Aitken RJ, Smith TB, Jobling MS et al (2014) Oxidative stress and male reproductive health. Asian J Androl 16:31–38. https://doi.org/10.4103/1008-682X.122203
CAS
Article
PubMed
Google Scholar
Ghuman N, Ramalingam M (2017) Male infertility. Obstet Gynaecol Reprod Med 28:7–14. https://doi.org/10.1016/j.ogrm.2017.10.007
Article
Google Scholar
Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8. https://doi.org/10.1016/S0026-0495(00)80077-3
CAS
Article
PubMed
Google Scholar
Sanocka D, Kurpisz M (2004) Reactive oxygen species and sperm cells. Reprod Biol Endocrinol 2:1–7. https://doi.org/10.1186/1477-7827-2-12
Article
Google Scholar
Griveau JF, Le Lannou D (1997) Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl 20:61–69. https://doi.org/10.1046/j.1365-2605.1997.00044.x
CAS
Article
PubMed
Google Scholar
García Rodríguez A, de la Casa M, Johnston S et al (2019) Association of polymorphisms in genes coding for antioxidant enzymes and human male infertility. Ann Hum Genet 83:63–72. https://doi.org/10.1111/ahg.12286
CAS
Article
PubMed
Google Scholar
Kodama H, Kuribayashi Y, Gagnon C (1996) Effect of sperm lipid peroxidation on fertilization. J Androl 17:151–157. https://doi.org/10.1002/j.1939-4640.1996.tb01764.x
CAS
Article
PubMed
Google Scholar
Agarwal A, Makker K, Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59:2–11. https://doi.org/10.1111/j.1600-0897.2007.00559.x
CAS
Article
PubMed
Google Scholar
Smith MA, Perry G, Pryor WA (2016) Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 28:1–10. https://doi.org/10.1016/S0891-5849(02)00793-1
Article
Google Scholar
Aitken RJ, Curry BJ (2011) Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxidants Redox Signal. https://doi.org/10.1089/ars.2010.3186
Article
Google Scholar
Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857
CAS
Article
PubMed
Google Scholar
Shaha C, Suri A, Talwar GP (1988) Identification of sperm antigens that regulate fertility. Int J Androl 11:479–491. https://doi.org/10.1111/j.1365-2605.1988.tb01022.x
CAS
Article
PubMed
Google Scholar
Raijmakers MTM, Roelofs HMJ, Steegers EAP et al (2003) Glutathione and glutathione S-transferases A1-1 and P1-1 in seminal plasma may play a role in protecting against oxidative damage to spermatozoa. Fertil Steril 79:169–172. https://doi.org/10.1016/S0015-0282(02)04404-7
Article
PubMed
Google Scholar
Dierickx P (1982) Soluble glutathione S-transferases from rat testes: isoenzyme pattern and lack of inducibility by drug metabolizing enzyme inducers. Toxicol Res Appl 4:47–51
CAS
Google Scholar
Hemachand T, Shaha C (2003) Functional role of sperm surface glutathione S-transferases and extracellular glutathione in the haploid spermatozoa under oxidative stress. FEBS Lett 538:14–18. https://doi.org/10.1016/S0014-5793(03)00103-0
CAS
Article
PubMed
Google Scholar
Adler V, Yin Z, Fuchs SY et al (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334. https://doi.org/10.1093/emboj/18.5.1321
CAS
Article
PubMed
PubMed Central
Google Scholar
Luna C, Mendoza N, Casao A et al (2017) c-Jun N-terminal kinase and p38 mitogen-activated protein kinase pathways link capacitation with apoptosis and seminal plasma proteins protect sperm by interfering with both routes. Biol Reprod 96:800–815. https://doi.org/10.1093/biolre/iox017
Article
PubMed
Google Scholar
Hemachand T, Gopalakrishnan B, Salunke DM et al (2002) Sperm plasma-membrane-associated glutathione S-transferases as gamete recognition molecules. J Cell Sci 115:2053–2065
CAS
PubMed
Google Scholar
Petit FM, Serres C, Bourgeon F et al (2013) Identification of sperm head proteins involved in zona pellucida binding. Hum Reprod 28:852–865. https://doi.org/10.1093/humrep/des452
CAS
Article
PubMed
Google Scholar
Hamilton LE, Suzuki J, Aguila L et al (2019) Sperm-borne glutathione-S-transferase omega 2 accelerates the nuclear decondensation of spermatozoa during fertilization in mice. Biol Reprod 101:368–376. https://doi.org/10.1093/biolre/ioz082
Article
PubMed
Google Scholar
Combes B, Stakelum GS (1961) A liver enzyme that conjugates sulfobromophthalein sodium with glutathione. J Clin Invest 40:981–988. https://doi.org/10.1172/JCI104337
CAS
Article
PubMed
PubMed Central
Google Scholar
Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–3266. https://doi.org/10.1016/j.bbagen.2012.09.018
CAS
Article
PubMed
Google Scholar
Mannervik B, Board PG, Hayes JD et al (2005) Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 401:1–8. https://doi.org/10.1016/S0076-6879(05)01001-3
CAS
Article
PubMed
Google Scholar
Morel F, Rauch C, Petit E et al (2004) Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization. J Biol Chem 279:16246–16253. https://doi.org/10.1074/jbc.M313357200
CAS
Article
PubMed
Google Scholar
Mannervik B, Jensson H (1982) Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat liver cytosol. J Biol Chem 257:9909–9912
CAS
PubMed
Google Scholar
Mannervik B, Danielson UH (1988) Glutathione transferases—structure and catalytic activity. Crit Rev Biochem 23:283–337. https://doi.org/10.3109/10409238809088226
CAS
Article
Google Scholar
Di Pietro G, LA Magno V, Rios-Santos F (2010) Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol 6:153–170. https://doi.org/10.1517/17425250903427980
CAS
Article
PubMed
Google Scholar
Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:521–600. https://doi.org/10.3109/10409239509083492
Article
Google Scholar
Wongsantichon J, Ketterman AJ (2005) Alternative splicing of glutathione S-transferases. Methods Enzymol 401:100–116. https://doi.org/10.1016/S0076-6879(05)01006-2
CAS
Article
PubMed
Google Scholar
O’Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:733–745. https://doi.org/10.1093/nar/gkv1189
CAS
Article
Google Scholar
The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:506–515. https://doi.org/10.1093/nar/gky1049
CAS
Article
Google Scholar
Sheehan D, Meade G, Foley V, Dowd C (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16. https://doi.org/10.1042/0264-6021:3600001
CAS
Article
PubMed
PubMed Central
Google Scholar
Mukhtar H, Lee IP, Bend JR (1978) Glutathione S-transferase activities in rat and mouse sperm and human semen. Biochem Biophys Res Commun 83:1093–1098. https://doi.org/10.1016/0006-291X(78)91507-3
CAS
Article
PubMed
Google Scholar
Aravinda S, Gopalakrishnan B, Dey CS et al (1995) A testicular protein important for fertility has glutathione S-transferase activity and is localized extracellularly in the seminiferous tubules. J Biol Chem 270:15675–15685. https://doi.org/10.1074/jbc.270.26.15675
CAS
Article
PubMed
Google Scholar
Fulcher KD, Welch JE, Klapper DG et al (1995) Identification of a unique μ-class glutathione S-transferase in mouse spermatogenic cells. Mol Reprod Dev 42:415–424. https://doi.org/10.1002/mrd.1080420407
CAS
Article
PubMed
Google Scholar
Gopalakrishnan B, Aravinda S, Pawshe CH et al (1998) Studies on glutathione S-transferase important for sperm function: evidence of catalytic activity-independent functions. Biochem J 329:231–241. https://doi.org/10.1042/bj3290231
CAS
Article
PubMed
PubMed Central
Google Scholar
Kumar R, Singh VK, Atreja SK (2014) Glutathione-S-transferase: role in buffalo (Bubalus bubalis) sperm capacitation and cryopreservation. Theriogenology 81:587–598. https://doi.org/10.1016/j.theriogenology.2013.11.012
CAS
Article
PubMed
Google Scholar
Llavanera M, Delgado-Bermúdez A, Fernandez-Fuertes B et al (2019) GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. J Anim Sci Biotechnol. https://doi.org/10.1186/s40104-019-0370-5
Article
PubMed
PubMed Central
Google Scholar
Hamilton LE, Acteau G, Xu W et al (2017) The developmental origin and compartmentalization of glutathione-s-transferase omega 2 isoforms in the perinuclear theca of eutherian spermatozoa. Biol Reprod 97:612–621. https://doi.org/10.1093/biolre/iox122
Article
PubMed
PubMed Central
Google Scholar
Protopapas N, Hamilton LE, Warkentin R et al (2019) The perforatorium and postacrosomal sheath of rat spermatozoa share common developmental origins and protein constituents. Biol Reprod 100:1461–1472. https://doi.org/10.1093/biolre/ioz052
Article
PubMed
PubMed Central
Google Scholar
Batruch I, Lecker I, Kagedan D et al (2011) Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res 10:941–953. https://doi.org/10.1021/pr100745u
CAS
Article
PubMed
Google Scholar
Zubkova EV, Robaire B (2004) Effect of glutathione depletion on antioxidant enzymes in the epididymis, seminal vesicles, and liver and on spermatozoa motility in the aging brown Norway rat. Biol Reprod 71:1002–1008. https://doi.org/10.1095/biolreprod.104.028373
CAS
Article
PubMed
Google Scholar
Klys HS, Whillis D, Howard G, Harrison DJ (1992) Glutathione S-transferase expression in the human testis and testicular germ cell neoplasia. Br J Cancer 66:589–593. https://doi.org/10.1038/bjc.1992.319
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu M, Hu Z, Qi L et al (2013) Scanning of novel cancer/testis proteins by human testis proteomic analysis. Proteomics 13:1200–1210. https://doi.org/10.1002/pmic.201200489
CAS
Article
PubMed
Google Scholar
Mukherjee SB, Aravinda S, Gopalakrishnan B et al (1999) Secretion of glutathione S-transferase isoforms in the seminiferous tubular fluid, tissue distribution and sex steroid binding by rat GSTM1. Biochem J 340:309. https://doi.org/10.1042/0264-6021:3400309
CAS
Article
PubMed
PubMed Central
Google Scholar
Yu Z, Guo R, Ge Y et al (2003) Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis1. Biol Reprod 69:37–47. https://doi.org/10.1095/biolreprod.102.012609
CAS
Article
PubMed
Google Scholar
Paz M, Morín M, del Mazo J (2006) Proteome profile changes during mouse testis development. Comp Biochem Physiol 1:404–415. https://doi.org/10.1016/j.cbd.2006.10.002
CAS
Article
Google Scholar
Li J, Liu F, Wang H et al (2010) Systematic mapping and functional analysis of a family of human epididymal secretory sperm-located proteins. Mol Cell Proteomics 9:2517–2528. https://doi.org/10.1074/mcp.m110.001719
CAS
Article
PubMed
PubMed Central
Google Scholar
Thimon V, Frenette G, Saez F et al (2008) Protein composition of human epididymosomes collected during surgical vasectomy reversal: a proteomic and genomic approach. Hum Reprod 23:1698–1707. https://doi.org/10.1093/humrep/den181
CAS
Article
PubMed
Google Scholar
Suryawanshi AR, Khan SA, Gajbhiye RK et al (2011) Differential proteomics leads to identification of domain-specific epididymal sperm proteins. J Androl 32:240–259. https://doi.org/10.2164/jandrol.110.010967
CAS
Article
PubMed
Google Scholar
Dacheux JL, Belleannée C, Jones R et al (2009) Mammalian epididymal proteome. Mol Cell Endocrinol 306:45–50. https://doi.org/10.1016/j.mce.2009.03.007
CAS
Article
PubMed
Google Scholar
Utleg AG, Yi EC, Xie T et al (2003) Proteomic analysis of human prostasomes. Prostate 56:150–161. https://doi.org/10.1002/pros.10255
CAS
Article
PubMed
Google Scholar
Carlsson L, Ronquist G, Stridsberg M, Johansson L (1997) Motility stimulant effects of prostasome inclusion in swim-up medium on cryopreserved human spermatozoa. Arch Androl 38:215–221. https://doi.org/10.3109/01485019708994880
CAS
Article
PubMed
Google Scholar
Cross N, Mahasreshti P (1997) Prostasome fraction of human seminal plasma prevents sperm from becoming acrosomally responsive to the agonist progesterone. Arch Androl 39:30–44. https://doi.org/10.3109/01485019708987900
Article
Google Scholar
Crocitto LE, Korns D, Kretzner L et al (2004) Prostate cancer molecular markers GSTP1 and hTERT in expressed prostatic secretions as predictors of biopsy results. Urology 64:821–825. https://doi.org/10.1016/j.urology.2004.05.007
Article
PubMed
Google Scholar
Armstrong RN, Morgenstern R, Board PG (2017) Glutathione transferases. In: McQueen C (ed) Comprehensive toxicology, 3rd edn. Elsevier, Amsterdam, pp 326–362
Google Scholar
Maselli J, Hales BF, Chan P, Robaire B (2012) Exposure to bleomycin, etoposide, and cis-platinum alters rat sperm chromatin integrity and sperm head protein profile1. Biol Reprod 86:1–10. https://doi.org/10.1095/biolreprod.111.098616
CAS
Article
Google Scholar
Sun Z, Li S, Yu Y et al (2018) Alterations in epididymal proteomics and antioxidant activity of mice exposed to fluoride. Arch Toxicol 92:169–180. https://doi.org/10.1007/s00204-017-2054-2
CAS
Article
PubMed
Google Scholar
Knapen MFCM, Zusterzeel PLM, Peters WHM, Steegers EAP (1999) Glutathione and glutathione-related enzymes in reproduction: a review. Eur J Obstet Gynecol Reprod Biol 82:171–184. https://doi.org/10.1016/S0301-2115(98)00242-5
CAS
Article
PubMed
Google Scholar
Han D, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353:411–416. https://doi.org/10.1042/0264-6021:3530411
CAS
Article
PubMed
PubMed Central
Google Scholar
Jeulin C, Soufir JC, Weber P et al (1989) Catalase activity in human spermatozoa and seminal plasma. Gamete Res 24:185–196. https://doi.org/10.1002/mrd.1120240206
CAS
Article
PubMed
Google Scholar
O’Flaherty C, Rico de Souza A (2010) Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod 84:238–247. https://doi.org/10.1095/biolreprod.110.085712
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44. https://doi.org/10.1080/02699050500284218
CAS
Article
PubMed
Google Scholar
Chen W, Ni Y, Pan Y et al (2005) GABA, progesterone and zona pellucida activation of PLA 2 and regulation by MEK-ERK1/2 during acrosomal exocytosis in guinea pig spermatozoa. FEBS Lett 579:4692–4700. https://doi.org/10.1016/j.febslet.2005.06.090
CAS
Article
PubMed
Google Scholar
De Lamirande E, Gagnon C (2002) The extracellular signal-regulated kinase (ERK) pathway is involved in human sperm function and modulated by the superoxide anion. Mol Hum Reprod 8:124–135. https://doi.org/10.1093/molehr/8.2.124
Article
Google Scholar
Nixon B, Bielanowicz A, Anderson AL et al (2010) Elucidation of the signaling pathways that underpin capacitation-associated surface phosphotyrosine expression in mouse spermatozoa. J Cell Physiol 224:71–83. https://doi.org/10.1002/jcp.22090
CAS
Article
PubMed
Google Scholar
Almog T, Lazar S, Reiss N et al (2008) Identification of extracellular signal-regulated kinase 1/2 and p38 MAPK as regulators of human sperm motility and acrosome reaction and as predictors of poor spermatozoan quality. J Biol Chem 283:14479–14489. https://doi.org/10.1074/jbc.M710492200
CAS
Article
PubMed
Google Scholar
Plessis SS, Page C, Franken DR (2002) Extracellular signal-regulated kinase activation involved in human sperm-zona pellucida binding. Andrologia 34:55–59. https://doi.org/10.1046/j.0303-4569.2001.00475.x
Article
PubMed
Google Scholar
Elsby R, Kitteringham NR, Goldring CE et al (2003) Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J Biol Chem 278:22243–22249. https://doi.org/10.1074/jbc.M301211200
CAS
Article
PubMed
Google Scholar
Desmots F, Rissel M, Gilot D et al (2002) Pro-inflammatory cytokines tumor necrosis factor α and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem 277:17892–17900. https://doi.org/10.1074/jbc.M112351200
CAS
Article
PubMed
Google Scholar
Cho S, Lee YH, Park H et al (2001) Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem 276:12749–12755. https://doi.org/10.1074/jbc.M005561200
CAS
Article
PubMed
Google Scholar
Piaggi S, Raggi C, Corti A et al (2010) Glutathione transferase omega 1-1 (GSTO1-1) plays an anti-apoptotic role in cell resistance to cisplatin toxicity. Carcinogenesis 31:804–811. https://doi.org/10.1093/carcin/bgq031
CAS
Article
PubMed
Google Scholar
Awasthi YC, Sharma R, Cheng JZ et al (2003) Role of 4-hydroxynonenal in stress-mediated apoptosis signaling. Mol Asp Med 24:219–230. https://doi.org/10.1016/S0098-2997(03)00017-7
CAS
Article
Google Scholar
Bogaards JJP, Venekamp JC, Van Bladeren PJ (1997) Stereoselective conjugation of prostaglandin A2 and prostaglandin J2 with glutathione, catalyzed by the and P1-1. Chem Res Toxicol 10:310–317. https://doi.org/10.1021/tx9601770
CAS
Article
PubMed
Google Scholar
Kim EH, Surh YJ (2008) The role of 15-deoxy-Δ12,14-prostaglandin J2, an endogenous ligand of peroxisome proliferator-activated receptor γ, in tumor angiogenesis. Biochem Pharmacol 76:1544–1553. https://doi.org/10.1016/j.bcp.2008.07.043
CAS
Article
PubMed
Google Scholar
Straus DS, Pascual G, Li M et al (2002) 15-Deoxy-Delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci 97:4844–4849. https://doi.org/10.1073/pnas.97.9.4844
Article
Google Scholar
Perkins ND, Gilmore TD (2006) Good cop, bad cop: the different faces of NF-κB. Cell Death Differ 13:759–772. https://doi.org/10.1038/sj.cdd.4401838
CAS
Article
PubMed
Google Scholar
Townsend DM, Manevich Y, He L et al (2008) Novel role for glutathione S-transferase π. J Biol Chem 284:436–445. https://doi.org/10.1074/jbc.m805586200
Article
PubMed
Google Scholar
Pajaud J, Kumar S, Rauch C et al (2012) Regulation of signal transduction by glutathione transferases. Int J Hepatol. https://doi.org/10.1155/2012/137676
Article
PubMed
PubMed Central
Google Scholar
Richardson DR, Lok HC (2008) The nitric oxide-iron interplay in mammalian cells: transport and storage of dinitrosyl iron complexes. Biochim Biophys Acta 1780:638–651. https://doi.org/10.1016/j.bbagen.2007.12.009
CAS
Article
PubMed
Google Scholar
Cesareo E, Parker LJ, Pedersen JZ et al (2005) Nitrosylation of human glutathione transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo. J Biol Chem 280:42172–42180. https://doi.org/10.1074/jbc.M507916200
CAS
Article
PubMed
Google Scholar
Shaha C, Suri A, Talwar GP (1990) Induction of infertility in female rats after active immunization with 24 kD antigens from rat testes. Int J Androl 13:17–25. https://doi.org/10.1111/j.1365-2605.1990.tb00956.x
CAS
Article
PubMed
Google Scholar
Sutovsky P, Schatten G (1997) Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization1. Biol Reprod 56:1503–1512. https://doi.org/10.1095/biolreprod56.6.1503
CAS
Article
PubMed
Google Scholar
Yeste M (2013) Boar spermatozoa within the oviductal environment (III): Fertilisation. In: Bonet S, Casas I, Holt WV, Yeste M (eds) Boar reproduction, 1st edn. Springer, Heidelberg, pp 407–467
Chapter
Google Scholar
Aydos SE, Ph D, Taspinar M et al (2009) Association of CYP1A1 and glutathione S-transferase polymorphisms with male factor infertility. Fertil Steril 92:541–547. https://doi.org/10.1016/j.fertnstert.2008.07.017
CAS
Article
PubMed
Google Scholar
Vani GT, Mukesh N, Siva Prasad B et al (2010) Role of glutathione S-transferase Mu-1 (GSTM1) polymorphism in oligospermic infertile males. Andrologia 42:213–217. https://doi.org/10.1111/j.1439-0272.2009.00971.x
CAS
Article
Google Scholar
Kolesnikova LI, Kurashova NA, Bairova TA et al (2017) Role of glutathione-S-transferase family genes in male infertility. Bull Exp Biol Med 163:643–645. https://doi.org/10.1007/s10517-017-3869-9
CAS
Article
PubMed
Google Scholar
Safarinejad MR, Shafiei N, Safarinejad S (2010) The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J Hum Genet 55:565–570. https://doi.org/10.1038/jhg.2010.59
CAS
Article
PubMed
Google Scholar
Lakpour N, Mirfeizollahi A, Farivar S et al (2013) The association of seminal plasma antioxidant levels and sperm chromatin status with genetic variants of GSTM1 and GSTP1 (Ile105Val and Ala114Val) in infertile men with oligoasthenoteratozoospermia. Dis Markers 34:205–210. https://doi.org/10.3233/DMA-120954
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang M, Wang S, Wang W et al (2012) The glutathione-S-transferase gene polymorphisms (GSTM1 and GSTT1) and idiopathic male infertility risk: a meta-analysis. Gene 511:218–223. https://doi.org/10.1016/j.gene.2012.09.054
CAS
Article
PubMed
Google Scholar
Kan HP, Wu FL, Bin Guo W et al (2013) Null genotypes of GSTM1 and GSTT1 contribute to male factor infertility risk: a meta-analysis. Fertil Steril 99:690–696. https://doi.org/10.1016/j.fertnstert.2012.10.037
CAS
Article
PubMed
Google Scholar
Song X, Zhao Y, Cai Q et al (2013) Association of the glutathione S-transferases M1 and T1 polymorphism with male infertility: a meta-analysis. J Assist Reprod Genet 30:131–141. https://doi.org/10.1007/s10815-012-9907-7
Article
PubMed
Google Scholar
Aydemir B, Onaran I, Kiziler AR et al (2007) Increased oxidative damage of sperm and seminal plasma in men with idiopathic infertility is higher in patients with glutathione S-transferase Mu-1 null genotype. Asian J Androl 9:108–115. https://doi.org/10.1111/j.1745-7262.2007.00237.x
CAS
Article
PubMed
Google Scholar
Rubes J, Selevan SG, Sram RJ et al (2007) GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 625:20–28. https://doi.org/10.1016/j.mrfmmm.2007.05.012
CAS
Article
PubMed
Google Scholar
Paracchini V, Chang SS, Santella RM et al (2005) GSMT1 deletion modifies the levels of polycyclic aromatic hydrocarbon-DNA adducts in human sperm. Mutat Res Genet Toxicol Environ Mutagen 586:97–101. https://doi.org/10.1016/j.mrgentox.2005.06.008
CAS
Article
Google Scholar
Botta T, Blescia S, Martínez-Heredia J et al (2009) Identificación de diferencias proteómicas en muestras oligozoospérmicas. Rev Int Androl 7:14–19. https://doi.org/10.1016/S1698-031X(09)70257-2
Article
Google Scholar
Agarwal A, Sharma R, Durairajanayagam D et al (2015) Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol 13:1–22. https://doi.org/10.1186/s12958-015-0007-2
CAS
Article
Google Scholar
Intasqui P, Camargo M, Antoniassi MP et al (2016) Association between the seminal plasma proteome and sperm functional traits. Fertil Steril 105:617–628. https://doi.org/10.1016/j.fertnstert.2015.11.005
CAS
Article
PubMed
Google Scholar
Kwon WS, Oh SA, Kim YJ et al (2015) Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci Rep 5:1–10. https://doi.org/10.1038/srep13821
Article
Google Scholar
Allocati N, Masulli M, Di Ilio C, Federici L (2018) Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. https://doi.org/10.1038/s41389-017-0025-3
Article
PubMed
PubMed Central
Google Scholar
Pannala VR, Dash RK (2015) Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide. Free Radic Biol Med 78:42–55. https://doi.org/10.1016/j.freeradbiomed.2014.10.508
CAS
Article
PubMed
Google Scholar
Manevich Y, Feinstein SI, Fisher AB (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with GST. Proc Natl Acad Sci 101:3780–3785. https://doi.org/10.1073/pnas.0400181101
CAS
Article
PubMed
Google Scholar
Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303. https://doi.org/10.1016/j.bbagen.2012.11.020
CAS
Article
PubMed
Google Scholar
Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygenin the Fenton reaction. Free Radic Biol Med 22:885–888. https://doi.org/10.1016/S0891-5849(96)00432-7
CAS
Article
PubMed
Google Scholar