Skip to main content
Log in

Genetic deletion of a short fragment of glucokinase in rabbit by CRISPR/Cas9 leading to hyperglycemia and other typical features seen in MODY-2

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Glucokinase (GCK) is a key enzyme in glucose sensing and glycemic regulation. In humans, mutations in the GCK gene cause maturity-onset diabetes of the young 2 (MODY-2), a disease that is characterized by an early-onset and persistent hyperglycemia. It is known that Gck knockout (KO) is lethal in mice with Gck KO mice dying within 2 weeks after birth. Therefore, Gck KO mice are not suitable for preclinical study and have limited suitability to study the pathophysiological role of glucokinase in vivo. Here, we report the generation of a novel rabbit with a non-frameshift mutation of GCK gene (GCK-NFS) by cytoplasm microinjection of Cas9 mRNA and gRNA. These GCK-NFS rabbits showed typical features of MODY-2 including hyperglycemia and glucose intolerance with similar survival rate and weight compared to wild-type (WT) rabbits. The diabetic phenotype including pancreatic and renal dysfunction was also found in the F1-generation rabbits, indicating that the genetic modification is germline transmissible. Treatment of GCK-NFS rabbit with glimepiride successfully reduced the fasting blood glucose drastically and improved its islet function. In conclusion, this novel GCK mutant rabbit generated with the CRISPR/Cas9 system mimics most, if not all, histopathological and functional defects seen in MODY-2 patients such as hyperglycemia and will be a valuable rabbit model for preclinical studies and drug screening for diabetes as well as for studying the pathophysiological role of glucokinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ellard S, Bellanne-Chantelot C, Hattersley AT, European Molecular Genetics Quality Network MG (2008) Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 51:546–553

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Matschinsky F, Liang Y, Kesavan P, Wang L, Froguel P, Velho G, Cohen D, Permutt MA, Tanizawa Y, Jetton TL et al (1993) Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Investig 92:2092–2098

    CAS  PubMed  Google Scholar 

  3. Dimitriadis G, Boutati E, Raptis SA (2007) The importance of adipose tissue in diabetes pathophysiology and treatment. Hormone Metab Res 39:705–706

    CAS  Google Scholar 

  4. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, Cooper DN (2009) The human gene mutation database: 2008 update. Genome Med 1:13

    PubMed  PubMed Central  Google Scholar 

  5. Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanne-Chantelot C, Ellard S, Gloyn AL (2009) Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 30:1512–1526

    CAS  PubMed  Google Scholar 

  6. Bali D, Svetlanov A, Lee HW, Fusco-DeMane D, Leiser M, Li B, Barzilai N, Surana M, Hou H, Fleischer N et al (1995) Animal model for maturity-onset diabetes of the young generated by disruption of the mouse glucokinase gene. J Biol Chem 270:21464–21467

    CAS  PubMed  Google Scholar 

  7. Grupe A, Hultgren B, Ryan A, Ma YH, Bauer M, Stewart TA (1995) Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell 83:69–78

    CAS  PubMed  Google Scholar 

  8. Terauchi Y, Sakura H, Yasuda K, Iwamoto K, Takahashi N, Ito K, Kasai H, Suzuki H, Ueda O, Kamada N et al (1995) Pancreatic beta-cell-specific targeted disruption of glucokinase gene. Diabetes mellitus due to defective insulin secretion to glucose. J Biol Chem 270:30253–30256

    CAS  PubMed  Google Scholar 

  9. Ferre T, Pujol A, Riu E, Bosch F, Valera A (1996) Correction of diabetic alterations by glucokinase. Proc Natl Acad Sci USA 93:7225–7230

    CAS  PubMed  Google Scholar 

  10. Ferre T, Riu E, Bosch F, Valera A (1996) Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. FASEB J 10:1213–1218

    CAS  PubMed  Google Scholar 

  11. Hariharan N, Farrelly D, Hagan D, Hillyer D, Arbeeny C, Sabrah T, Treloar A, Brown K, Kalinowski S, Mookhtiar K (1997) Expression of human hepatic glucokinase in transgenic mice liver results in decreased glucose levels and reduced body weight. Diabetes 46:11–16

    CAS  PubMed  Google Scholar 

  12. Niswender KD, Postic C, Jetton TL, Bennett BD, Piston DW, Efrat S, Magnuson MA (1997) Cell-specific expression and regulation of a glucokinase gene locus transgene. J Biol Chem 272:22564–22569

    CAS  PubMed  Google Scholar 

  13. Zhang YL, Tan XH, Xiao MF, Li H, Mao YQ, Yang X, Tan HR (2004) Establishment of liver specific glucokinase gene knockout mice: a new animal model for screening anti-diabetic drugs. Acta Pharmacol Sin 25:1659–1665

    CAS  PubMed  Google Scholar 

  14. Gu Y, Mao Y, Li H, Zhao S, Yang Y, Gao H, Yu J, Zhang X, Irwin DM, Niu G et al (2011) Long-term renal changes in the liver-specific glucokinase knockout mouse: implications for renal disease in maturity-onset diabetes of the young 2. Transl Res 157:111–116

    CAS  PubMed  Google Scholar 

  15. Postic C, Shiota M, Magnuson MA (2001) Cell-specific roles of glucokinase in glucose homeostasis. Recent Prog Horm Res 56:195–217

    CAS  PubMed  Google Scholar 

  16. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, Magnuson MA (1999) Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274:305–315

    CAS  PubMed  Google Scholar 

  17. Bosze Z, Hiripi L, Carnwath JW, Niemann H (2003) The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Res 12:541–553

    CAS  PubMed  Google Scholar 

  18. Wang Y, Fan N, Song J, Zhong J, Guo X, Tian W, Zhang Q, Cui F, Li L, Newsome PN et al (2014) Generation of knockout rabbits using transcription activator-like effector nucleases. Cell Regen 3:3

    PubMed  PubMed Central  Google Scholar 

  19. Song Y, Yuan L, Wang Y, Chen M, Deng J, Lv Q, Sui T, Li Z, Lai L (2016) Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cellular Mol Life Sci CMLS 73:2959–2968

    CAS  PubMed  Google Scholar 

  20. Song Y, Liu T, Wang Y, Deng J, Chen M, Yuan L, Lu Y, Xu Y, Yao H, Li Z et al (2017) Mutation of the Sp1 binding site in the 5’ flanking region of SRY causes sex reversal in rabbits. Oncotarget 8:38176–38183

    PubMed  PubMed Central  Google Scholar 

  21. Yuan L, Yao H, Xu Y, Chen M, Deng J, Song Y, Sui T, Wang Y, Huang Y, Li Z et al (2017) CRISPR/Cas9-mediated mutation of alphaA-crystallin gene induces congenital cataracts in rabbits. Investig Ophthalmol Visual Sci 58:BIO34–BIO41

    CAS  Google Scholar 

  22. Hayashi H, Sato Y, Li Z, Yamamura K, Yoshizawa T, Yamagata K (2015) Roles of hepatic glucokinase in intertissue metabolic communication: examination of novel liver-specific glucokinase knockout mice. Biochem Biophys Res Commun 460:727–732

    CAS  PubMed  Google Scholar 

  23. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256

    CAS  PubMed  Google Scholar 

  24. Latti BR, Birajdar SB, Latti RG (2015) Periodic acid schiff-diastase as a key in exfoliative cytology in diabetics: a pilot study. J Oral Maxillofac Pathol JOMFP 19:188–191

    PubMed  Google Scholar 

  25. Gruber HE (1992) Adaptations of Goldner’s Masson trichrome stain for the study of undecalcified plastic embedded bone. Biotech Histochem 67:30–34

    CAS  PubMed  Google Scholar 

  26. Bergmann B, Molne J, Gjertsson I (2015) The bone-inflammation-cartilage (BIC) stain: a novel staining method combining Safranin O and Van Gieson’s Stains. J Histochem Cytochem 63:737–740

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Awale R, Maji R, Patil P, Lingiah R, Mukhopadhyay AK, Sharma S (2017) Toluidine blue: rapid and simple malaria parasite screening and species identification. Pan Afr Med J 28:27

    PubMed  PubMed Central  Google Scholar 

  28. Iynedjian PB (1993) Mammalian glucokinase and its gene. Biochem J 293(Pt 1):1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fajans SS (1990) Scope and heterogeneous nature of MODY. Diabetes Care 13:49–64

    CAS  PubMed  Google Scholar 

  30. Fajans SS (1987) MODY—a model for understanding the pathogeneses and natural history of type II diabetes. Hormone Metab Res 19:591–599

    CAS  Google Scholar 

  31. Zerbini G, Maestroni S, Turco V, Secchi A (2017) The eye as a window to the microvascular complications of diabetes. Dev Ophthalmol 60:6–15

    PubMed  Google Scholar 

  32. Mishra SC, Chhatbar KC, Kashikar A, Mehndiratta A (2017) Diabetic foot. BMJ 359:j5064

    PubMed  PubMed Central  Google Scholar 

  33. Raghav A, Khan ZA, Labala RK, Ahmad J, Noor S, Mishra BK (2018) Financial burden of diabetic foot ulcers to world: a progressive topic to discuss always. Therap Adv Endocrinol Metab 9:29–31

    Google Scholar 

  34. Bennett K, James C, Mutair A, Al-Shaikh H, Sinani A, Hussain K (2011) Four novel cases of permanent neonatal diabetes mellitus caused by homozygous mutations in the glucokinase gene. Pediatr Diabetes 12:192–196

    PubMed  Google Scholar 

  35. Yki-Jarvinen H (2001) Combination therapies with insulin in type 2 diabetes. Diabetes Care 24:758–767

    CAS  PubMed  Google Scholar 

  36. American Diabetes A (2000) Implications of the United Kingdom prospective diabetes study. Diabetes Care 23(Suppl 1):S27–31

    Google Scholar 

  37. Singh P, Schimenti JC, Bolcun-Filas E (2015) A mouse geneticist’s practical guide to CRISPR applications. Genetics 199:1–15

    CAS  PubMed  Google Scholar 

  38. Yen ST, Zhang M, Deng JM, Usman SJ, Smith CN, Parker-Thornburg J, Swinton PG, Martin JF, Behringer RR (2014) Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev Biol 393:3–9

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fajans SS, Bell GI (2011) MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care 34:1878–1884

    PubMed  PubMed Central  Google Scholar 

  40. Brenner D, Gerstberger R (1999) Functional receptors in the avian kidney for C-type natriuretic peptide. Endocrinology 140:1622–1629

    CAS  PubMed  Google Scholar 

  41. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S (1983) Measurement of muscle mass in humans: validity of the 24-h urinary creatinine method. Am J Clin Nutr 37:478–494

    CAS  PubMed  Google Scholar 

  42. Derosa G, Gaddi AV, Piccinni MN, Salvadeo S, Ciccarelli L, Fogari E, Ghelfi M, Ferrari I, Cicero AF (2006) Differential effect of glimepiride and rosiglitazone on metabolic control of type 2 diabetic patients treated with metformin: a randomized, double-blind, clinical trial. Diabetes Obes Metab 8:197–205

    CAS  PubMed  Google Scholar 

  43. Wang M, Gao F, Xue YM, Han YJ, Fu XJ, He FY (2011) Effect of short-term intensive therapy with glimepiride and metformin in newly diagnosed type 2 diabetic patients. Nan fang yi ke da xue xue bao J South Med Univ 31:564–566

    CAS  Google Scholar 

  44. Bailey CJ, Turner RC (1996) Metformin. N Engl J Med 334:574–579

    CAS  PubMed  Google Scholar 

  45. Cusi K, Consoli A, DeFronzo RA (1996) Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 81:4059–4067

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Peiran Hu for excellent technical assistance at the Embryo Engineering Center. This study was financially supported by the National Key Research and Development Program of China Stem Cell and Translational Research (2017YFA0105101). The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030501, XDA16030503), Guangdong Province science and technology plan project (2014B020225003). China Postdoctoral Science Foundation Funded Project (2018M641784). China Postdoctoral Science Foundation Funded Project (2018M641784).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangxue Lai or Zhanjun Li.

Ethics declarations

Conflict of interest

No conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Sui, T., Zhang, Y. et al. Genetic deletion of a short fragment of glucokinase in rabbit by CRISPR/Cas9 leading to hyperglycemia and other typical features seen in MODY-2. Cell. Mol. Life Sci. 77, 3265–3277 (2020). https://doi.org/10.1007/s00018-019-03354-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03354-4

Keywords

Navigation