioxidant genes in dsRNA-NF-YB-2-fed honeybees (nf-yb-2-) and dsRNA-NF-YC-2-fed honeybees (nf-yc-2-) compared to dsRNA-GFP-fed honeybees (gfp). A, Schematic drawings showing the targeting sequences of dsRNA-NF-YB-1, dsRNA-NF-YB-2, dsRNA-NF-YC-1 and dsRNA-NF-YC-2 in the CDSs of NF-YB and NF-YC. HFM: histone fold motif. B, RNAi efficiency of NF-YB and NF-YC in nf-yb-2- and nf-yc-2- compared to gfp. The data are presented as the mean ± SD of three biological replicates. **P < 0.01 by Student’s t test. C, mRNA levels of select genes in nf-yb-2- and nf-yc-2- compared to gfp control. The data are shown as the mean ± SD of three biological replicates. **P < 0.05 and **P < 0.01 by Student’s t test. (JPG 1155 kb)

Supplementary file11 (XLSX 2097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zhao, H., Guo, H. et al. Functional and transcriptomic analyses of the NF-Y family provide insights into the defense mechanisms of honeybees under adverse circumstances. Cell. Mol. Life Sci. 77, 4977–4995 (2020). https://doi.org/10.1007/s00018-019-03447-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03447-0

Keywords

Navigation