Moloney EB, de Winter F, Verhaagen J (2014) ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front Neurosci 8:1–18. https://doi.org/10.3389/fnins.2014.00252
Article
Google Scholar
Fischer LR, Culver DG, Tennant P et al (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240. https://doi.org/10.1016/j.expneurol.2003.10.004
Article
PubMed
Google Scholar
Dadon-Nachum M, Melamed E, Offen D (2011) The “Dying-Back” phenomenon of motor neurons in ALS. J Mol Neurosci 43:470–477. https://doi.org/10.1007/s12031-010-9467-1
CAS
Article
PubMed
Google Scholar
Just-Borràs L, Hurtado E, Cilleros-Mañé V et al (2019) Overview of Impaired BDNF signaling, their coupled downstream serine-threonine kinases and SNARE/SM complex in the neuromuscular junction of the amyotrophic lateral sclerosis model SOD1-G93A mice. Mol Neurobiol. https://doi.org/10.1007/s12035-019-1550-1
Article
PubMed
Google Scholar
Cleveland DW, Williamson TL (1999) Slowing of axonal transport is a very early event in the toxicity ofALS–linked SOD1 mutants to motor neurons. Nat Neurosci 2:50–56. https://doi.org/10.1038/4553
Article
PubMed
Google Scholar
Zhang B, Tu P, Abtahian F et al (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 139:1307–1315
CAS
Article
PubMed
PubMed Central
Google Scholar
Park KHJ, Vincent I (2008) Presymptomatic biochemical changes in hindlimb muscle of G93A human Cu/Zn superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 1782:462–468. https://doi.org/10.1016/J.BBADIS.2008.04.001
CAS
Article
Google Scholar
Dupuis L, Gonzalez De Aguilar J-L, Echaniz-Laguna A et al (2009) Muscle mitochondrial uncoupling dismantles neuromuscular junction and triggers distal degeneration of motor neurons. PLoS One 4:1–12. https://doi.org/10.1371/journal.pone.0005390
CAS
Article
Google Scholar
Schmidt ERE, Pasterkamp RJ, van den Berg LH (2009) Axon guidance proteins: novel therapeutic targets for ALS? Prog Neurobiol 88:286–301. https://doi.org/10.1016/J.PNEUROBIO.2009.05.004
CAS
Article
PubMed
Google Scholar
Boyer JG, Ferrier A, Kothary R (2013) More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases. Front Physiol 4:1–45. https://doi.org/10.3389/fphys.2013.00356
Article
Google Scholar
Matthews VB, Åström M-B, Chan MHS et al (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52:1409–1418. https://doi.org/10.1007/s00125-009-1364-1
CAS
Article
PubMed
Google Scholar
Hurtado E, Cilleros V, Nadal L et al (2017) Muscle contraction regulates BDNF/TrkB signaling to modulate synaptic function through presynaptic cPKCα and cPKCβI. Front Mol Neurosci 10:1–22. https://doi.org/10.3389/fnmol2017.00147
CAS
Article
Google Scholar
Balkowiec A, Katz DM (2000) Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neurosci 20:7417–7423
CAS
Article
PubMed
PubMed Central
Google Scholar
Udina E, Cobianchi S, Allodi I, Navarro X (2011) Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann Anat Anat Anzeiger 193:347–353. https://doi.org/10.1016/j.aanat.2011.02.012
CAS
Article
Google Scholar
Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10:86–98. https://doi.org/10.1101/lm.54603
Article
PubMed
PubMed Central
Google Scholar
Mantilla CB, Stowe JM, Sieck DC et al (2014) TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions. J Appl Physiol 117:910–920. https://doi.org/10.1152/japplphysiol.01386.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Nadal L, Garcia N, Hurtado E et al (2016) Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction. Mol Brain 9:1–19. https://doi.org/10.1186/s13041-016-0248-9
CAS
Article
Google Scholar
Nadal L, Garcia N, Hurtado E et al (2017) Presynaptic muscarinic acetylcholine receptors and TrkB receptor cooperate in the elimination of redundant motor nerve terminals during development. Front Aging Neurosci 9:1–7. https://doi.org/10.3389/fnagi.2017.00024
CAS
Article
Google Scholar
Simó A, Cilleros-Mañé V, Just-Borràs L et al (2019) nPKCε mediates SNAP-25 phosphorylation of Ser-187 in basal conditions and after synaptic activity at the neuromuscular junction. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1462-5
Article
PubMed
Google Scholar
Simó A, Just-Borràs L, Cilleros-Mañé V et al (2018) BDNF-TrkB signaling coupled to nPKCε and cPKCβI modulate the phosphorylation of the exocytotic protein Munc18-1 during synaptic activity at the neuromuscular junction. Front Mol Neurosci 11:207–227. https://doi.org/10.3389/fnmol.2018.00207
CAS
Article
PubMed
PubMed Central
Google Scholar
Hurtado E, Cilleros V, Just L et al (2017) Synaptic activity and muscle contraction increases PDK1 and PKCβI phosphorylation in the presynaptic membrane of the neuromuscular junction. Front Mol Neurosci 10:1–13. https://doi.org/10.3389/fnmol.2017.00270
CAS
Article
Google Scholar
Turner BJ, Cheah IK, Macfarlane KJ et al (2003) Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J Neurochem 87:752–763. https://doi.org/10.1046/j.1471-4159.2003.02053.x
CAS
Article
PubMed
Google Scholar
Zhai J, Zhou W, Li J et al (2011) The in vivo contribution of motor neuron TrkB receptors to mutant SOD1 motor neuron disease. Hum Mol Genet 20:4116–4131. https://doi.org/10.1093/hmg/ddr335
CAS
Article
PubMed
PubMed Central
Google Scholar
Yanpallewar SU, Barrick CA, Buckley H et al (2012) Deletion of the BDNF truncated receptor TrkB.T1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. PLoS One 7:1–7. https://doi.org/10.1371/journal.pone.0039946
CAS
Article
Google Scholar
Berchtold NC, Chinn G, Chou M et al (2005) Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 133:853–861. https://doi.org/10.1016/J.NEUROSCIENCE.2005.03.026
CAS
Article
PubMed
Google Scholar
Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301. https://doi.org/10.1016/S0166-2236(02)02143-4
CAS
Article
PubMed
Google Scholar
Vaynman SS, Ying Z, Yin D, Gomez-Pinilla F (2006) Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res 1070:124–130. https://doi.org/10.1016/J.BRAINRES.2005.11.062
CAS
Article
PubMed
Google Scholar
Wu C-W, Chang Y-T, Yu L et al (2008) Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J Appl Physiol 105:1585–1594. https://doi.org/10.1152/japplphysiol.90775.2008
Article
PubMed
Google Scholar
Bello-Haas VD, Florence JM, Kloos AD et al (2007) A randomized controlled trial of resistance exercise in individuals with ALS. Neurology 68:2003–2007. https://doi.org/10.1212/01.wnl.0000264418.92308.a4
Article
PubMed
Google Scholar
Drory VE, Goltsman E, Reznik JG et al (2001) The value of muscle exercise in patients with amyotrophic lateral sclerosis. J Neurol Sci 191:133–137. https://doi.org/10.1016/S0022-510X(01)00610-4
CAS
Article
PubMed
Google Scholar
Pinto AC, Alves M, Nogueira A et al (1999) Can amyotrophic lateral sclerosis patients with respiratory insufficiency exercise? J Neurol Sci 169:69–75
CAS
Article
PubMed
Google Scholar
Kaspar BK, Frost LM, Christian L et al (2005) Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol 57:649–655. https://doi.org/10.1002/ana.20451
CAS
Article
PubMed
Google Scholar
Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT (2003) Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis. Ann Neurol 53:804–807. https://doi.org/10.1002/ana.10597
Article
PubMed
Google Scholar
McCrate ME, Kaspar BK (2008) Physical activity and neuroprotection in amyotrophic lateral sclerosis. Neuromol Med 10:108–117. https://doi.org/10.1007/s12017-008-8030-5
CAS
Article
Google Scholar
Liebetanz D, Hagemann K, von Lewinski F et al (2004) Extensive exercise is not harmful in amyotrophic lateral sclerosis. Eur J Neurosci 20:3115–3120. https://doi.org/10.1111/j.1460-9568.2004.03769.x
Article
PubMed
Google Scholar
Mahoney DJ, Rodriguez C, Devries M et al (2004) Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis. Muscle Nerve 29:656–662
Article
PubMed
Google Scholar
Veldink JH, Bär PR, Joosten EAJ et al (2003) Sexual differences in onset of disease and response to exercise in a transgenic model of ALS. Neuromusc Disord 13:737–743. https://doi.org/10.1016/S0960-8966(03)00104-4
CAS
Article
PubMed
Google Scholar
Deforges S, Branchu J, Biondi O et al (2009) Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis. J Physiol 587:3561–3571. https://doi.org/10.1113/jphysiol.2009.169748
CAS
Article
PubMed
PubMed Central
Google Scholar
Elbasiouny SM, Schuster JE (2011) The effect of training on motoneuron survival in amyotrophic lateral sclerosis: which motoneuron type is saved? Front Physiol. https://doi.org/10.3389/fphys.2011.00018
Article
PubMed
PubMed Central
Google Scholar
Frey D, Schneider C, Xu L et al (2000) Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 20:2534–2542. https://doi.org/10.1523/JNEUROSCI.20-07-02534.2000
CAS
Article
PubMed
PubMed Central
Google Scholar
Hegedus J, Putman CT, Tyreman N, Gordon T (2008) Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol 586:3337–3351. https://doi.org/10.1113/jphysiol.2007.149286
CAS
Article
PubMed
PubMed Central
Google Scholar
Pun S, Santos AF, Saxena S et al (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419. https://doi.org/10.1038/nn1653
CAS
Article
PubMed
Google Scholar
Grondard C, Biondi O, Pariset C et al (2008) Exercise-induced modulation of calcineurin activity parallels the time course of myofibretransitions. J Cell Physiol 2008:126–135. https://doi.org/10.1002/jcp.21168
CAS
Article
Google Scholar
Ferrante RJ, Klein AM, Dedeoglu A, Beal MF (2001) Therapeutic efficacy of EGb761 (Gingko biloba extract) in a transgenic mouse model of amyotrophic lateral sclerosis. J Mol Neurosci 17:89–96. https://doi.org/10.1385/JMN:17:1:89
CAS
Article
PubMed
Google Scholar
McCombe PA, Henderson RD (2010) Effects of gender in amyotrophic lateral sclerosis. Gend Med 7:557–570. https://doi.org/10.1016/j.genm.2010.11.010
Article
PubMed
Google Scholar
Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR J 43:207–213. https://doi.org/10.1093/ilar.43.4.207
CAS
Article
PubMed
Google Scholar
Snedecor GW, Cochran WG (1989) Statistical methods applied to experiments in agriculture and biology, 8th edn. Iowa State University Press, Ames
Google Scholar
Loeffler J-P, Picchiarelli G, Dupuis L, Gonzalez De Aguilar J-L (2016) The role of skeletal muscle in amyotrophic lateral sclerosis. Brain Pathol 26:227–236. https://doi.org/10.1111/bpa.12350
Article
PubMed
PubMed Central
Google Scholar
Obis T, Hurtado E, Nadal L et al (2015) The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction. Mol Brain 8:1–16. https://doi.org/10.1186/s13041-015-0171-5
CAS
Article
Google Scholar
Besalduch N, Tomàs M, Santafé MM et al (2010) Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse. J Comp Neurol 518:211–228. https://doi.org/10.1002/cne.22220
CAS
Article
PubMed
Google Scholar
Mantilla CB, Zhan W-Z, Sieck GC (2004) Neurotrophins improve neuromuscular transmission in the adult rat diaphragm. Muscle Nerve 29:381–386
CAS
Article
PubMed
Google Scholar
Tomàs J, Garcia N, Lanuza MA et al (2017) Presynaptic membrane receptors modulate ACh release, axonal competition and synapse elimination during neuromuscular junction development. Front Mol Neurosci 10:132. https://doi.org/10.3389/fnmol.2017.00132
CAS
Article
PubMed
PubMed Central
Google Scholar
Pousinha PA, Diogenes MJ, Ribeiro JA, Sebastião AM (2006) Triggering of BDNF facilitatory action on neuromuscular transmission by adenosine A2A receptors. Neurosci Lett 404:143–147. https://doi.org/10.1016/j.neulet.2006.05.036
CAS
Article
PubMed
Google Scholar
Wiese S, Jablonka S, Holtmann B et al (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci 104:17210–17215. https://doi.org/10.1073/pnas.0705267104
Article
PubMed
PubMed Central
Google Scholar
Gordon T, Tyreman N, Li S et al (2010) Functional over-load saves motor units in the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 37:412–422. https://doi.org/10.1016/j.nbd.2009.10.021
CAS
Article
PubMed
Google Scholar
Lunetta C, Lizio A, Sansone VA et al (2016) Strictly monitored exercise programs reduce motor deterioration in ALS: preliminary results of a randomized controlled trial. J Neurol 263:52–60. https://doi.org/10.1007/s00415-015-7924-z
Article
PubMed
Google Scholar
Meyer R, Spittel S, Steinfurth L et al (2018) Patient-reported outcome of physical therapy in amyotrophic lateral sclerosis: observational online study. JMIR Rehabil Assist Technol. https://doi.org/10.2196/10099
Article
PubMed
PubMed Central
Google Scholar
Merico A, Cavinato M, Gregorio C et al (2018) Effects of combined endurance and resistance training in Amyotrophic Lateral Sclerosis: a pilot, randomized, controlled study. Eur J Transl Myol 28:72–78. https://doi.org/10.4081/ejtm.2018.7278
Article
Google Scholar
Gómez-Pinilla F, Ying Z, Opazo P et al (2001) Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur J Neurosci 13:1078–1084. https://doi.org/10.1046/j.0953-816x.2001.01484.x
Article
PubMed
Google Scholar
Acsadi G, Anguelov RA, Yang H et al (2002) Increased survival and function of SOD1 mice after glial cell-derived neurotrophic factor gene therapy. Hum Gene Ther 13:1047–1059. https://doi.org/10.1089/104303402753812458
CAS
Article
PubMed
Google Scholar
Manabe Y, Nagano I, Gazi MSA et al (2002) Adenovirus-mediated gene transfer of glial cell line-derived neurotrophic factor prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Apoptosis 7:329–334
CAS
Article
PubMed
Google Scholar
Sun W, Funakoshi H, Nakamura T (2002) Overexpression of HGF retards disease progression and prolongs life span in a transgenic mouse model of ALS. J Neurosci 22:6537–6548
CAS
Article
PubMed
PubMed Central
Google Scholar
Santafé MM, Garcia N, Tomàs M et al (2014) The interaction between tropomyosin-related kinase B receptors and serine kinases modulates acetylcholine release in adult neuromuscular junctions. Neurosci Lett 561:171–175. https://doi.org/10.1016/j.neulet.2013.12.073
CAS
Article
PubMed
Google Scholar
Garcia N, Tomàs M, Santafe MM et al (2010) Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75NTR receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction. J Peripher Nerv Syst 15:40–49
CAS
Article
PubMed
Google Scholar
Gómez-Pinilla F, Ying Z, Roy RR et al (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88:2187–2195. https://doi.org/10.1152/jn.00152.2002
Article
PubMed
Google Scholar
Cuppini R, Sartini S, Agostini D et al (2007) Bdnf expression in rat skeletal muscle after acute or repeated exercise. Arch Ital Biol 145:99–110
CAS
PubMed
Google Scholar
Zoladz JA, Pilc A (2010) The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol 61:533–541
CAS
PubMed
Google Scholar
Li X, Wu Q, Xie C et al (2018) Blocking of BDNF-TrkB signaling inhibits the promotion effect of neurological function recovery after treadmill training in rats with spinal cord injury. Spinal Cord. https://doi.org/10.1038/s41393-018-0173-0
Article
PubMed
Google Scholar
Küst BM, Copray JCVM, Brouwer N et al (2002) Elevated levels of neurotrophins in human biceps brachii tissue of amyotrophic lateral sclerosis. Exp Neurol 177:419–427. https://doi.org/10.1006/exnr.2002.8011
CAS
Article
PubMed
Google Scholar
Henriques (2010) Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci 4:1–14. https://doi.org/10.3389/fnins.2010.00032
Article
Google Scholar
Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–219. https://doi.org/10.1038/nrd3366
CAS
Article
PubMed
Google Scholar
Eide FF, Vining ER, Eide BL et al (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16:3123–3129. https://doi.org/10.1523/JNEUROSCI.16-10-03123.1996
CAS
Article
PubMed
PubMed Central
Google Scholar
Gonzalez M, Ruggiero FP, Chang Q et al (1999) Disruption of Trkb-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 24:567–583
CAS
Article
PubMed
Google Scholar
Dorsey SG, Lovering RM, Renn CL et al (2011) Genetic deletion of trkB.T1 increases neuromuscular function. Am J Physiol Cell Physiol 302:141–153. https://doi.org/10.1152/ajpcell.00469.2010
CAS
Article
Google Scholar
Skup M, Dwornik A, Macias M et al (2002) Long-term locomotor training up-regulates TrkB(FL) receptor-like proteins, brain-derived neurotrophic factor, and neurotrophin 4 with different topographies of expression in oligodendroglia and neurons in the spinal cord. Exp Neurol 176:289–307
CAS
Article
PubMed
Google Scholar
Brambilla L, Martorana F, Guidotti G, Rossi D (2018) Dysregulation of astrocytic HMGB1 signaling in amyotrophic lateral sclerosis. Front Neurosci. https://doi.org/10.3389/fnins.2018.00622
Article
PubMed
PubMed Central
Google Scholar
Liao B, Zhao W, Beers DR et al (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237:147–152. https://doi.org/10.1016/j.expneurol.2012.06.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu J-X, Brännström T, Andersen PM, Pedrosa-Domellöf F (2013) Distinct changes in synaptic protein composition at neuromuscular junctions of extraocular muscles versus limb muscles of ALS donors. PLoS One 8:1–12. https://doi.org/10.1371/journal.pone.0057473
CAS
Article
Google Scholar
Scott ALM, Ramer MS (2010) Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord. Brain 133:421–432. https://doi.org/10.1093/brain/awp316
Article
PubMed
Google Scholar
Bussmann KA, Sofroniew M (1999) Re-expression of p75NTR by adult motor neurons after axotomy is triggered by retrograde transport of a positive signal from axons regrowing through damaged or denervated peripheral nerve tissue. Neuroscience 91:273–281. https://doi.org/10.1016/S0306-4522(98)00562-4
CAS
Article
PubMed
Google Scholar
Meeker R, Williams K (2014) Dynamic nature of the p75 neurotrophin receptor in response to injury and disease. J Neuroimmune Pharmacol 9:615–628. https://doi.org/10.1007/s11481-014-9566-9
Article
PubMed
PubMed Central
Google Scholar
Kaal EC, Joosten EA, Bär PR (1997) Prevention of apoptotic motoneuron death in vitro by neurotrophins and muscle extract. Neurochem Int 31:193–201
CAS
Article
PubMed
Google Scholar
Belluardo N, Westerblad H, Mudó G et al (2001) Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4. Mol Cell Neurosci 18:56–67. https://doi.org/10.1006/mcne.2001.1001
CAS
Article
PubMed
Google Scholar
Obis T, Besalduch N, Hurtado E et al (2015) The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release. Mol Brain 8:1–16. https://doi.org/10.1186/s13041-015-0098-x
CAS
Article
Google Scholar
Nagy G, Matti U, Nehring RB et al (2002) Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J Neurosci 22:9278–9286. https://doi.org/10.1523/JNEUROSCI.22-21-09278.2002
CAS
Article
PubMed
PubMed Central
Google Scholar
Lai C-Y, Liu Y-J, Lai H-L et al (2018) The D2 dopamine receptor interferes with the protective effect of the A2A adenosine receptor on TDP-43 mislocalization in experimental models of motor neuron degeneration. Front Neurosci. https://doi.org/10.3389/fnins.2018.00187
Article
PubMed
PubMed Central
Google Scholar
Bilak M, Wu L, Wang Q et al (2004) PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis. Ann Neurol 56:240–248. https://doi.org/10.1002/ana.20179
CAS
Article
PubMed
Google Scholar
Carreras I, Yuruker S, Aytan N et al (2010) Moderate exercise delays the motor performance decline in a transgenic model of ALS. Brain Res 1313:192–201. https://doi.org/10.1016/j.brainres.2009.11.051
CAS
Article
PubMed
Google Scholar
Williams TL, Day NC, Ince PG et al (1997) Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol 42:200–207. https://doi.org/10.1002/ana.410420211
CAS
Article
PubMed
Google Scholar
Alexianu ME, Robbins E, Carswell S, Appel SH (1998) 1Alpha, 25 dihydroxyvitamin D3-dependent up-regulation of calcium-binding proteins in motoneuron cells. J Neurosci Res 51:58. https://doi.org/10.1002/(SICI)1097-4547(19980101)51:1%3c58:AID-JNR6%3e3.0.CO;2-K
CAS
Article
PubMed
Google Scholar
Menzies FM, Grierson AJ, Cookson MR et al (2004) Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J Neurochem 82:1118–1128. https://doi.org/10.1046/j.1471-4159.2002.01045.x
Article
Google Scholar
Gerber YN, Sabourin J-C, Hugnot J-P, Perrin FE (2012) Unlike physical exercise, modified environment increases the lifespan of SOD1G93A mice however both conditions induce cellular changes. PLoS One. https://doi.org/10.1371/journal.pone.0045503
Article
PubMed
PubMed Central
Google Scholar
Leenders AGM, Sheng Z-H (2005) Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol Ther 105:69–84. https://doi.org/10.1016/j.pharmthera.2004.10.012
CAS
Article
PubMed
PubMed Central
Google Scholar