Skip to main content

Advertisement

Log in

Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a chronic, frequently progressive condition that develops in response to excessive hepatocyte fat accumulation (i.e., steatosis) in the absence of significant alcohol consumption. Liver steatosis develops as a result of imbalanced lipid metabolism, driven largely by increased rates of de novo lipogenesis and hepatic fatty acid uptake and reduced fatty acid oxidation and/or disposal to the circulation. Fructose is a naturally occurring simple sugar, which is most commonly consumed in modern diets in the form of sucrose, a disaccharide comprised of one molecule of fructose covalently bonded with one molecule of glucose. A number of observational and experimental studies have demonstrated detrimental effects of dietary fructose consumption not only on diverse metabolic outcomes such as insulin resistance and obesity, but also on hepatic steatosis and NAFLD-related fibrosis. Despite the compelling evidence that excessive fructose consumption is associated with the presence of NAFLD and may even promote the development and progression of NAFLD to more clinically severe phenotypes, the molecular mechanisms by which fructose elicits effects on dysregulated liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. The aim of this review is to summarize the current research supporting a role for dietary fructose intake in the modulation of transcriptomic and epigenetic mechanisms underlying the pathogenesis of NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P (2018) Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 75(18):3313–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matteoni CA et al (1999) Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116(6):1413–1419

    Article  CAS  PubMed  Google Scholar 

  3. Rafiq N et al (2009) Long-term follow-up of patients with nonalcoholic fatty liver. Clin Gastroenterol Hepatol 7(2):234–238

    Article  PubMed  Google Scholar 

  4. Younossi Z et al (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15(1):11–20

    Article  PubMed  Google Scholar 

  5. Hagstrom H et al (2017) Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol 67(6):1265–1273

    Article  PubMed  Google Scholar 

  6. Charlton MR et al (2011) Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 141(4):1249–1253

    Article  PubMed  Google Scholar 

  7. Hazlehurst JM et al (2016) Non-alcoholic fatty liver disease and diabetes. Metabolism 65(8):1096–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Marco R et al (1999) Cause-specific mortality in type 2 diabetes. The verona diabetes study. Diabetes Care 22(5):756–761

    Article  PubMed  Google Scholar 

  9. Hossain N et al (2009) Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 7(11):1224–1229 (1229 e1-2)

    Article  CAS  PubMed  Google Scholar 

  10. Younossi ZM (2019) Non-alcoholic fatty liver disease—a global public health perspective. J Hepatol 70(3):531–544

    Article  PubMed  Google Scholar 

  11. Fabbrini E, Sullivan S, Klein S (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51(2):679–689

    Article  CAS  PubMed  Google Scholar 

  12. Younossi ZM et al (2012) Nonalcoholic fatty liver disease in lean individuals in the United States. Medicine (Baltimore) 91(6):319–327

    Article  Google Scholar 

  13. Cruz ACD et al (2014) 379 Characteristics and long-term prognosis of lean patients with nonalcoholic fatty liver disease. Gastroenterology 146(5):909

    Article  Google Scholar 

  14. Denkmayr L et al. (2018) Lean patients with non-alcoholic fatty liver disease have a severe histological phenotype similar to obese patients. J Clin Med 7(12): 562–574

    Article  PubMed Central  Google Scholar 

  15. Feldman A et al (2017) Liver-related mortality and morbidity of lean NAFLD is higher compared to overweight and obese NAFLD patients. J Hepatol 66(1):S149

    Article  Google Scholar 

  16. Hagstrom H et al (2018) Risk for development of severe liver disease in lean patients with nonalcoholic fatty liver disease: a long-term follow-up study. Hepatol Commun 2(1):48–57

    Article  PubMed  CAS  Google Scholar 

  17. Berardis S, Sokal E (2014) Pediatric non-alcoholic fatty liver disease: an increasing public health issue. Eur J Pediatr 173(2):131–139

    Article  CAS  PubMed  Google Scholar 

  18. Ajmera VH et al (2016) Gestational diabetes mellitus is strongly associated with non-alcoholic fatty liver disease. Am J Gastroenterol 111(5):658–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brumbaugh DE et al (2013) Intrahepatic fat is increased in the neonatal offspring of obese women with gestational diabetes. J Pediatr 162(5):930-6 e1

    Article  PubMed  CAS  Google Scholar 

  20. Rich NE et al (2018) Racial and ethnic disparities in nonalcoholic fatty liver disease prevalence, severity, and outcomes in the united states: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 16(2):198–210

    Article  PubMed  Google Scholar 

  21. Bambha K et al (2012) Ethnicity and nonalcoholic fatty liver disease. Hepatology 55(3):769–780

    Article  CAS  PubMed  Google Scholar 

  22. Browning JD et al (2004) Ethnic differences in the prevalence of cryptogenic cirrhosis. Am J Gastroenterol 99(2):292–298

    Article  PubMed  Google Scholar 

  23. Patel YA et al (2018) Risk factors for biopsy-proven advanced non-alcoholic fatty liver disease in the veterans health administration. Aliment Pharmacol Ther 47(2):268–278

    Article  CAS  PubMed  Google Scholar 

  24. Schwimmer JB et al (2009) Heritability of nonalcoholic fatty liver disease. Gastroenterology 136(5):1585–1592

    Article  PubMed  Google Scholar 

  25. Struben VM, Hespenheide EE, Caldwell SH (2000) Nonalcoholic steatohepatitis and cryptogenic cirrhosis within kindreds. Am J Med 108(1):9–13

    Article  CAS  PubMed  Google Scholar 

  26. Willner IR et al (2001) Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease. Am J Gastroenterol 96(10):2957–2961

    Article  CAS  PubMed  Google Scholar 

  27. Cui J et al (2016) Shared genetic effects between hepatic steatosis and fibrosis: a prospective twin study. Hepatology 64(5):1547–1558

    Article  CAS  PubMed  Google Scholar 

  28. Loomba R et al (2015) Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 149(7):1784–1793

    Article  PubMed  Google Scholar 

  29. Tarnoki AD et al (2012) Heritability of non-alcoholic fatty liver disease and association with abnormal vascular parameters: a twin study. Liver Int 32(8):1287–1293

    Article  CAS  PubMed  Google Scholar 

  30. Palmer ND et al (2013) Characterization of European ancestry nonalcoholic fatty liver disease-associated variants in individuals of African and Hispanic descent. Hepatology 58(3):966–975

    Article  CAS  PubMed  Google Scholar 

  31. Speliotes EK et al (2011) Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 7(3):e1001324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wagenknecht LE et al (2009) Correlates and heritability of nonalcoholic fatty liver disease in a minority cohort. Obesity (Silver Spring) 17(6):1240–1246

    CAS  Google Scholar 

  33. Eslam M, George J (2016) Genetic and epigenetic mechanisms of NASH. Hepatol Int 10(3):394–406

    Article  PubMed  Google Scholar 

  34. Sookoian S, Pirola CJ (2017) Genetic predisposition in nonalcoholic fatty liver disease. Clin Mol Hepatol 23(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  35. Parry SA, Hodson L (2017) Influence of dietary macronutrients on liver fat accumulation and metabolism. J Investig Med 65(8):1102–1115

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jensen T et al (2018) Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol 68(5):1063–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stanhope KL et al (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119(5):1322–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tappy L, Le KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90(1):23–46

    Article  CAS  PubMed  Google Scholar 

  39. Moore JB, Fielding BA (2016) Sugar and metabolic health: is there still a debate? Curr Opin Clin Nutr Metab Care 19(4):303–309

    Article  CAS  PubMed  Google Scholar 

  40. World Health Organization (2015) Guideline: sugars intake for adults and children. Geneva, Switzerland. pp 1–49

  41. Johnson RK et al (2009) Dietary sugars intake and cardiovascular health: a scientific statement from the American heart association. Circulation 120(11):1011–1020

    Article  CAS  PubMed  Google Scholar 

  42. Alwahsh SM, Gebhardt R (2017) Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol 91(4):1545–1563

    Article  CAS  PubMed  Google Scholar 

  43. Basaranoglu M et al (2013) Fructose as a key player in the development of fatty liver disease. World J Gastroenterol 19(8):1166–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DiNicolantonio JJ, Subramonian AM, O’Keefe JH (2017) Added fructose as a principal driver of non-alcoholic fatty liver disease: a public health crisis. Open Heart 4(2):e000631

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jegatheesan P, De Bandt JP (2017) Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients 9(3): 230–243

    Article  PubMed Central  CAS  Google Scholar 

  46. Lim JS et al (2010) The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7(5):251–264

    Article  CAS  PubMed  Google Scholar 

  47. Ter Horst KW, Serlie MJ (2017) Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients 9(9): 981–1001

    Article  PubMed Central  CAS  Google Scholar 

  48. Wiernsperger N, Geloen A, Rapin JR (2010) Fructose and cardiometabolic disorders: the controversy will, and must, continue. Clinics (Sao Paulo) 65(7):729–738

    Article  Google Scholar 

  49. Zelber-Sagi S et al (2007) Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study. J Hepatol 47(5):711–717

    Article  CAS  PubMed  Google Scholar 

  50. Assy N et al (2008) Soft drink consumption linked with fatty liver in the absence of traditional risk factors. Can J Gastroenterol 22(10):811–816

    Article  PubMed  PubMed Central  Google Scholar 

  51. Abid A et al (2009) Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J Hepatol 51(5):918–924

    Article  CAS  PubMed  Google Scholar 

  52. Ouyang X et al (2008) Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 48(6):993–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abdelmalek MF et al (2010) Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51(6):1961–1971

    Article  CAS  PubMed  Google Scholar 

  54. Mosca A et al (2017) Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. J Hepatol 66(5):1031–1036

    Article  CAS  PubMed  Google Scholar 

  55. Hochuli M et al (2014) Sugar-sweetened beverages with moderate amounts of fructose, but not sucrose, induce Fatty Acid synthesis in healthy young men: a randomized crossover study. J Clin Endocrinol Metab 99(6):2164–2172

    Article  CAS  PubMed  Google Scholar 

  56. Schwimmer JB et al (2019) Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA 321(3):256–265

    Article  PubMed  PubMed Central  Google Scholar 

  57. Walker WA, Blackburn G (2004) Symposium introduction: nutrition and gene regulation. J Nutr 134(9):2434S–2436S

    Article  CAS  PubMed  Google Scholar 

  58. Matsuda T et al (1990) Regulation of L-type pyruvate kinase gene expression by dietary fructose in normal and diabetic rats. J Biochem 107(4):655–660

    Article  CAS  PubMed  Google Scholar 

  59. Munnich A et al (1987) Differential effects of glucose and fructose on liver L-type pyruvate kinase gene expression in vivo. J Biol Chem 262(35):17065–17071

    CAS  PubMed  Google Scholar 

  60. Fiebig R et al (1998) Exercise training down-regulates hepatic lipogenic enzymes in meal-fed rats: fructose versus complex-carbohydrate diets. J Nutr 128(5):810–817

    Article  CAS  PubMed  Google Scholar 

  61. Nagai Y et al (2002) Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha. Am J Physiol Endocrinol Metab 282(5):E1180–E1190

    Article  CAS  PubMed  Google Scholar 

  62. Pagliassotti MJ, Wei Y, Bizeau ME (2003) Glucose-6-phosphatase activity is not suppressed but the mRNA level is increased by a sucrose-enriched meal in rats. J Nutr 133(1):32–37

    Article  CAS  PubMed  Google Scholar 

  63. Zhang P et al (2017) Beraprost sodium, a prostacyclin analogue, reduces fructose-induced hepatocellular steatosis in mice and in vitro via the microRNA-200a and SIRT1 signaling pathway. Metabolism 73:9–21

    Article  CAS  PubMed  Google Scholar 

  64. Fisher FM et al (2017) A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol Metab 6(1):14–21

    Article  CAS  PubMed  Google Scholar 

  65. Grasselli E et al (2019) Excess fructose and fatty acids trigger a model of nonalcoholic fatty liver disease progression in vitro: protective effect of the flavonoid silybin. Int J Mol Med 44(2):705–712

    CAS  PubMed  Google Scholar 

  66. Baldini F et al (2019) Biomechanics of cultured hepatic cells during different steatogenic hits. J Mech Behav Biomed Mater 97:296–305

    Article  PubMed  Google Scholar 

  67. Marinho TS et al (2019) Beneficial effects of intermittent fasting on steatosis and inflammation of the liver in mice fed a high-fat or a high-fructose diet. Nutrition 65:103–112

    Article  CAS  PubMed  Google Scholar 

  68. Maia-Ceciliano TC et al (2019) The deficiency and the supplementation of vitamin D and liver: lessons of chronic fructose-rich diet in mice. J Steroid Biochem Mol Biol 192:105399

    Article  CAS  PubMed  Google Scholar 

  69. Miyazaki M et al (2004) Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J Biol Chem 279(24):25164–25171

    Article  CAS  PubMed  Google Scholar 

  70. Clayton ZE et al (2015) Early life exposure to fructose alters maternal, fetal and neonatal hepatic gene expression and leads to sex-dependent changes in lipid metabolism in rat offspring. PLoS One 10(11):e0141962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kohli R et al (2010) High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 52(3):934–944

    Article  CAS  PubMed  Google Scholar 

  72. Jensen VS et al (2018) Dietary fat stimulates development of NAFLD more potently than dietary fructose in Sprague-Dawley rats. Diabetol Metab Syndr 10:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hendriks HF et al (1985) Perisinusoidal fat-storing cells are the main vitamin A storage sites in rat liver. Exp Cell Res 160(1):138–149

    Article  CAS  PubMed  Google Scholar 

  74. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275(4):2247–2250

    Article  CAS  PubMed  Google Scholar 

  75. Marcher AB et al (2019) Transcriptional regulation of hepatic stellate cell activation in NASH. Sci Rep 9(1):2324

    Article  PubMed  PubMed Central  Google Scholar 

  76. Koo HY et al (2008) Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim Biophys Acta 1782(5):341–348

    Article  CAS  PubMed  Google Scholar 

  77. Softic S et al (2017) Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest 127(11):4059–4074

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hirahatake KM et al (2011) Comparative effects of fructose and glucose on lipogenic gene expression and intermediary metabolism in HepG2 liver cells. PLoS One 6(11):e26583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  80. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  81. Behm-Ansmant I, Rehwinkel J, Izaurralde E (2006) MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol 71:523–530

    Article  CAS  PubMed  Google Scholar 

  82. Alles J et al (2019) An estimate of the total number of true human miRNAs. Nucleic Acids Res 47(7):3353–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Friedman RC et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  85. Gamazon ER et al (2013) A genome-wide integrative study of microRNAs in human liver. BMC Genomics 14:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Szabo G, Bala S (2013) MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10(9):542–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Enache LS et al (2014) Circulating RNA molecules as biomarkers in liver disease. Int J Mol Sci 15(10):17644–17666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leti F et al (2015) High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis. Transl Res 166(3):304–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cheung O et al (2008) Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48(6):1810–1820

    Article  CAS  PubMed  Google Scholar 

  90. Feng YY et al (2014) Aberrant hepatic microRNA expression in nonalcoholic fatty liver disease. Cell Physiol Biochem 34(6):1983–1997

    Article  CAS  PubMed  Google Scholar 

  91. Pirola CJ et al (2015) Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut 64(5):800–812

    Article  CAS  PubMed  Google Scholar 

  92. Alisi A et al (2011) Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease. Lab Invest 91(2):283–293

    Article  CAS  PubMed  Google Scholar 

  93. Sud N et al (2017) Aberrant expression of microRNA induced by high-fructose diet: implications in the pathogenesis of hyperlipidemia and hepatic insulin resistance. J Nutr Biochem 43:125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hanouskova B et al (2019) High-fructose drinks affect microRNAs expression differently in lean and obese mice. J Nutr Biochem 68:42–50

    Article  CAS  PubMed  Google Scholar 

  95. Niculescu MD, Zeisel SH (2002) Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 132(8 Suppl):2333S–2335S

    Article  CAS  PubMed  Google Scholar 

  96. Zhang N (2015) Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim Nutr 1(3):144–151

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ohashi K et al (2015) High fructose consumption induces DNA methylation at PPARalpha and CPT1A promoter regions in the rat liver. Biochem Biophys Res Commun 468(1–2):185–189

    Article  CAS  PubMed  Google Scholar 

  98. Yamazaki M et al (2016) Fructose consumption induces hypomethylation of hepatic mitochondrial DNA in rats. Life Sci 149:146–152

    Article  CAS  PubMed  Google Scholar 

  99. Crescenzo R et al (2013) Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. Eur J Nutr 52(2):537–545

    Article  CAS  PubMed  Google Scholar 

  100. Jaiswal N et al (2015) Fructose-induced ROS generation impairs glucose utilization in L6 skeletal muscle cells. Free Radic Res 49(9):1055–1068

    Article  CAS  PubMed  Google Scholar 

  101. Lanaspa MA et al (2012) Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem 287(48):40732–40744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim H et al. (2019) Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease. Cell Mol Life Sci 76(21):4341–4351

    Article  CAS  PubMed  Google Scholar 

  103. Gutierrez Sanchez LH et al (2018) Perinatal nutritional reprogramming of the epigenome promotes subsequent development of nonalcoholic steatohepatitis. Hepatol Commun 2(12):1493–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jang C et al (2018) The small intestine converts dietary fructose into glucose and organic acids. Cell Metab 27(2):351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bleich SN et al (2009) Increasing consumption of sugar-sweetened beverages among US adults: 1988–1994 to 1999–2004. Am J Clin Nutr 89(1):372–381

    Article  CAS  PubMed  Google Scholar 

  106. Han E, Powell LM (2013) Consumption patterns of sugar-sweetened beverages in the United States. J Acad Nutr Diet 113(1):43–53

    Article  PubMed  PubMed Central  Google Scholar 

  107. Johnson RJ et al (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86(4):899–906

    CAS  PubMed  Google Scholar 

  108. Marriott BP, Cole N, Lee E (2009) National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr 139(6):1228S–1235S

    Article  CAS  PubMed  Google Scholar 

  109. Rippe JM et al (2017) What is the appropriate upper limit for added sugars consumption? Nutr Rev 75(1):18–36

    Article  PubMed  Google Scholar 

  110. White JS (2013) Challenging the fructose hypothesis: new perspectives on fructose consumption and metabolism. Adv Nutr 4(2):246–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Newens KJ, Walton J (2016) A review of sugar consumption from nationally representative dietary surveys across the world. J Hum Nutr Diet 29(2):225–240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Drs. Gabriel Q. Shaibi (Arizona State University) and Richard M. Watanabe (University of Southern California) for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna K. DiStefano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiStefano, J.K. Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis. Cell. Mol. Life Sci. 77, 2079–2090 (2020). https://doi.org/10.1007/s00018-019-03390-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03390-0

Keywords

Navigation