Skip to main content

Elucidation of protein interactions necessary for the maintenance of the BCR–ABL signaling complex


Many patients with chronic myeloid leukemia in deep remission experience return of clinical disease after withdrawal of tyrosine kinase inhibitors (TKIs). This suggests signaling of inactive BCR–ABL, which allows the survival of cancer cells, and relapse. We show that TKI treatment inhibits catalytic activity of BCR–ABL, but does not dissolve BCR–ABL core signaling complex, consisting of CRKL, SHC1, GRB2, SOS1, cCBL, p85a-PI3K, STS1 and SHIP2. Peptide microarray and co-immunoprecipitation results demonstrate that CRKL binds to proline-rich regions located in C-terminal, intrinsically disordered region of BCR–ABL, that SHC1 requires pleckstrin homology, src homology and tyrosine kinase domains of BCR–ABL for binding, and that BCR–ABL sequence motif located in disordered region around phosphorylated tyrosine 177 mediates binding of three core complex members, i.e., GRB2, SOS1, and cCBL. Further, SHIP2 binds to the src homology and tyrosine kinase domains of BCR–ABL and its inositol phosphatase activity contributes to BCR–ABL-mediated phosphorylation of SHC1. Together, this study characterizes protein–protein interactions within the BCR–ABL core complex and determines the contribution of particular BCR–ABL domains to downstream signaling. Understanding the structure and dynamics of BCR–ABL interactome is critical for the development of drugs targeting integrity of the BCR–ABL core complex.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Zhao X, Ghaffari S, Lodish H et al (2002) Structure of the BCR–ABL oncoprotein oligomerization domain. Nat Struct Biol 9:117–120.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Hantschel O (2012) Structure, regulation, signaling, and targeting of Abl kinases in cancer. Genes Cancer 3:436–446.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Voncken JW, Kaartinen V, Pattengale PK et al (1995) BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood 86:4603–4611

    CAS  Article  Google Scholar 

  4. 4.

    Hazlehurst LA, Bewry NN, Nair RR, Pinilla-Ibarz J (2009) Signaling networks associated with BCR–ABL-dependent transformation. Cancer Control J Moffitt Cancer Cent 16:100–107.

    Article  Google Scholar 

  5. 5.

    Skorski T, Bellacosa A, Nieborowska-Skorska M et al (1997) Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3 k/Akt-dependent pathway. EMBO J 16:6151–6161

    CAS  Article  Google Scholar 

  6. 6.

    Shuai K, Halpern J, ten Hoeve J et al (1996) Constitutive activation of STAT5 by the BCR–ABL oncogene in chronic myelogenous leukemia. Oncogene 13:247–254

    CAS  PubMed  Google Scholar 

  7. 7.

    Steelman LS, Pohnert SC, Shelton JG et al (2004) JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR–ABL in cell cycle progression and leukemogenesis. Leukemia 18:189–218.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Druker BJ, Tamura S, Buchdunger E et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of BCR–ABL positive cells. Nat Med 2:561–566

    CAS  Article  Google Scholar 

  9. 9.

    Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science 293:876–880.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Modugno M (2014) New resistance mechanisms for small molecule kinase inhibitors of Abl kinase. Drug Discov Today Technol 11:5–10.

    Article  PubMed  Google Scholar 

  11. 11.

    Weisberg E, Manley PW, Breitenstein W et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant BCR–ABL. Cancer Cell 7:129–141.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Shah NP, Nicoll JM, Branford S et al (2005) Molecular analysis of dasatinib resistance mechanisms in CML patients identifies novel BCR–ABL mutations predicted to retain sensitivity to imatinib: rationale for combination tyrosine kinase inhibitor therapy. Blood 106:1093

    Article  Google Scholar 

  13. 13.

    Hochhaus A, Baccarani M, Deininger M et al (2008) Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia 22:1200–1206.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Zhou T, Parillon L, Li F et al (2007) Crystal structure of the T315I mutant of Abl kinase. Chem Biol Drug Des 70:171–181.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Cortes JE, Kim D-W, Pinilla-Ibarz J et al (2013) A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 369:1783–1796.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Bewry NN, Nair RR, Emmons MF et al (2008) Stat3 contributes to resistance toward BCR–ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther 7:3169–3175.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Eide CA, Adrian LT, Tyner JW et al (2011) The ABL switch control inhibitor DCC-2036 is active against the chronic myeloid leukemia mutant BCR–ABLT315I and exhibits a narrow resistance profile. Cancer Res 71:3189–3195.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Corbin AS, Agarwal A, Loriaux M et al (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR–ABL activity. J Clin Invest 121:396–409.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Rousselot P, Charbonnier A, Cony-Makhoul P et al (2014) Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol Off J Am Soc Clin Oncol 32:424–430.

    CAS  Article  Google Scholar 

  20. 20.

    Mitra A, Sasikumar K, Parthasaradhi BVV, Radha V (2013) The tyrosine phosphatase TC48 interacts with and inactivates the oncogenic fusion protein BCR–ABL but not cellular Abl. Biochim Biophys Acta BBA Mol Basis Dis 1832:275–284.

    CAS  Article  Google Scholar 

  21. 21.

    Brehme M, Hantschel O, Colinge J et al (2009) Charting the molecular network of the drug target BCR–ABL. Proc Natl Acad Sci 106:7414–7419

    CAS  Article  Google Scholar 

  22. 22.

    Pendergast AM, Quilliam LA, Cripe LD et al (1993) BCR–ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75:175–185

    CAS  Article  Google Scholar 

  23. 23.

    Goga A, McLaughlin J, Afar DE et al (1995) Alternative signals to RAS for hematopoietic transformation by the BCR–ABL oncogene. Cell 82:981–988

    CAS  Article  Google Scholar 

  24. 24.

    Preyer M, Vigneri P, Wang JYJ (2011) Interplay between kinase domain autophosphorylation and F-actin binding domain in regulating imatinib sensitivity and nuclear import of BCR–ABL. PLoS One 6:e17020.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Coutinho S, Jahn T, Lewitzky M et al (2000) Characterization of Grb4, an adapter protein interacting with BCR–ABL. Blood 96:618–624

    CAS  Article  Google Scholar 

  26. 26.

    Preisinger C, Kolch W (2010) The BCR–ABL kinase regulates the actin cytoskeleton via a GADS/Slp-76/Nck1 adaptor protein pathway. Cell Signal 22:848–856.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Meyn MA, Wilson MB, Abdi FA et al (2006) Src family kinases phosphorylate the BCR–ABL SH3–SH2 region and modulate BCR–ABL transforming activity. J Biol Chem 281:30907–30916.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Ren R, Ye Z-S, Baltimore D (1994) Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev 8:783–795

    CAS  Article  Google Scholar 

  29. 29.

    Lewitzky M, Kardinal C, Gehring NH et al (2001) The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical P-X-X-P core motif. Oncogene 20:1052–1062.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Thien CB, Langdon WY (2001) Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2:294

    CAS  Article  Google Scholar 

  31. 31.

    Dombrosky-Ferlan PM, Corey SJ (1997) Yeast two-hybrid in vivo association of the Src kinase Lyn with the proto-oncogene product Cbl but not with the p85 subunit of PI 3-kinase. Oncogene 14:2019

    CAS  Article  Google Scholar 

  32. 32.

    Buday L, Khwaja A, Sipeki S et al (1996) Interactions of Cbl with two adaptor proteins, Grb2 and Crk, upon T cell activation. J Biol Chem 271:6159–6163

    CAS  Article  Google Scholar 

  33. 33.

    Donovan JA, Wange RL, Langdon WY, Samelson LE (1994) The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J Biol Chem 269:22921–22924

    CAS  PubMed  Google Scholar 

  34. 34.

    Meisner H, Conway BR, Hartley D, Czech MP (1995) Interactions of Cbl with Grb2 and phosphatidylinositol 3′-kinase in activated Jurkat cells. Mol Cell Biol 15:3571–3578

    CAS  Article  Google Scholar 

  35. 35.

    Panchamoorthy G, Fukazawa T, Miyake S et al (1996) p120 is a major substrate of tyrosine phosphorylation upon B cell antigen receptor stimulation and interacts in vivo with Fyn and Syk tyrosine kinases, Grb2 and Shc adaptors, and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 271:3187–3194

    CAS  Article  Google Scholar 

  36. 36.

    Bhat A, Kolibaba K, Oda T et al (1997) Interactions of CBL with BCR–ABL and CRKL in BCR–ABL-transformed myeloid cells. J Biol Chem 272:16170–16175

    CAS  Article  Google Scholar 

  37. 37.

    Johnson KJ, Griswold IJ, O’Hare T et al (2009) A BCR–ABL mutant lacking direct binding sites for the GRB2, CBL and CRKL adapter proteins fails to induce leukemia in mice. PLoS One 4:e7439.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Buday L, Downward J (1993) Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73:611–620.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Egan SE, Giddings BW, Brooks MW et al (1993) Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363:45.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Li N, Batzer A, Daly R et al (1993) Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363:85–88.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Rozakis-Adcock M, Fernley R, Wade J et al (1993) The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363:83–85.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Trb T, Choi WE, Wolf G et al (1995) Specificity of the PTB domain of Shc for β turn-forming pentapeptide motifs amino-terminal to phosphotyrosine. J Biol Chem 270:18205–18208.

    Article  Google Scholar 

  43. 43.

    McWHIRTER JR, Galasso DL, Wang JY (1993) A coiled-coil oligomerization domain of Bcr is essential for the transforming function of BCR–ABL oncoproteins. Mol Cell Biol 13:7587–7595

    CAS  Article  Google Scholar 

  44. 44.

    Brasher BB, Roumiantsev S, Van Etten RA (2001) Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain. Oncogene 20:7744–7752.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Grebien F, Hantschel O, Wojcik J et al (2011) Targeting the SH2-kinase interface in BCR–ABL inhibits leukemogenesis. Cell 147:306–319.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Oda T, Heaney C, Hagopian JR et al (1994) Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 269:22925–22928

    CAS  PubMed  Google Scholar 

  47. 47.

    ten Hoeve J, Arlinghaus RB, Guo JQ et al (1994) Tyrosine phosphorylation of CRKL in philadelphia + leukemia. Blood 84:1731–1736

    Article  Google Scholar 

  48. 48.

    Nichols GL, Raines MA, Vera JC et al (1994) Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood 84:2912–2918

    CAS  Article  Google Scholar 

  49. 49.

    Odai H, Sasaki K, Iwamatsu A et al (1997) Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and BCR–ABL. Blood 89:2745–2756

    CAS  Article  Google Scholar 

  50. 50.

    Wisniewski D, Strife A, Swendeman S et al (1999) A novel SH2-containing phosphatidylinositol 3, 4, 5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood 93:2707–2720

    CAS  Article  Google Scholar 

  51. 51.

    Skorski T, Kanakaraj P, Nieborowska-Skorska M et al (1995) Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86:726–736

    CAS  Article  Google Scholar 

  52. 52.

    Ren S, Xue F, Feng J, Skorski T (2005) Intrinsic regulation of the interactions between the SH3 domain of p85 subunit of phosphatidylinositol-3 kinase and the protein network of BCR/ABL oncogenic tyrosine kinase. Exp Hematol 33:1222–1228.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Sattler M, Mohi MG, Pride YB et al (2002) Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1:479–492

    CAS  Article  Google Scholar 

  54. 54.

    Mian AA, Baumann I, Liebermann M et al (2019) The phosphatase UBASH3B/Sts-1 is a negative regulator of BCR–ABL kinase activity and leukemogenesis. Leukemia.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Reckel S, Hamelin R, Georgeon S et al (2017) Differential signaling networks of BCR–ABL p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia 31:1502–1512.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Cutler JA, Tahir R, Sreenivasamurthy SK et al (2017) Differential signaling through p190 and p210 BCR–ABL fusion proteins revealed by interactome and phosphoproteome analysis. Leukemia 31:1513–1524.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Reckel S, Gehin C, Tardivon D et al (2017) Structural and functional dissection of the DH and PH domains of oncogenic BCR–ABL tyrosine kinase. Nat Commun.

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Suwa A, Yamamoto T, Sawada A et al (2009) Discovery and functional characterization of a novel small molecule inhibitor of the intracellular phosphatase, SHIP2. Br J Pharmacol 158:879–887.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Harrison-Findik D, Susa M, Varticovski L (1995) Association of phosphatidylinositol 3-kinase with SHC in chronic myelogeneous leukemia cells. Oncogene 10:1385–1391

    CAS  PubMed  Google Scholar 

  60. 60.

    Salgia R, Pisick E, Sattler M et al (1996) p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene. J Biol Chem 271:25198–25203

    CAS  Article  Google Scholar 

  61. 61.

    Warmuth M, Bergmann M, Priess A et al (1997) The Src family kinase Hck interacts with BCR–ABL by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J Biol Chem 272:33260–33270

    CAS  Article  Google Scholar 

  62. 62.

    Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Montague TG, Cruz JM, Gagnon JA et al (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Kunova Bosakova M, Nita A, Gregor T et al (2019) Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc Natl Acad Sci 116:4316–4325.

    CAS  Article  PubMed  Google Scholar 

Download references


This study was supported by Agency for Healthcare Research of the Czech Republic, project NV15-34405A. AN was supported by European Regional Development Fund OP RDE Project no. CZ.02.1.01/0.0/0.0/16_019/0000729.

Author information



Corresponding authors

Correspondence to Lukas Trantirek or Pavel Krejci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2867 kb)

Supplementary material 2 (DOCX 65 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gregor, T., Bosakova, M.K., Nita, A. et al. Elucidation of protein interactions necessary for the maintenance of the BCR–ABL signaling complex. Cell. Mol. Life Sci. 77, 3885–3903 (2020).

Download citation


  • Chronic myeloid leukemia
  • Signaling
  • Protein complex